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The Dirac delta function is a concept that is useful throughout physics as a standard mathematical tool that appears repeatedly in the under-
graduate physics curriculum including electrodynamics, optics, and quantummechanics. Our analysis was guided by an analytical framework
focusing on how students activate, construct, execute, and reflec on the Dirac delta function in the context of classical electrodynamics prob-
lems solving. The applications of Dirac delta function to fin the charge density associated with a point charge as well as electrostatic point
dipole field for more advanced situations to describe the charge density of hydrogen atom were presented.
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1. Introduction

The delta functions appeared in the early days of 19th cen-
tury, in works of the Poission (1815), Fourier (1822) and
Cauchy (1823) [1]. Subsequently Heaviside (1883) and Kir-
choff (1891) gave the firs mathematical definition of the
delta functions. Kirchoff was concerned with the fundamen-
tal solution of the three-dimensional wave equation, while
Heaviside introduced the function in his “Operational Calcu-
lus”. He pointed that δ(x) could be regarded as the deriva-
tion of the Heaviside or unit “step function” θ(x), define as
unity for x > 0 and zero for x < 0. After Heaviside, the
delta function was freely used -in particular, in connection
with Laplace transforms, especially by electrical engineers
(e.g. Van der Pol (1928))-. Dirac (1926, 1930) introduced
the delta function in his classic and fundamental work on the
quantum mechanics, essentially as the continuous analogue
of the Kronecker delta. He also wrote down, a list of its im-
portant properties [2,3]. The uses of the delta function be-
came more and more common after the appearance of Dirac’s
work. Other singular functions also made their appearance,
as early version of quantum fiel theory began to take shape
in the words of physicists such as Jordan, Pauli and Heinsen-
berg. Around the same time, mathematicians began attempts
to defin such singular quantities in a rigorous manner.

The delta function and other such singular objects were
recognized to be what are called generalized functions or
distribution, rather than function in the usual mathematical
sense. These were introduced in quantum mechanics by
Dirac [3] who did not, however, fin them a source of lack of
rigor in the theory. The mathematical justificatio of the use
of the Dirac delta has been given by Schwartz (1950) in his

Theory des Distributions [4]. A much more accessible ver-
sion of the theory based on the concept of generalized func-
tions define by means of sequences was developed by Tem-
ple, and a very readable treatment is given by Lighthill [5].

Dirac delta functions provide a convenient way to de-
scribe the singular nature of certain distributions, which are
widely used in electrodynamics, quantum optics and other
areas of quantum physics. How to deal in a consistent and
systematic manner with singularities arising at the origin of a
polar coordinates system is a recurring question in the teach-
ing of classical electrodynamics [6,7,9] as well as in research
[10-12]. In the paper [13] an analytical framework describ-
ing the use of mathematical tools in physics problem solv-
ing to structure investigation and analysis of student diffi
culties with δ functions was given. The use of generalized
delta function to derive the Glauber-Sudarshan P-function
for a Schrödinger cat state in a surprisingly simple form is
presented in [14]. Aside from their potential applications in
classical electromagnetism and quantum optics, these results
provide insight into the ability of the diagonal P-function to
describe density operators with off-diagonal elements. The
electric or magnetic fiel of an ideal dipole is known to have
a Dirac delta function at the origin. In Ref. [15] it is shown
that the divergence of a singular vector fiel can contain a
derivative of a Dirac delta function even if the fiel itself does
not contain a delta function.

In undergraduate curriculum, Dirac delta function is used
in a variety of contexts throughout physics curriculum. How-
ever, we have observed consistent student difficultie using
the delta function. This paper presents various ways of defin
ing and introducing Dirac delta function including its appli-
cation in solving some problems in electrodynamics.
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FIGURE 1. The vector function v directed radially outward.

2. Why does the Dirac delta function appear
in physical problems?

Consider the vector function

v =
1
r2

r0 (1)

where r0 is unit vector in radial direction. The function v is
directed radially outward (Fig. 1); if ever there was a function
that ought to have a large divergence, this is it.

Now we calculate the divergence of vector function (1);
we get precisely zero:

∇ · v =
1
r2

∂

∂r

(
1
r2

vr

)
=

1
r2

∂

∂r

(
1
r2

r2

)

=
1
r2

∂

∂r
(1) = 0. (2)

The result in Eq. (2) may come as a surprise; this is a
paradox. The divergence∇ · v is a measure of how much the
vector v spreads out (diverges) from the point in question.
For example, the vector function in Fig. 1 has a large (pos-
itive) divergence. It should be understood that is a function
-there is a different vector associated to every point in space-.
Now, apply the fundamental theorem of divergence using the
function in Eq. (1). The fundamental theorem of divergence
states that:

∫

V

(∇ · v)dτ =
∮

S

∇ · dσσσ. (3)

Suppose we integrate over a sphere of radius R, centered
at the origin; the surface integral is

∮

S

∇ · dσσσ =
∫ (

1
R2

r0

)
(R2 sin θdθdφr0)

=

π∫

0

sin θdθ

2π∫

0

dφ = 4π. (4)

But the volume integral
∫

V
(∇ · v)dτ on the left hand of

Eq. (3) gives the zero. What’s going on here? The source of
the problem is the point r = 0 where r blows up (Fig. 1). It
should be noticed that the surface integral in Eq. (4) is inde-
pendent of R; if the divergence theorem is right, we should
get

∫
V

(∇ · v)dτ = 4π for any sphere centered at the ori-
gin, no matter how small. Hence∇ · v has a bizarre property
that it vanishes everywhere except at one point, and yet its
integral over any volume containing that point is 4π. There
is no ordinary mathematical function behavior like that. On
the other hand, a physical example does come to mind: if v
represent the fl w of and incompressible fluid then the flu
of v, the right side of Eq. (3), is the total amount of flui
passing out through the surface, per unit time. Now, the di-
vergence measures the ‘spreading out’ of the vectors from
a point -a place of high divergence is like a ‘faucet’ pour-
ing out liquid-. We also have the similar problem of a point
particle: consider the basic problem of electrostatics. Given
a static charge density ρ(r) in free space, what is the cor-
responding electrostatic potential φ(r) at any arbitrary point
r = (x, y, z)? From Maxwell’s equations, we know that φ
satisfie Poisson’s equation [17], namely,

∇2φ(r) = −ρ(r)
ε0

, (5)

where ε0 is the permittivity of the vacuum. What does one
do in the case of a point charge q located at the same point
r0 = (x0, y0, z0)? A point charge is an idealization in which
a finit amount of charge q is supposed to be placed into zero
volume. The charge density must therefore be infinit at the
point r0, and zero elsewhere. These paradoxes can be over-
come by introducing a mathematical object known to physi-
cist as the Dirac delta function. The delta function comes to
our aid: we may write, in this case,

ρ(r) = qδ(3)(r − r0), (6)

where δ(3) is the three-dimensional delta function. It arises in
many branches of theoretical physics, especially in quantum
mechanics and electrodynamics.

3. Dirac delta function: properties and repre-
sentations

The delta ’function’ δ(x−x′) is such that for any other func-
tion f : R → R:

+∞∫

−∞
f(x)δ(x− x′)dx = f(x′). (7)
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A special case of this is when f identically 1, giving is

δ(x− x′)dx = 1. (8)

The delta function is best thought of as a functional,
something that takes a function to a value. In the above exam-
ples, the delta ‘plucks out’ the value of f at x from under an
integral. The one-dimensional Dirac delta function δ(x− x′)
can be pictured as an infinitel high infinitesimall narrow
‘spike’ with area 1. That is to say:

δ(x− x′) =
{

0, if x 6= x′

∞, if x = x′

with
+∞∫

−∞
δ(x− x′)dx′ = 1. (9)

In the point x′ = 0, we have

δ(x) =
{

0, if x 6= 0
∞, if x = 0

and
+∞∫

−∞
δ(x)dx = 1. (10)

Dirac delta function is that it is not a function at all since
its value is not finit at x = 0. In mathematical literature it is
known as a generalized function or distribution.

In physics, the function δ(3)(r) (the three-dimensional
Dirac delta function) is define by

δ(3)(r) = δ(x)δ(y)δ(z), (11)

with the following properties: δ(3)(r) = 0 everywhere except
at the singular point (0, 0, 0) where it blows up. Its volume
integral is 1:

∫

all space

δ(3)(r)dτ

=

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞
δ(x)δ(y)δ(z)dxdydz = 1. (12)

By the changing variables to r − r’ in following integral,
it is easy to see using (7) that

∫

all space

f(r)δ (3)(r − r’ )dτ = f(r’). (13)

FIGURE 2. The function δε(x) for ε = 1.0, 0.5 and 0.1.

As in the one-dimensional case, integration with δε(x)
picks out the value of the function f at the location of the
spike.

4. On the calculus of Dirac delta function

In this section we have used the Wolfram Mathematica
to present a few rigorous approaches of the Dirac delta func-
tion. The simplest set of function with the proper behavior is
the set function δε(x) define by

δε(x) =
{

1/ε for |x| ≤ ε/2
0 for |x| ≤ ε/2 . (14)

In the Fig. 2 the function δε(x) is pictured.
Clearly, we have limε→0 δε(x) = 0 for all x 6= 0, and∫ +∞

−∞ δε(x)dx = 1 independent on ε. The function δε(x) is
define for all ε 6= 0, and we have limε→0

∫ +∞
−∞ δε(x)dx =

1.
The second representation of Dirac delta function comes

from the sequence of Gaussian functions define by

δa(x) =
1

α
√

π
e−x2/α2

. (15)

Note that limα→0 δα(x) = 0 for all x 6= 0. And using
the well-known results

∫ +∞
−∞ e−α2

dx =
√

π/α we see that∫ +∞
−∞ δα(x)dx = 1 is independent of α. In Fig. 3, the func-
tion δα(x) is plotted for three different values of α.

The third useful representation of the Dirac delta function
is

δ(x) = lim
ε→0

δε(x) = lim
ε→0

1
π

ε

x2 + ε2
. (16)
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FIGURE 3. The function δα(x) for α = 1.0, 0.5 and 0.1.

FIGURE 4. The function δε(x) for ε = 1.0, 0.5 and 0.1.

Using

ε

π

+∞∫

−∞

dx

x2 + ε2
=

ε

π

+θ/2∫

−θ/2

dθ

ε
= 1,

where x = ε tan θ, we can follow the previous approach to
verify the desired properties. In Fig. 4 the function δε(x) is
shown.

This representation of the delta function is slightly differ-
ent from the preceding one. Defin the function δn(x) by

δn(x) =
{

Cn(1− x2)n for 0 ≤ |x| ≤ 1,
0 for |x| > 1,

(17)

where the normalization constant Cn is define so that∫ 1

−1
δn(x)dx = 1. After some algebra we have

Cn =
(2n + 1)!

22n+1(n!)2
.

If we know the behavior of the Cn as n → ∞ we have
limn→∞ δn(x) = δ(x) (see Fig. 5).

FIGURE 5. The function δn(x) for n = 5, 20 and 100.

5. A Physicist’s approach of Dirac delta func-
tion

Consider the function

f(x, x′) =
sin a(x, x′)
π(x, x′)

=
a

π

(
sin a(x, x′)

a(x, x′)

)
(18)

A plot of this for a = 10 is shown in Fig. 6 below. Since
limθ→0 sin θ/θ = 1, we see that f(x, x′) has height a/π,
an firs crosses the x − x′ axis at x − x′ = π/a. Thus
the area of the central peak is approximated by the area of
the triangle with height a/π and base 2π/a for an area of
(1/2)(2π/a)(a/π) = 1 which is independent of a. This
underestimates the area under the main peak but ignores the
tails, and these cancel each other out. Therefore, as a → ∞
the height of f(x, x′) becomes infinit as its width goes to
zero, while the area under the curve remains equal to 1. More
generally, the physicist’s approach of the delta function is the
limit

δ(x) = lim
ν→∞

sin νx

πx
. (19)

FIGURE 6. Delta function as the limit of the function sin νx/πx

for ν = 1 and 2.
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6. Dirac delta with some applications in classi-
cal electrodynamics

6.1. Charge density of a hydrogen atom

The time-averaged potential of a neutral hydrogen atom is
given by

φ(r) =
q

4πε0

e−αr

r

(
1 +

αr

2

)
, (20)

where q is the magnitude of the electronic charge, and α−1 =
a0/2; a0 being the Bohr radius.

Since this potential falls off faster than 1/r, it is reason-
able to suspect that the total charge described by this potential
is zero. We will fin the distribution of charge (both continu-
ous and discrete) that will give this potential and interpret our
result physically. Theoretically, we could just use Poisson’s
equation to fin the charge density; for r > 0 is

ρ(r) = −ε0∇2φ(r), (21)

where

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
,

is Laplacian in spherical coordinates. We must be careful
because of the singular behavior at r = 0. For the case of
r → 0

lim
r→0

φ(r) = lim
r→0

q

4πε0r
. (22)

The singular nature of the Laplacian of 1/r can be exhib-
ited formally in terms of a Dirac delta function [16]:

∇2

(
1
r

)
= −4πδ(r). (23)

Combining Eqs. (22), (23) and Poisson’s equation, we
have got for r → 0

ρ(r) = qδ(r). (24)

We can multiply the right side of solution (24) by e−αr

without consequences. Away from the origin, 1/r does not
blow up and derivatives can be evaluated normally. This al-
lows for a more elegant way of writing the discrete and the
continuous parts together for all r:

ρ(r) = qδ(r)− qα3

8π
e−αr. (25)

Obviously, the firs discrete term represents a positive
point charge at the origin (proton) with one unit of elemen-
tary charge q, while second term corresponds to the nega-
tive electron with charge −q that orbits around the proton.
The continuous part of the charge density is more a statistical
distribution of the location of the electron (negative electron
cloud). This is of course only useful for conceptualization
purposes, because at atomic size the system behaves quan-
tum mechanically, not classically.

6.2. Charge distribution as three-dimensional charge
density

Using Dirac delta function in appropriate coordinates, it
is possible to express the charged distributions as a three-
dimensional charge density ρ(r) in many of the problems
of classical electrodynamics. For example, if we have a to-
tal charge Q distributed over a thin spherical shell of radius
R, in order to fin the charge distribution, it is required to
use three-dimensional Dirac delta function that is define by
Eq. (11). In this case the charge density should be in the
form ρ ∝ δ(r − R) because the charge distribution is zero
except on a thin shell when r equals R. The delta function
insures that the charge density vanishes everywhere except
when r = R, the radius of the sphere. Integrating ρ over that
shell, we should get Q for the total charge:

∫
ρ(r)dV =

∫
Aδ(r −R)dV = Q, (26)

where A is a constant that to be determined. Evaluate the
integral and solve for A:
∫

Aδ(r −R)dV =
∫

Aδ(r −R)

× r2d(cos θ)dφdr = 4πR2A = Q. (27)

So A = Q/4πR2, can be found is charge distribution in
the following form

ρ(r) =
Q

4πR2
δ(r −R). (28)

6.3. Volume charge density distribution for a group of N
point charges

A single point charge q located at a point A characterized
by the position vector r ′ (Fig. 7). It can be represented by a
continuous distribution [7]

ρ(r) = qδ(r − r ′), (29)

where δ(r − r ′) is three-dimensional delta function of argu-
ment r − r ′.

The integral of ρ(r) overall space yields the charge q:
∫

ρ(r)d3r =
∫

qδ(r − r ′)d3r = q. (30)

By virtue of the propriety of the three-dimensional delta
function. The volume charge density distribution for a group
n point charges q1, q2, . . . , qN located at r′1, r

′
2, . . . , r

′
N is

given by

ρ(r) =
N∑

i=1

qiδ(r − r ′i). (31)
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FIGURE 7. A single point charge.

6.4. Volume charge density for a point dipole

A single point electric dipole with dipole moment p that is lo-
cated at a point A is shown in Fig. 8. The vector r ′ is position
vector with respect to an arbitrary point O. A point electric
dipole consisting of a two charges −q and +q a distance ∆r′

apart and laying in a direction characterized by the vector
∆r ′.

The point dipole is obtained in the limit when q → ∞,
while ∆r′ → 0 but in such a way that the product q∆r′

remains finite Thus, the electric dipole moment is define
by [8]

p = lim
q→∞

∆r′→0

q∆r ′. (32)

The total charge distribution is described by the density

ρ(r) = q (δ [r − {r + ∆r ′}]− δ[r − r ′]) , (33)

where firs part is corresponding volume density of charge
+q, while the second part represents the density of point
charge −q. Since the Dirac delta function is an even func-
tion of its argument, we fin

FIGURE 8. A point electric dipole.

ρ(r) = q (δ[r ′ − r + ∆r ′]− δ[r ′ − r]) . (34)

Using the Taylor expansion on the function (34), and after
straightforward algebra we obtain

ρ(r) = −p · ∇δ(r ′ − r). (35)

Thus, a charge density of a point electric dipole can be
expressed in terms of a highly singular vector, the gradient of
delta function.

6.5. The model of magnetic current

Electron waves on a plasma guide attracted the attention of
investigators for a long time. A comprehensive review on this
topic can be found in [18]. A simplifie model of magnetic
current in which the plasma is created by fictitiou magnetic
current (Fig. 9) was presented in [19].

The typical method to fin electromagnetic wave prop-
agation along the plasma waveguide assumed begin with
Maxwell’s equations in a form adapted to our case

∇× H = ε0ε
∂E
∂t

, (36)

∇× E = −µ0
∂H
∂t

− Jm, (37)

where Jm is magnetic current density which in cylindrical co-
ordinate system has only azimuthal component and in form
of Dirac delta function is given as

Jmφ = Uδ(ρ−R)δ(z). (38)

The adequate coordinate system here is a cylindrical sys-
tem (ρ, φ, z); the z-axis coincides with the axis of the guide,
whereas ρ and φ are the corresponding radius and angle
in the perpendicular plane. Therefore, the components of
the electric fiel ~E are (Ep, Eφ, Ez) and magnetic fiel ~H
(Hp,Hφ,Hz) . Here the typical method for findin the solu-
tion of wave equation connected to the mentioned problem of
electromagnetic wave propagation along the plasma waveg-
uide was used [19,20].

FIGURE 9. The plasma created by magnetic current. The radius of
plasma column is a whereby it is R > a; εp and εg are plasma and
glass permittivity, respectively.
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7. Conclusion

The study of Dirac delta function is now widely used in clas-
sical electrodynamics, quantummechanics and applied math-
ematics. The Dirac delta function approach provides us with
a unifie approach in treating discrete and continuous distri-
butions. Our students of physics encountered a few issues
when using or interpreting the Dirac delta function. This pa-
per contributes to the limited body of research on student dif-
ficultie with the Dirac delta function by presenting its defini
tion and properties. The paper framework provided an orga-
nizing structure for Dirac delta function analysis that helped
us to identify nodes in students’ work where key difficultie
appeared. The method of using Dirac delta function to calcu-
late charge distribution for the point charge as well as point

electric dipole is presented. Such examples could provide
a longitudinal perspective on the growth of student under-
standing of classical electrodynamics, allowing researchers
and instructors to focus their efforts on addressing those dif-
ficultie that are most common throughout the physics cur-
riculum. Thus, the Dirac delta function is one of the most
essential and widely used concepts in physics and in mathe-
matical analysis.
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