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Electronic circuit Emuling a first-order time-delay differential equation
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This article provides undergraduates a useful tool for a better understanding of the time delay effect on an electronic circuit. The time
delay effect is analyzed in this paper a first-order differential equation. This linear time delay is associated with the amplitude of a first-
order differential equation and is responsible for three responses: one of the responses is a differential equation type in first-order without
delay, another one of the responses is a differential equation type in second-order and finally, we have the response of a harmonic oscillator.
The proposed circuit is an emulator that develops the three different responses mentioned above. Simulink-Matlab software was used to
implement the time delay and simulate the differential equation. These simulation results coincide with the theoretical results. In the same
manner, the experimental results match those of the theory. The electronic circuits suggested consist of three blocks: an integrator block, a
phase shift block, and a gain block. The electrical circuit is composed of resistors, capacitors, and operational amplifiers.
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1. Introduction

The model that replicates the best behavior must take the last
system state into account. That is to say, the use of the time-
delay differential equation is a good prospect for this purpose.
For instance, population dynamics are supposed to have re-
sponsive interaction between two different organisms, hence
the immediate response due to the presence of aggression.
However, we have to consider the time it takes to get this
response; for instance, plants that are attacked by herbivores
need time to recover their foliage, and the predator needs time
to consume its prey as well, etc. In addition, populations
generally do not asymptotically reach their equilibrium point
but rather oscillate around it. This behavior can be modeled
by adding time-delays in the reaction time. The time-delays
differential equation is suitable for modeling these cases; in
general, they can be very complicated, although in certain sit-
uations, it is possible to perform fairly complete qualitative or
geometrical research.

The study of time-delay systems has been of great interest
in the science field. The industrial and investigation systems
usually need to include delay effects in their processes to ac-
quire excellent performance. To model Thermal effects, we
must always consider the effects provided by time-delay for a
better approximation. In electronics, a time-delay is consid-
ered in design and fabrication systems [1]. Other examples
are feedback control [1], linear system stabilization [2], sig-
nal research, noise modeling effects in radio frequency (RF),
and all-pass filters [3–5]. So far, most of the existing results

reported on time-delay are theoretical [6], and normally no
circuit is built.

On this task, and to teach students of science and engi-
neering, we developed experiments for time-delay processes
and implemented an emulator electronic circuit. for a time-
delay device. We created a solution for each time interval in
which the behavior changed, hence obtaining the conditions
for stability. The acquired results are numerically shown on
the Matlab software and experimentally implemented in the
emulator circuit.

This article is addressed as follows: in Sec. 2, a solution
for time-delay first-order differential equation is given. In
Sec. 3, the suggested emulator circuit is developed through
Kirchhoff’s laws. In Sec. 4, the numerical solutions tested
in MatLab are shown as well as experimental results of the
circuit. In the AC and DC section, the AC, DC, and tran-
sient analysis for each stage of the circuit is developed, and
discussion and conclusions are presented in Sec. 5.

2. Firts order differential equation with time
delay

Based on the first-order differential equation with time-delay
[7], we infer possible solutions with a time-delay (τ ). Tech-
nically, if we give τ a value, we can have different solu-
tions: solution in a first-order system without time-delay,
the damped solution from a second-order without time-delay,
and an oscillatory response.
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The time-delay differential equation theory is concerned
with the variation of the state ofx which depends on time
instantt, and the previous momentτ .

ẋ(t) = f(t, x(t), x(t− τ1), · · · , x(t− τn)), (1)

where f is a given function, and time delayτj satisfies
τj > 0.

A particular case of a time-delay first-order differential
equations with constant coefficients, is when only one time-
delay exists:

ẋ(t) = f(t, x(t), x(t− τ)), (2)

On this task, we researched the next differential equation,
with amplitudea, time-delayτ , and ag(t) prefunction.

ẋ(t) = ax(t− τ), in [0, b], b > 0

x(t) = g(t) in [−τ, 0]

}
(3)

where{a, b, τ} ∈ R.
Equation (3) is the simplest concept to teach a student in

the science field.

2.1. Characteristic equation

Assume an exponential solution in this way

x(t) = cezt, (4)

wherez ∈ Z.
Differentiating (4) concerning time,

ẋ = czezt, (5)

and substituting (4) and (5) in (3)

z = ae−zτ , (6)

the characteristic equation is

zezτ − a = 0. (7)

2.2. Solution

Therefore, the objective is to find the roots of (7); or its equiv-
alent equation

(p + iq)e(p+iq)τ − a = 0, (8)

from where we get the real and imaginary part

Real → epτ (p cos qτ − q sin qτ)− a = 0, (9)

Imaginary → epτ (p sin qτ + q cos qτ) = 0, (10)

from (10) we getp

p = −q cot qτ, (11)

FIGURE 1. The solution is satisfied in the cross point of two curves,
in this case at interval -15 to 15.

substituting (11) in (9)

q = −a sin qτ eqτ cot qτ , (12)

multiplying (12) by τ and changing the variable inx = qτ ,

x = −aτ sin x ex cot x, (13)

to resolve (13), we find intersection ofy = x and y =
−aτ sin x ex cot x; therefore, when the values on the left side
of the equation coincide with those on the right side in (13),
the solution has been found. Figure 1 it shows this situation.

Figure 1 illustrates an infinity amount of solutions, those
solutions are found in each intersection; for instance, in
x = ±π/2. The solutions are numerically found.

Now, xk is one root in Eq. (13), asq = x/τ , be qk =
xk/τ . The pk values are obtained using theqk values in
Eq. (11). Then, the roots of (7) arepk + iqk, and the char-
acteristic solutions areepk cos(qkt) andepk sin(qkt). As in
Eq. (3) is linear, the formal solution is

x(t) =
∞∑

k=0

epk [c1k cos(qkt) + c2k sin(qkt)]. (14)

wherec1k andc2k are constants.

2.2.1. Looking for a solution

From Fig. 1, ifx = 0 andq 6= 0 thenτ = 0, that corresponds
to a system without time-delay, on the other hand, ifx = π/2
and using (11) and (12)

p = −q cot π/2 = 0
q = −a sin π/2 eπ/2 cot π/2 = −a

thusz = −ia andx = ce−iat, concerning an oscillatory sys-
tem, then, your solution is given by (14). The relationship
betweena andτ is obtained from (13),

aτ = −π/2. (15)

Now, if x is small, we approximatesin x to x, cos x to
1, andcot x to 1/x. Under these assumptions, from (11) and
(12) p = −1/τ, q = 0, because if we take the limit in Eq. (11)

lim
q→0

(−q cot qτ) = lim
q→0

−qτ cot qτ

τ sin qτ
= −1

τ
,
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and applying it to (13)

aτ = −1
e
. (16)

Thusz = −1/τ andx = ce−
1
τ t, concerning to a first order

system without delay if−(1/e) < aτ < 0.
Then, in this case, the general solution is given by

x(t) = c0e
− t

τ +
∞∑

k=1

epk [c1k cos(qkt) + c2k sin(qkt)]. (17)

If we take values in−(π/2) < aτ < −(1/e), thenp 6= 0
andq 6= 0. Thusz = −p + iq andx = ce−(p+iq)t. Getting
the answer for a second-order underdamped system.Then, the
solution is given by (14). For example, ifx = π/4 and using
the change in a variable in (11), we then have these values for
p andq

p = − π

4τ

q =
π

4τ

thus
z = − π

4τ
(1− i)

and
x = ce−

π
4τ (1−i)t,

applying (13)

aτ = −π
√

2
4e

π
4

. (18)

2.3. Approximate solution

We can give an approximate solution for (17), defining the
functionxn(t) in the following manner:

If −(1/e) < aτ < 0

xn(t) = c0e
− t

τ +
n∑

k=1

epk [c1k cos(qkt)+c2k sin(qkt)]. (19)

If aτ < − 1
e

xn(t) =
n∑

k=1

epk [c1k cos(qkt) + c2k sin(qkt)]. (20)

to guarantee the continuity of the solution int = 0 is required
thatxn(0) = g(0) to be able to calculate its coefficientsci,
the interval[−τ, 0] is split into subintervals in which the func-
tion of xn(t) and the pre-function ofg(t) are evaluated as
xn(ti) = g(ti).

2.3.1. Illustration as First Order type

Take the following values:a = 1, τ = 1/2e andg(t) = e−t2 ,
we find intersection ofy = x and y = −aτ sin x ex cot x

those correspond tox = ±7.3845, ± 13.8481, for instance,
using the negative values ofq = x/τ = −40.146,−75.286
andp = −q cot qτ = −20.367,−22.390. We build an ap-
proximate solution forn = 2, and (19) is expressed as

x2(t) = c0e
− t

τ +
2∑

k=1

epk [c1k cos(qkt) + c2k sin(qkt)],

subdividing the interval[−τ, 0] = [−(1/2e), 0] in four parts,
to calculateti instants necessary to solveci constants. These
are t = 0,−0.0459,−0.0919,−0.1379,−0.1839, and the
correspondingci are: c0 = 0.7740, c11 = 0.0230, c21 =
0.1598, c12 = 0.2029 andc22 = −0.1896. Thenx2(t) is:

x2(t) = 0.7740e−2et + e−20.367t
(
0.0230 cos[−40.146t]

+ 0.1598 sin[−40.146t]
)

+ e−22.390t
(
0.2029 cos[−75.286t]

− 0.1896 sin[−75.286t]
)
.

The results are shown in Fig. 2a.

2.3.2. Illustrating a Second Order type

Taking the next values:a = 1, τ = 1 andg(t) = e−t2 , we
found thatx = ±1.3361, ± 7.5921, using negative values
q = −1.3361,−7.5921 and p = −0.3194,−2.0350. For
n = 2, (20) is expressed as

FIGURE 2. Approximate solution: a) first-order, b) second-order, c) oscillation motion.
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x2(t) =
2∑

k=1

epk [c1k cos(qkt) + c2k sin(qkt)],

subdividing the interval[−τ, 0] = [−1, 0] into three parts,
to calculateti instants: t = 0,−0.3333,−0.6667,−1, and
the correspondingci are: c11 = 0.9686, c21 = −0.0962,
c12 = 0.0313 andc22 = 0.0168. Thenx2(t) is:

x2(t) = e−0.3194t
(
0.9686 cos[−1.3361t]

− 0.0962 sin[−1.3361t]
)

+ e−2.0350t
(
0.0313 cos[−7.5921t]

+ 0.0168 sin[−7.5921t]
)
.

The results are shown on Fig. 2b.

2.3.3. Illustration as Oscillatory type

Taking the next values:a = 1, τ = π/2 andg(t) = e−t2 , we
found thatx = ±1.5708, ± 7.6465, using negative values
q = −1,−4.8679 andp = 0,−1.0247. For n = 2, (20) is
expressed as

x2(t) =
2∑

k=1

epk [c1k cos(qkt) + c2k sin(qkt)],

subdividing the interval[−τ, 0] = [−π/2, 0] into three parts,
to calculateti instants:t = 0,−0.5236,−1.0472,−1.5708,
and the correspondingci are:c11 = 0.9646, c21 = −0.1130,
c12 = 0.0354 andc22 = 0.0330. Thenx2(t) is:

x2(t) = 0.9646 cos(−1t)

− 0.1130 sin(−1t)+

e−1.0247t
(
0.0354 cos[−4.8679t]

+ 0.0330 sin[−4.8679t]
)
.

The results are shown on Fig. 2c.
With these results, an electronic circuit is designed. With

the electronic circuit designed, students can connect the ab-
stract concept with a real system and adjust the time delay in
the suggested circuit.

3. Time-delay emulator circuit

The objective is to design a time-delay emulator electronic
circuit based on (3); for this, we are considering two parts in
this equation: left side and right side of the equation. The left
side has been taken as a first-order differential equation with-
out delay (see Fig. 3a), and the right side corresponds to the
delayed signal (Fig. 3b). Since the left and right-hand sides
are equal, this creates a closed-loop, as is shown in Fig. 3c.

FIGURE 3. Time-delay block diagram: a) first-order differen-
tial equation without delay (̇x(t) = ax(t)), b) delayed signal
(x(t− τ)), c) close loop.

FIGURE 4. The proposal electronic circuit is comprised of: gain
circuit “a”, integrated circuit “

∫
” and time-delay circuit “τ ”.

Considering the block diagram in Fig. 3, the next elec-
tronic circuit is suggested in Fig. 4. Where the voltagesv1,
v2, andv3 take the role as the variablesx(t), x(t − τ), and
ẋ(t) = ax(t− τ), respectively. The time delay in electronics
circuits is mapped as phase-angle shift (τ = θ).

Using Kirchhoff laws in the electronic circuit

v1 =
R3

R1R2C1

∫
v3dt, (21)

v3 = −R9

R8
v2, (22)

Rev. Mex. Fis. E19010202
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and v2 as impedance function, consideringR = R4 = R5,
C = C2 = C3, Z = (1/iωC),

v2 =
(

R7

R6
+ 1

)
Z2

R2 + 3RZ + Z2
v1, (23)

and expressed as frequency

v2 =
(

R7

R6
+ 1

)
(1−R2C2ω2) + i3Rω

(1−R2C2ω2)2 + 9R2C2ω2
v1. (24)

from where the magnitude ratio and phase-angle shift

|v2/v1| =
R7
R6

+ 1
(1−R2C2ω2)2 + 9R2C2ω2

×
√

R4C4ω4 + 7R2C2ω2 + 1. (25)

θ = arctan
3RCω

1−R2C2ω2
. (26)

The circuit is easy to implement by students since this
only consists of operational amplifiers, resistors, and capaci-
tors.

4. Numeric and Experimental Results

First, we carried out a Matlab-Simulink simulation of time-
delayed block diagram Fig. 3, using the parameters in Table I.
The result is shown in Fig. 5.

The oscillatory results, Fig. 5c), have a frequency of 1
Hz. Using this frequency and the parameters of Table I (a, τ ),
we calculated the resistor and capacitance values on the sug-
gested electronic circuit.
Gain a

As v3 = ax(t− τ) andv2 = x(t− τ), we see from (22)
that a = −(R9/R8), if we takeR8 = R9 = 10 KΩ, then
a = −1.
Block Integrator

It proceeds as follows: to calculateR1, R2, R3, andC1.
Let v3 = cos ωt, and using (21),

v1 =
R3 sinωt

R1R2C1ω

from which we adjust(R3/R1R2C1ω) to acquire a unity
gain. Likef = 1 Hz, and if we takeR2 = R3 = 10 KΩ
andC1 = 1 µF, we getR1 = 1 MΩ.

TABLE I. Parameters.

V (Volts) τ (sec.) response

-1 1
2e

first order

-1 1 damping second order

-1 π
2

oscillatory motion

FIGURE 5. Response: a) first-order, b) damping second-order,
c) oscillatory motion.

Time-delay
Now, to calculateR = R4 = R5, we need propose

C = C2 = C3. From (26),

R =
−3±

√
9 + 4 tan2 θ

2Cω tan θ
,

and usingC = 1µF, and the fact that time-delay is directly
proportional to the phase (τ = θ), we getR values to adjust
θ; these are shown in Table IIcolumn two.
Magnitude

Finally, to calculateR7, we proposeR6. The magnitude
of (25) must be adjusted to unity; for this purpose, we getR7

of this equation,

Rev. Mex. Fis. E19010202
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TABLE II. Magnitude and phase.

θ R R7

1
2e

(rad) 59.12 KΩ 121.65Ω

1 (rad) 425.25 KΩ 5.16 KΩ
π
2

(rad) 1 MΩ 20 KΩ

R7 =
(

(1−R2C2ω2)2 + R2C2ω2

√
R4C4ω4 + 7R2C2ω2 + 1

− 1
)

R6,

and usingR6 = 10 KΩ, C = 1 µF, andR given in Table II
column two, we getR7 values as are shown in Table II col-
umn three.

With these calculated values, the experiment is per-
formed, and the results are shown in Fig. 6.

5. AC and DC block analysis

AC, DC, and noise response analysis are important in the de-
sign process, as one can see the properties of electronic cir-
cuits manufactured. For this reason, we carried out this study
in this subsection. Based on the circuit shown in Fig. 4 and
Table III, its analysis by blocks is carried out.

5.1. AC analysis

Integrator block
Using (21) its transfer function is

Gint =
R3

R1R2C1S
(27)

and taking the values of resistors and capacitor given above,
its magnitude drops 20 dB per decade, its phase remains con-
stant at -90 degrees, and its cutoff frequency is given at 0.22
Hz
Gain block

Using (22) its transfer function is

Ggain = −R9

R8
, (28)

and taking the values of resistors given above, its magnitude
has unity gain per decade, and its phase remains constant at
180 degrees.
Delayed block

Using (23) its transfer function is

Gdelay =
(

R7

R6
+ 1

)
1

R2C2S + 3RCS + 1
, (29)

and taking the values of resistors and capacitors given above,
its Bode plot is shown in Fig. 7. Where: for Fig. 7 its magni-
tude drops−40 dB per decade, its phase go to−180 degrees,
and its cutoff frequency is given at 1.11 Hz forR = 59.12 kΩ
andR7 = 121.65 Ω, for Fig. 8 its magnitude drops−40 dB

FIGURE 6. Response: a) first-order, b) damping second-order,
c) oscillatory motion.

per decade, its phase go to−180 degrees, and the cutoff
frequency is given at 0.286 Hz forR = 425.25 Ω and
R7 = 5.16 KΩ, and finally for Fig. 9 its magnitude drops
−40 dB per decade, its phase go to−180 degrees, and its
cutoff frequency is given at 0.214 Hz forR = 1 MΩ and
R7 = 20 KΩ.

5.2. DC analysis

For the DC analysis, we use the step signal as input to observe
the transient and steady-state response at each block.

Rev. Mex. Fis. E19010202
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FIGURE 7. Frequency analysis: a) For values ofR = 59.12 KΩ

andR7 = 121.65 Ω.

FIGURE 8. Frequency analysis: b) For values ofR = 425.25 KΩ

andR7 = 5.16 KΩ.

FIGURE 9. Frequency analysis: c) For values ofR = 1 MΩ and
R7 = 20 KΩ.

Integrator block
For the integrator block, we use the transfer function (27)

and taking values of resistors given above, the step response
corresponds to a straight line with slope 1, as expected for the
integration function.
Gain block

For the gain block, we use the transfer function (28) and
taking values of resistors given above, we obtain a gain of
a = −1.
Delayed block

For delayed block we use the transfer function (29) and
taking values of resistors and capacitor given above, its step
response is shown in Fig. 10. Where: the curve a) corre-
sponds to a critically damped response forR = 59.12 Ω and
R7 = 121.65 Ω; for the curve b) corresponds to an over-
damped response forR = 425.25 Ω andR7 = 5.16 KΩ, and
in the same case for the curve, c) we have an overdamped
response forR = 425.25 Ω andR7 = 5.16 KΩ.

The theoretical solution is found by calculating the tran-
sient and steady-state response. For this, we make use of
the voltage on capacitors C2 and C3 and finally add the gain
(R7/R6 + 1), where the following equations are found.

Steady state response:

VC2 = VC3 = V1. (30)

Transient response: The equation inC2 andC3 are

dVC2

dt
= − 1

C2R4R5
VC2 +

V1

R4
+

VC3

R5
,

dVC3

dt
= − VC3

R5C3
+

VC2

R5C3
. (31)

Solving for the total response forR4 = R5 = 59.12 KΩ,
R7 = 121.65 Ω andC2 = C3 = 1 µF. We obtain:

VC3=− e−33.83t−e−16.91t+e−33.83t−e−16.91t + 1, (32)

and for R4 = R5 = 425.25 KΩ, R7 = 5.16 KΩ and
C2 = C3 = 1 µF.

VC3=− e−4.703t−e−2.352t+e−4.703t−e−2.352t + 1, (33)

FIGURE 10. Step response for: a)R = 59.12 Ω and
R7 = 121.65 Ω, b) R = 425.25 Ω and R7 = 5.16 KΩ,
c) R = 425.25 Ω andR7 = 5.16 KΩ.

Rev. Mex. Fis. E19010202
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TABLE III. SNR, THD and SNAD values for different noise levels.

s (Vrms) SNR(dB) THD(dB) SNAD(dB)

0.007 36.98 -6.02 6.01

0.070 16.98 -6.02 5.68

0.353 3.01 -6.02 1.24

finally for R4 = R5 = 1 MΩ, R7 = 20 KΩ andC2 = C3 =
1 µF.

VC3 = −e−t − e−2t + e−t − e−2t + 1, (34)

from which we can obtain the value ofV2 if add the gain
(R7/R6 + 1).

5.2.1. Noise response

As for the noise response of the system, the SNR, THD, and
SINAD are estimated based on the floor noise. The signal has
a fundamental frequency at 1 Hz and an amplitude of 1 V. It
also contains harmonics at 2 Hz, 3 Hz, 4 Hz, 5 Hz, and 6 Hz
with amplitudes of 50, 33, 25, 20 and 16.6 percent respec-
tively, all these magnitudes with respect to the fundamental
and additive Gaussian noise withµ = 0 andσ = 1 are used
to calculate the response to noise. Where SNR is noise sig-
nal, THD is total harmonic distortion, and SINAD is signal
to noise ratio versus distortion.

As shown in Table III in column SNR, the maximum
value is 3 db with a noise amplitude ofs = 0.353 Vrms.

6. Conclusions

In this article, an electronic emulator circuit to a first-order
differential equation with time-delay has been developed in
a theoretical and experimental manner. Different software
tools can be used to find the solution of a first-order differen-
tial equation with time-delay. In this article, we used Matlab
R14 running on the Ubuntu-Linux platform.

To design and manufactured the suggested electronic cir-
cuit, a block diagram in Simulink-Matlab is simulated. The
Ri andCi values from different blocks: gain, Integrator, and
time-delay; are tuned according to Simulink-Matlab and the-
oretical results. The electronic circuit is made experimen-
tally, and the results are shown in Fig. 6, giving a correspon-
dence with the results by simulation Fig. 5 and the theoretical
calculations, Table I.

AC analysis has been performed through bode diagrams
finding cut-off frequencies for the delay block of 7, 8, and
9. The study of the transient response, as well as the stable
response, was also carried out using the step function, where
the critically damped and overdamped response was found
for the delay block. As for the noise analysis, the limit values
are given for the noise amplitude ats = 0.353 Vrms.

Finally, the electronic prototype is simple to assemble on
a protoboard using basic elements. This will allow the stu-
dent to easily make changes to the key system variables and
gain a deeper understanding of physical phenomena modeled
with time delay.
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