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On random walks, projecting election results and statistical physics
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Several important statistical tools and concepts are covered in upper division undergraduate Statistical Physics courses, including those of
random walks and the central limit theorem. However, some of their broad applicability tends to be missed by students, as well as the
connection between these and other physical concepts. In this work, we apply a 1D random walk to study the evolution of the probability
that a candidate will win an election given she holds some lead over her opponent and connect the result found to the concept of density of
states and occupation probabilities. This paper is intended to serve as a guide to the Statistical Physics instructor who wishes to motivate
students beyond the boundaries of the official syllabus.
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1. Introduction

At the end of their undergraduate education, Physics stu-
dents are familiar with random walks and the Central Limit
Theorem, as well as with the concepts of Density of States
(DOS) and occupation probability applied to quantum statis-
tics. However, these two concepts - random walks and DOS-
are not usually connected in regular courses. Furthermore,
the usefulness of the former in both Physics and other statis-
tical problems outside of the realm of this discipline tends to
get lost.

In this paper, we present an application of random walks
outside of the realm of Physics that can then be connected to
the concept of DOS and the calculation of average values in
Statistical Physics. Specifically, we show how a simple ran-
dom walk in 1D can be used to calculate the probability a can-
didate will win an election given that she holds a certain lead
after some percentage of the votes have been counted. The
equation that yields this probability is then compared to the
expression normally encountered in this course to calculate
average values for a given occupation probability and DOS.

2. An election result as a random walk

Consider a unit step random walk in 1D without hesitation.
In the plot of Fig. 1, the thick red line depicts a realization of
this walk aftern = 100 steps, whose position happens to be
positive (+20). If an extram = 50 steps are yet to be taken,
the black dots depict the final positions of different possible
walks generated with the same (but in principle unknown)
underlying probabilitiesP and1 − P of taking a step for-
ward and backward, respectively. The thin blue trace depicts
a walk whose position ends up being negative, thus reverting
the initial lead.

The question we would like to answer is: how likely is
it that such a walk will not occur, (i.e. that the lead is not

FIGURE 1. A random walk (red-thick trace) with unit steps and
no hesitation is found at position= 20 aftern = 100 steps. The
thinner traces depict some realizations after an extram = 50 steps
are taken, out of which the blue one ends up at a negative position.
If the odds of taking± steps are unknown, what is the probability
that such a walk will not happen?

reverted)? The original electoral problem posed in the intro-
duction section can be formulated as a special case of this
general one. If we assign a +1 to the vote for candidate #1
and -1 to a vote for candidate #2, a partial result of an elec-
tion can be given by the sign of the sum of the fraction of the
votes that have been counted so far. We can regard each vote
as given by a stochastic variableXi (identical for alli) de-
fined by the probabilities of its only two possible outcomes:
Prob(xi = 1) = P , andProb(xi = −1) = 1 − P , which
are unknown to us. Note that we are assuming that null votes
are forbidden, which translates into the condition of “no hes-
itation” for a random walk. Then, the partial lead aftern
votes have been counted is given by the position relative to
the origin of a stochastic variableX defined as:
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X =
X1 + X2 + X3 + . . . + Xn

n

=
1
n

n∑

i=1

Xi =
1
n

n∑

i=1

Yi, (1)

whereYi ≡ Xi/n. We point out that applications of ran-
dom walks to electoral problems date back to the work by W.
Whitworth in 1878 [1].

3. Solution

To find the solution to this problem, we will first calculate the
probability that the observed lead aftern steps (or votes) be-
longs to any given underlying probabilityP . Then, we will
calculate the probability that, for a givenP , a subsequent
walk will not revert the lead in the remaining m steps. The
sum over allP of the product of these two probabilities is the
probability we are looking for. To calculate the former prob-
ability, we first obtain the statistical properties of the variable
X by applying the Central Limit theorem [2], assuming that
the number of steps taken so far is large.X is then well ap-
proximated by a Normal random variable,X = N(µ, σ2),
where the mean and variance are given, respectively, by

µ ≡ 〈X〉 = n〈Yi〉 = n〈Xi/n〉 = 〈Xi〉, (2)

and

σ2 ≡ V AR{X} = nV AR{Yi}

= nV AR{Xi/n} =
1
n

V AR{Xi}. (3)

If the two possible values for a vote〈Xi〉 arexi,1 = 1
andxi,2 = −1, then, by definition,

〈Xi〉 =
∑

j

xi,jProb(xi,j) = 2P − 1,

and

〈X2
i 〉 =

∑

j

(xi,j)2Prob(xi,j) = 1,

After substituting these values in the general relation

V AR{Xi} = 〈X2
i 〉 − 〈Xi〉2,

Eq. (3) leads to:

σ2 =
1
n

(1− [2P − 1]2) =
4
n

P (1− P ), (4)

while the mean is simply given by:

µ = 2P − 1. (5)

FIGURE 2. Probability density (red trace) for the variableX given
by a Normal distribution withP = 0.53 aftern = 100 steps, along
with the relative position of the walk at that time atx0 = 0.2 (black
line). The integral limits of Eq. (7) are depicted by the dashed lines.

Now, the lead of candidate #1 given in terms of a percent-
ageA (or fraction) of counted votes can be recast as some
positionx0 of the walk:

x0 ≡ A− (1−A) = 2A− 1. (6)

For example, ifA = 60%, thenx0 = 0.2, and we can
visualize a certain lead related to the Normal distribution we
just found for a givenP (see example in Fig 2).

Now, note that by applying the Central Limit theorem,
we have transformed a discrete probability distribution into
a continuous one, a probability density. Consequently, the
probability that a walk will end at exactly the positionx = x0

is strictly zero. The question we should be asking instead is:
what is the probability of finding the walk in a positionx in
the range(x0 −∆x) < x < (x0 + ∆x)? This probability is
depicted by the shaded area in Fig. 2 and is given by

Π1 ≡ 1√
2πσ[P ]

x0+∆x∫

x0−∆x

e−(x−µ[P ])2/2σ[P ]2dx, (7)

where the square bracket symbolizes “function of”, and the
mean and variance are given by Eqs. (4) and (5). But, how
wide of an interval should we use? To answer this, students
should first realize that, even thoughn is large, it is not infi-
nite. In this respect, it does not make sense to use∆x < 1/n
since it is the resolution of data. It should also be made clear
that∆x is on the order of1/n but that its size is in principle
arbitrary. Assuming thatn is indeed large, it then follows that
∆x ¿ 1, which allows us to expand Eq. (7) in Taylor series
to first order in∆x around zero:

Π1[X0] ≈ 2√
2πσ1[P ]

e−(x0−µ[P ])2/2σ[P ]2∆x. (8)
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Here, it is important to stress a key point:x0 is the quan-
tity we observe, whileP is unknown. The question we should
be asking instead is: what is the probability that givenn and
x0 ± ∆x, the parameter with which the walk was generated
is P? With this important conceptual change in mind, we
reinterpret the probabilityπ1 as being a function ofP for
givenn andx0 ±∆x (that is,Π1 = Π1[P ]). The following
question immediately arises: isΠ1 a (continuous) probabil-
ity density or a (discrete) probability function ofP? In the
former case, the normalization would necessarily be a func-
tion of ∆x alone, which, as we just mentioned, is arbitrary.
Therefore,Π1 must be a discrete probability function whose
normalization function is given by

∑
p

Π1[P ] = 1, (9)

where the possible values ofP are separated by small (but
also finite!) intervals of size∆P , a quantity we will use be-
low to normalizeΠ1. Note in Eq. (9) that we could also in-
terpretΠ1[P ] as the average probability that the walk found
at the positionx0±∆x was generated with a parameterP in
the rangeP + ∆P . To perform the summation in Eq. (9), we
note first thatΠ1 in Eq. (8) is itself a normal variable, but this
time as a function ofP . Explicitly,

Π1[P ] =
√

n

2π

e−(n[1−2P+x0]
2/8[1−P ]P )

√
(1− P )P

∆x

=
e−(P−µ1)

2/2σ2
1√

2πσ2
1∆x

(10)

whereµ1 ≡ (1/2)(x0 + 1) = A andσ2
1 ≡ (1/n)P (1 − P ).

If we assume that∆P ¿ 1, the normalization condition
can be approximated by an integral after multiplying by
∆P/∆P=1:

1 =
∑

P

∆x
e−(P−µ1)

2/2σ2
1√

2πσ2
1

∆P

∆P

≈ ∆x

∆P

1∫

0

e−(P−µ1)
2/2σ2

1√
2πσ2

1

dP (11)

As long asx0 is not too close to either 0 or 1, we can
extend the integration limits to plus and minus infinity and
integrate to obtain the normalization condition,

∑

P

Π1[P ] ≈ ∆x

∆P

∞∫

−∞

e−(P−µ1)
2/2σ2

1√
2πσ2

1

dP

=
∆x

∆P
= 1. (12)

Note that we calculated the integral in this equation as if
the varianceσ2

1 were constant, when, in reality, it is a function
of P . However, the factorP (1 − P ) is practically constant
in the range whereexp[−n(P − µ1)2] varies significantly.

Therefore, for largen (say,n > 1000), regardingσ2
1 as a con-

stant is an excellent approximation, and we can proceed as if
the integrand was a normalized distribution. Equation (12)
then imposes that∆P = ∆x = (1/n). After substituting
∆x = (1/n) in Eq. (10), we arrive at

Π1[P ] =
1
n

e−(P−µ1)
2/2σ2

1√
2πσ2

1

. (13)

When this expression forΠ1 is substituted into Eq. (9)
and the sum is taken overvalues ofP separated by intervals
of size∆P = 1/n, normalization is ensured [3]. We are now
in the position to calculate the second probability necessary
to answer our central question: for a givenP andx0, what
is the probability that the walk will end up at a positive po-
sition, provided thatm extra steps are still to be taken? In
other words, what is the probability that the lead is not re-
verted provided a particular value forP is assumed? To this
end, we construct a new variableZ analogous to the variable
X we constructed in Eq. (1), but this time is given by the
average of the remainingm votes:

Z =
(Xn+1 + Xn+2 + . . . + Xm+n)

m
.

Since the variables are again identical, a simple change of
index leads to:

Z =
1
m

m∑

k=1

Xk. (14)

If m is large, too, we can invoke the Central Limit Theo-
rem once again, and obtain forZ a Normal distribution with
meanµ2 and varianceσ2

2 given by Eqs. (5) and (4) respec-
tively, but withn replaced bym. The goal is now to calculate
the probabilityΠ2[P ] that the length of the remaining walk
will be no more negative than−x0 (blue trace in Fig. 1). This
probability is simply given by the integral ofN(µ2, σ

2
2) from

z0 ≡ x0(n/m) to +∞ (see Appendix A), and it can be cal-
culated as a function ofx0, n, m, andP :

Π2[P ] ≡
∞∫

−z0

N(µ2, σ
2
2 [P ])dz

=
1
2

(
1 + Erf

[
x0(n/m) + 2P − 1√

8P (1− P )/m

])
. (15)

To illustrate how this function evolves asm decreases, a
plot of Π2 vs. P is displayed in Fig. 3. For a givenP , the
probability that both an observed lead was generated from a
walk with that parameter and that the lead won’t be reverted
is Π1[P ] ∗ Π2[P ] (since these are independent events). To
finally arrive at the total probabilityΠT that the lead is not
reverted, we must now add up the contributions from all pos-
sible values ofP separated by intervals of size∆P = 1/n:

ΠT =
∑

P

Π1[P ]Π[P ]. (16)
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FIGURE 3. Probabilityπ2 vs. P of maintaining the lead given by
A = 60% (x0 = 0.2) for n = 100 and the different remaining
number of votes (m) to be counted.

FIGURE 4. a) Functionsπ1 andπ2 vs. P in Eq. (16) to obtain
the probabilityπT that an observed lead is not reverted (n = 200,
m = 800 andx0 = 0.01). b) π1 ∗ π2 (left axis) and correspond-
ing cumulative probability (right axis). Note that this product is not
symmetrical with respect toµ1 = (1/2)(x0 +1) = 0.505, (dashed
line on both figures).

It is instructive to show in the same plot the two functions
that are being multiplied in Eq. (16) (Fig. 4a)), as well as their
product itself (Fig. 4b)). Note in this plot that we are multi-

plying normal function times a sigmoidal one (except when
m/n À 1). This results in an asymmetrical function forµ1

(Fig. 4b)). However, whenm À n, Π2 becomes a step func-
tion (darkest trace in Fig. 3) that splits exactly in half the sum
of the probabilities given byΠ1, so that the probability that
any lead will hold is very close so 50%, as expected when
there is still a relatively large number of votes to be counted.

In the opposite limit, whenm À n (lighter trace in
Fig. 3), Π2 becomes smoother, and the range in which it
equals 1 extends well to the left ofµ1, the point whereΠ1

is centered. This yieldsΠT ≈ 1, as expected when there
are relatively few votes left to be counted for any given lead.
Thus, in both limits, Eq. (16) gives sensible answers, and we
can now explore the behavior ofΠT in-between these lim-
its. We can ask, for example, what the probability is that a
candidate will end up winning the election if her lead stays
constant as the remaining votes are progressively counted.
Figure 5 shows the evolution of the total probabilityΠT for
N ≡ (n + m) = 105 for different values ofA vs. m/N ≡ θ.
This plot evidences that there exists a threshold valueθT for
eachA below whichΠT ≈ 1 (dashed lines). This is a useful
limit to know since it tells us when the election can be called
for the leading candidate with almost complete certainty. A
good approximation forθT can be obtained for cases in which
saturation happens when relatively few votes remain to be
counted, like those shown in Fig. 5 (except forA = 50.25%).
This yields the following simple analytical expression forθT

(see Appendix):

θT ≈ α2

9
=

Nx2
0

9
. (17)

In Fig. 6, we plot againΠT for the same values ofA pre-
sented in Fig. 5, but this time vs. (θ/θT ), which is a rescaled
relative number of remaining votes to be counted. As ex-
pected,ΠT ≈ 100% below (θ/θT ) = 1 for all these val-
ues forA. But note also that all curves collapse into a sin-
gle one for(θ/θT ) < 5, a range in whichΠT ≥ 90%. In
other words, close toθ = θT , ΠT scales as(θ = θT ) for all
systems considered here, except for the case with the largest
A. We can exploit this scaling property to claim that a lead
x0 is significant (more than 90% of chances of winning) if
θ = θT = θ/(Nx2

0/9) < 5, which will happen as soon as
Nx2

0/θ > 9/5, or

x0 >

√
9
5

θ

N
≈ 1.34

√
m

N
. (18)

An implementation of Eq. (16) in Mathematicac© is pre-
sented in Appendix C.

4. Analogy with statical physics

Note that we could have approximated the total probability
Eq. (16) with the following integral:
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FIGURE 5. a) ProbabilityΠT that the leading candidate will win
the election using Eq. (16), assuming the leadA does not change
as the remaining votes are counted. Each curve corresponds to a
different constantA, but n + m = 105 is constant. b) Same data
but in lin-log scale showing the points (dashed lines) below which
ΠT saturates for eachA.

ΠT =
∑

P ′
Π1Π2 =

1
∆P

∑

P ′
Π1Π2∆P

≈ 1
∆P

1∫

0

Π1Π2dP. (19)

On the other hand, consider the average number of parti-
cles obeying Maxwell-Boltzmann statistics at some tempera-
tureT . The average number of particles with energyε[k] is
given byn̄[ε], wherek is the wavenumber.

The functionn̄[ε] can also be regarded as the probability
of finding one of theN particles with energyε. To obtain the

FIGURE 6. ProbabilityΠT vs. (θ/θT ) that the leading candidate
will win the election using Eq. (16), where the threshold valueθT

is given by Eq. (18). Inset: all curves collapse into a single one up
to about(θ/θT ) ≈ 5 (the data forA = 50.25% were excluded).

total number of particles, we need to multiplyn̄[ε[k]] by the
number of quantum states in the rangek + dk (the density of
states or “DOS” [4]) and sum over all possiblek′s. The total
number of particles is then:

N =

∞∫

0

D[k]n̄[ε[k]]dk, (20)

where the discrete sum over states has been approximated by
an integral. Compare now Eq. (20) with Eq. (19). Indeed,
the procedure just outlined to arrive at Eq. (21) is the same
one we have followed in this paper to find the answer to our
electoral problem.Π1[P ] in Eq. (19) is the probability that
the system has a parameterP + dP . This probability is pro-
portional to the number of walks (or “quantum-states”) asso-
ciated with the parameterP . Thus, in this analogy,Π1[P ]
plays the role of the DOS, while the parameterP plays that
of the wavenumberk. On the other hand,Π2[P ] is the prob-
ability that the condition we are after is fulfilled givenx0 and
m, i.e., that the remaining walks do not reverse the lead. In
this sense, we can think ofΠ2[P ] as the probability that the
state defined as “not reversing the lead” is occupied for some
value ofP . Therefore,Π2[P ] plays the role of̄n[ε]. Finally,
to obtain the total probability, we add over all possible values
of P , while in Statistical Physics, we add over all possible
values ofk. In summary, the following relations hold:

Π1[P ] → DOS, Π12[P ] → n̄ P → k, (21)

Students may find it fruitful to reflect on the similarity
between the constructions of the solution of these two very
different problems (one physical, one electoral) and the use-
fulness of the concept of random walks inside and outside of
the realm of Physics.
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Appendix

A. On calculating the thresholdθc

We now calculate the thresholdθc below whichΠT ≈ 1 with
help from Fig. A.1. ΠT will be close to 1 if the following
two conditions are met simultaneously: 1) The peak ofΠ1

(point #1) is located to the right of the point whereΠ1 begins
to decrease (point #2), and 2) The point whereΠ1 begins to
increase (point #3) is located to the right of the point where
Π2 begins to increase (point #4). Considering all positions
for θ = 0.5, point #1 is at−µ1, while the position of the
middle point ofΠ2 (point #5) isZ0/2. It is important to re-
alize that the location of points #2, #3, and #4 is somehow
arbitrary because these points mark the point where an expo-
nential function ends or begins. We circumvent this issue by
using the so-called3σ rule, which states that it is sensible to
assume that the non-zero portion of a normal distribution re-
sides in the range3µ− σ < P < 3µ + σ, (99.7% of the total
area of a normal functionN(µ, σ2) resides in this range). To
calculate this standard deviation, note now, as we mentioned
earlier, that even though the variance ofΠ1 is not constant, it
is a very slowly varying function ofP .

Thus, we can safely regard it as being independent of
P and equal to the value it attains atP = 0.5, which is
(1/2)n−1/2. We then follow the3σ rule, and place point
#3 a distance3σ to the right ofµ1. Explicitly, point #3 is
at −µ1 + (3/2)n−1/2 = −(1/2)(1 + x0) + (3/2)n−1/2.
Considering thatΠ2 is the integral of a normal function
with σ2

2 ≡ (1/n)4P (1 − P ) and following the same
reasoning as before, then point 4 is located at(z0/2) −
(3/2)m−1/2 = (x0n/2m) − (3/2)m−1/2, while point 2 is
located at(x0n/2m)− (3/2)m−1/2. Then, condition 1 men-
tioned at the beginning of the appendix is met when:

x0

2

(
1 +

n

m

)
− 3

2
√

n

(
1−

√
n

m

)
≥ 0, (A.1)

while, condition 2 is met when:
x0

2

(
1 +

n

m

)
− 3

2
√

m
≥ 0. (A.2)

Both conditions will be simultaneously met if the product of
these last two expressions is positive. After simplifying this
product and substitutingθ ≡ m/N andN ≡ n + m, we
arrive at:

α2(1− θ) + 3θ
(
− 3 + 3

[
1 +

√
θ−1 − 1

]
θ

− α
√

(1− θ)
)
≥ 0. (A.3)

whereα2 ≡ Nx2
0. Then,θT can be calculated numerically

for eachx0 by requiring that this expression equals zero.
A good approximation can be obtained for cases in which
saturation happens when relatively few votes remain to be
counted, like those shown in Fig. 5. In those cases, we can
estimateθT by expanding the above expression in the Tay-
lor series around zero to first order inθ andα2. This leads
directly to Eq. (17) in the main text,θT ≈ α2/9 = Nx2

0/9.

FIGURE A.1. ProbabilitiesΠ1 (left axis) andΠ2 (right axis) with
parameters such thatΠT ≈ 1, showing the relevant points needed
to establish this condition.

B. On why Z0 = x0n/m

We want to calculate the probability that the position after
the subsequentm steps is no more negative than minus the
position after the firstn steps were taken, or−x0. This prob-
ability is given by the shaded are in Fig. B.1 since the new
random variableZ (defined as the average of the remaining
steps) is also given by a normal distribution. Recall that, by
construction, bothX andZ are averages instead of simple
sums of steps, but also that m and n are in general different.
Consequently,−z0 is in not equal to−x0. To clarify why
this is so, suppose that aftern = 200 votes, there is a lead
given byx0 = 0.2 and that there are onlym = 100 votes left
to be counted. This lead comes from a 40-vote lead sincex0

is the excess number of steps (or votes for that candidate) di-
vided byn. But these 40 votes represent a larger percentage
of the remainingm votes,z0 = 40/100 = 0.4. Because this
relationship is linear, in general, we will havez0 = x0n/m.

FIGURE B.1. Probability density given the random variableZ
along with the position of the walk in this framework,z0 =
x0n/m. The shaded area gives the probability that the walk will
not reverse the result for a givenP .
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C. Implementation in mathematica

Finally, we present an example of the implementation in
Mathematica of Eq. (16) to calculate the probability that the
leading candidate will win.

NTotal = 1000,

m = 200,

A =
50.5
100

,

X0 := 2A− 1,

Z0 := X0
n

m
,

∆x =
1
n

,

∆P = ∆x,

µ2[P−] := 2P − 1,

σ2[P−,m−] :=

√
1
m

4P (1− P ),

µ1[P−] := 2P − 1,

σ1[P−, n−] :=

√
1
n

4P (1− P ),

Π1[P−, n−] := 2∆x
e−(X0−µ1[P ])2/2σ1[P,n]2

√
2πσ1[P, n]

Π2[P−, n−,m−, X0−, ] :=
1
2

×
([

1 + Erf
X0 + µ2[P ]√

2σ2[P, m]

] )

List1 := Table[{P, π1[P, n]}, {p, ∆P, 1−∆P, ∆P}]
List2 := Table[{P, π2[P, n, m, Z0]}, {p, ∆P, 1−∆P, ∆P}]
ListaTotal 1:= Table[{P, π1[P, n]π2[P, n, m,Z0]}

{P, 10∆P, 1− 10∆P, ∆P}]
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