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On random walks, projecting election results and statistical physics
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Several important statistical tools and concepts are covered in upper division undergraduate Statistical Physics courses, including those c
random walks and the central limit theorem. However, some of their broad applicability tends to be missed by students, as well as the
connection between these and other physical concepts. In this work, we apply a 1D random walk to study the evolution of the probability

that a candidate will win an election given she holds some lead over her opponent and connect the result found to the concept of density of
states and occupation probabilities. This paper is intended to serve as a guide to the Statistical Physics instructor who wishes to motivate
students beyond the boundaries of the official syllabus.
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1. Introduction 40 ' ' A

At the end of their undergraduate education, Physics stu- 30

dents are familiar with random walks and the Central Limit

Theorem, as well as with the concepts of Density of States 20

(DOS) and occupation probability applied to quantum statis- &

tics. However, these two concepts - random walks and DOS-£ 10

are not usually connected in regular courses. Furthermore &

the usefulness of the former in both Physics and other statis- 0

tical problems outside of the realm of this discipline tends to

get lost. 10k N
In this paper, we present an application of random walks = m

outside of the realm of Physics that can then be connected tc 220 ke : et o

the concept of DOS and the calculation of average values in 0 50 100 150

Statistical Physics. Specifically, we show how a simple ran-
domwalk in 1D can be used to calculate the probability a can-
didate will win an election given that she holds a certain lead
after some percentage of the votes have been counted. Thgsure 1. A random walk (red-thick trace) with unit steps and
equation that yields this probability is then compared to theno hesitation is found at positioa 20 aftern = 100 steps. The
expression normally encountered in this course to calculatéhinner traces depict some realizations after an extra 50 steps

average values for a given occupation probability and DOS. are taken, out of which the blue one ends up at a negative position.
If the odds of takingt steps are unknown, what is the probability
that such a walk will not happen?

Step #

2. An election result as a random walk reverted)? The original electoral problem posed in the intro-

duction section can be formulated as a special case of this

Consider a unit step random walk in 1D without hesitation.general one. If we assign a +1 to the vote for candidate #1
In the plot of Fig. 1, the thick red line depicts a realization of gnq -1 to a vote for candidate #2, a partial result of an elec-
this walk aftern = 100 steps, whose position happens to betjon can be given by the sign of the sum of the fraction of the
positive (+20). If an extran = 50 steps are yet to be taken, yotes that have been counted so far. We can regard each vote
the black dots depict the final positions of different possiblegg given by a stochastic variahli (identical for alli) de-
walks generated with the same (but in principle unknownkined by the probabilities of its only two possible outcomes:
underlying probabilities”? and1 — P of taking a step for- Prob(z; = 1) = P, andProb(z; = —1) = 1 — P, which
ward and backward, respectively. The thin blue trace depictgre unknown to us. Note that we are assuming that null votes
a walk whose position ends up being negative, thus revertingre forbidden, which translates into the condition of “no hes-
the initial lead. itation” for a random walk. Then, the partial lead after

The question we would like to answer is: how likely is votes have been counted is given by the position relative to
it that such a walk will not occur,i.. that the lead is not the origin of a stochastic variabl€ defined as:
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whereY; = X,;/n. We point out that applications of ran-
dom walks to electoral problems date back to the work by W.
Whitworth in 1878 [1].

Probability density
~J
]

3. Solution B

=
To find the solution to this problem, we will first calculate the -0.4 -0.2 0.0
probability that the observed lead aftesteps (or votes) be- Position. x

longs to any given underlying probability. Then, we will
Callclz(ula_t”e the pI’Obak;Iht)I/ tr:ja_t, fch]r a glve_ﬁz a Subsequenth by a Normal distribution withP? = 0.53 aftern = 100 steps, along
walk will not revert the lead in the remaining m steps. The ik the relative position of the walk at that time:at = 0.2 (black

sum over allP> of the product of these two probabilities is the |ine). The integral limits of Eq. (7) are depicted by the dashed lines.
probability we are looking for. To calculate the former prob-

ability, we first obtain the statistical properties of the variable

X by applying the Central Limit theorem [2], assuming that ~ Now, the lead of candidate #1 given in terms of a percent-
the number of steps taken so far is largé.is then well ap- age A (or fraction) of counted votes can be recast as some
proximated by a Normal random variabl&, = N(u,0?),  positionz, of the walk:

where the mean and variance are given, respectively, by

FIGURE 2. Probability density (red trace) for the variabtegiven

xg=A—-(1-—A4)=24-1. (6)
p= (X =nii) =n(Xifn) = (X, @ For example, ifA = 60%, thenzy, = 0.2, and we can
and visualize a certain lead related to the Normal distribution we
just found for a giverP (see example in Fig 2).
0? = VAR{X} = nVAR{Y;} Now, note that by applying the Central Limit theorem,
we have transformed a discrete probability distribution into
=nVAR{X;/n} = EVAR{XI-}. (3) @ continuous one, a probability density. Consequently, the
n probability that a walk will end at exactly the positien= z
is strictly zero. The question we should be asking instead is:
what is the probability of finding the walk in a positianin
the rangezy — Ax) < z < (z¢ + Az)? This probability is
depicted by the shaded area in Fig. 2 and is given by

If the two possible values for a votgX;) arez; ; = 1
andz; o = —1, then, by definition,

<X1> = Zmi,jProt(xZ-’j) =2P -1,
J

1 zo+Ax
m=_—- e~ (@=ulP)?/20[P g 7
and ' 2no[P] . )
(X7) = (wi;)°Probz; ;) = 1, Tom A

J where the square bracket symbolizes “function of”, and the
After substituting these values in the general relation mean and variance are given by Egs. (4) and (5). But, how
wide of an interval should we use? To answer this, students

VAR{X;} = (X2) — (X;)?, should first realize that, even thougtis large, it is not infi-

nite. In this respect, it does not make sense toige< 1/n
Eq. (3) leads to: since it is the resolution of data. It should also be made clear

that Az is on the order ol /n but that its size is in principle
arbitrary. Assuming that is indeed large, it then follows that
Az < 1, which allows us to expand Eq. (7) in Taylor series
to first order inAz around zero:

o2 = %(1 —[2P-1%) = %P(l — P), (4)

while the mean is simply given by:

I, [Xo] ~ e~ (@o—nulP)*/20[PP Ay (g)

2
uw=2P —1. (5) V2ro,[P]
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Here, it is important to stress a key point; is the quan-  Therefore, for large: (say,n > 1000), regarding? as a con-
tity we observe, whilé is unknown. The question we should stant is an excellent approximation, and we can proceed as if
be asking instead is: what is the probability that giveand  the integrand was a normalized distribution. Equation (12)
xo = Az, the parameter with which the walk was generatedthen imposes thaAP = Az = (1/n). After substituting
is P? With this important conceptual change in mind, we Az = (1/n) in Eq. (10), we arrive at
reinterpret the probabilityr; as being a function of for

givenn andz + Az (that is,IT; = II;[P]). The following ML [P] lef(me) /202 . (13)
guestion immediately arises: 1$; a (continuous) probabil- no\/2n0?

ity density or a (discrete) probability function ¢t? In the
former case, the normalization would necessarily be a func-
tion of Az alone, which, as we just mentioned, is arbitrary.
Therefore IT; must be a discrete probability function whose .
normalization function is given by

When this expression fdi; is substituted into Eq. (9)

and the sum is taken overvalues@fseparated by intervals

of size AP = 1/n, normalization is ensured [3]. We are now

in the position to calculate the second probability necessary

to answer our central question: for a givénandx,, what

an[p] =1, 9) i; .the probgbility that the walk will end up at a positive po-

sition, provided thatn extra steps are still to be taken? In
other words, what is the probability that the lead is not re-

where the possible values &f are separated by small (but verted provided a particular value fét is assumed? To this

also finite!) intervals of sizé\ P, a quantity we will use be-  end, we construct a new variabfeanalogous to the variable

low to normalizell;. Note in Eq. (9) that we could also in- X we constructed in Eq. (1), but this time is given by the
terpretH1 [P] as the average probablllty that the walk found average of the remainin@ votes:

at the positionry + Ax was generated with a paramefein

the rangeP + A P. To perform the summation in Eq. (9), we 7 (Xng1+ Xngo+.. + Xm+n).
note first thafl; in Eq. (8) is itself a normal variable, but this m
time as a function of>. Explicitly, Since the variables are again identical, a simple change of

o (n[1-2P a0l /8[1— P|P) index leads to:
I[P =] — Az m
2m V(a-pr)p Z Xp. (14)
e~ (P—p1)?/20%
- W (10) If m is large, too, we can invoke the Central Limit Theo-
rem once again, and obtain f@ra Normal distribution with
whereyu; = (1/2)(zo +1) = Aando? = (1/n)P(1 — P).  meanuy and variancer3 given by Egs. (5) and (4) respec-
If we assume thahP <« 1, the normalization condition tively, but withn replaced byn. The goal is how to calculate
can be approximated by an integral after multiplying bythe probabilityII;[P] that the length of the remaining walk
AP/AP=I: will be no more negative thanz, (blue trace in Fig. 1). This
probability is simply given by the integral of (2, 0%) from

_(P #1) /201 AP

1= Z Al T zo = zo(n/m) to +oo (see Appendix A), and it can be cal-
2mo? AP culated as a function afy, n, m, andP:
Az [ e (P-m)?/208 i 2
~ i/e L dp (11) I,[P] = / N (p2, 03[P])dz
AP ] \/27‘1’0’%
As long asz is not too close to either 0 or 1, we can _1 |4 Brf xo(n/m) +2P —1 (15)
extend the integration limits to plus and minus infinity and 2 8P(1— P)/m '

integrate to obtain the normalization condition, ] ) )
To illustrate how this function evolves as decreases, a

i o—(P—p1)?/20% plot of II; vs. P is displayed in Fig. 3. For a giveR, the
Z I, [P A P ——— —aP probability that both an observed lead was generated from a
“ V2o walk with that parameter and that the lead won't be reverted
Au is IT; [P] = I3[ P] (since these are independent events). To
= =1. (12) finally arrive at the total probabilityIr that the lead is not

AP -
reverted, we must now add up the contributions from all pos-
Note that we calculated the integral in this equation as ifsible values ofP separated by intervals of sizeP = 1/n:
the variance? were constant, when, in reality, it is a function

of P. However, the factoP(1 — P) is practically constant p = Y 1L [PJ[P). (16)
in the range wherexp[—n(P — p1)?] varies significantly.
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1.0 plying normal function times a sigmoidal one (except when
m/n > 1). This results in an asymmetrical function for
0.8 (Fig. 4b)). However, whem > n, II, becomes a step func-
=100 tion (darkest trace in Fig. 3) that splits exactly in half the sum
=} of the probabilities given byl,, so that the probability that
> 0.6 1 m=n/2 any lead will hold is very close so 50%, as expected when
= —_— =n there is still a relatively large number of votes to be counted.
:E 0.4 — m=2.5n In the opposite limit, whenn > n (lighter trace in
E ' ! ”*‘f5 i Fig. 3), II, becomes smoother, and the range in which it
— m=20n equals 1 extends well to the left of;, the point wherdl;
0.2 — is centered. This yieldsl; ~ 1, as expected when there
are relatively few votes left to be counted for any given lead.
Thus, in both limits, Eq. (16) gives sensible answers, and we
0.0 T ] T T 1 can now explore the behavior dfr in-between these lim-
0.0 0.2 0.4 0.6 0.8 1.0 its. We can ask, for example, what the probability is that a

e candidate will end up winning the election if her lead stays
FIGURE 3. Probabilityr, vs. P of maintaining the lead given by ~ constant as the remaining votes are progressively counted.
A = 60% (zo = 0.2) for n = 100 and the different remaining  Figure 5 shows the evolution of the total probability for
number of votesi() to be counted. N = (n+m) = 10° for different values ofA vs. m/N = 0.
This plot evidences that there exists a threshold vajuéor
eachA below whichIlr ~ 1 (dashed lines). This is a useful

T - 1.0 limit to know since it tells us when the election can be called
50 3 for the leading candidate with almost complete certainty. A
° i good approximation fof- can be obtained for cases in which
o 407 : : - saturation happens when relatively few votes remain to be
w30 ole 06 counted, like those shown in Fig. 5 (except for= 50.25%).
% efe | 04 | This yields the following simple analytical expression figr
i 20 3 (see Appendix):
104 o: : :. - 02 a?  Nz2
1 a ~ — 0
O—Jl ;—0_0 QTNK_ 9 ) (17)
a) Ga 02 o P 06 08 Lo In Fig. 6, we plot agaiil for the same values of pre-
60 — ) _ 0.6 sented in Fig. 5, but this time vs4 {f), which is a rescaled
: 0 relative number of remaining votes to be counted. As ex-
° —05 § pected, Il ~ 100% below (/67) = 1 for all these val-
— . i | o4 § ues forA. But note also that all curves collapse into a sin-
© ° ! TS gle one for(0/0r) < 5, a range in whicllIy > 90%. In
: ® 1 — 0.3 E other words, close t6 = 6, I11 scales agf = 6) for all
i 4 o g systems considered here, except for the case with the largest
x 207 T. - 0.2 3 A. We can exploit this scaling property to claim that a lead
= P | 01 xo Is significant (more than 90% of chances of winning) if
= . b | 0 = Or = 0/(Nxz3/9) < 5, which will happen as soon as
0 | |' | 0.0 Nx§/0 > 9/5, or
b) 035 040 045 , 0.50 055 0.60 \/W . 34\/% .
o > 5N ~ 1. N ( )

FIGURE 4. a) Functionsr; andn, vs. P in Eq. (16) to obtain

the probabilityrr that an observed lead is not reverted=€ 200, An implementation of Eq. (16) in Mathemati®ais pre-
m = 800 andxzo = 0.01). b) m * 72 (left axis) and correspond- sented in Appendix C

ing cumulative probability (right axis). Note that this product is not ’
symmetrical with respect to; = (1/2)(z0+1) = 0.505, (dashed

line on both figures). . ] .
4. Analogy with statical physics

Itis instructive to show in the same plot the two functions
that are being multiplied in Eq. (16) (Fig. 4a)), as well as theirNote that we could have approximated the total probability
product itself (Fig. 4b)). Note in this plot that we are multi- Eq. (16) with the following integral:
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5 100 —
.. N=mm= 10° | ! I : -
e !
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=] & : |
% =
2 2 80 s —
.§ 'E ‘_1 : —
- = 50.25
i z — 50125 |
) 2 70k . ! -
< L — 50.06 ,
= 2 — 5003 1
2 2 — 5001 1!
= |— 1 —
3 & 60 :
=¥ |
|
A=50.01% _ 50 =1 | | | |
| | | | | l 0.1 1 10 100 1000
0 20 40 60 80 100 8/61
a - :
) % of votes to be counted. m/N FIGURE 6. ProbabilityIlr vs. (/0r) that the leading candidate
will win the election using Eq. (16), where the threshold value
100 — is given by Eq. (18). Inset: all curves collapse into a single one up

to about(0/6r) = 5 (the data forA = 50.25% were excluded).

90 — total number of particles, we need to multiptje[%]] by the
number of quantum states in the rarige dk (the density of
80 — states or “DOS” [4]) and sum over all possildles. The total
number of particles is then:

70 — N = /D[k]ﬁ[e[k]]dk, (20)

60 —

Probability of winning (%)

where the discrete sum over states has been approximated by
an integral. Compare now Eq. (20) with Eq. (19). Indeed,

50— . : : : the procedure just outlined to arrive at Eq. (21) is the same
I I I IIIIIII LI IIIIIII I I IIIIIII . . .
2 4 68 2 4 68 2 4 68 one we have followed in this paper to find the answer to our
0.1 1 10 100 i i ili
b) T G voTes s b Goutal, FllV electoral problemII; [P] in Eq. (19) is the probability that

N . . ~ the system has a paramefert+ dP. This probability is pro-
FIGURE 5. &) Probabilityllr that the leading candidate will win  portional to the number of walks (or “quantum-states”) asso-
the election using Eq. (16), assuming the ledoes not change  jsted with the parameteP. Thus, in this analogyil; [P]
as the remaining votes are counted. Each curve corresponds to Blays the role of the DOS, while the paramefplays that
; s ;
different constantl, butn 4 m = 10’ is constant. b) Same dat@ 4o \yavenumbet. On the other handl, [P is the prob-
but in lin-log scale showing the points (dashed lines) below which bility that th diti fter is fulfilled ai d
I, saturates for each. ability that the condition we are after is fulfilled give an
m, i.e., that the remaining walks do not reverse the lead. In
this sense, we can think &f;[P] as the probability that the

1 state defined as “not reversing the lead” is occupied for some
lr = ZH1H2 AP Z ILILAP value of P. ThereforeII,[P] plays the role ofi[¢]. Finally,
P pr to obtain the total probability, we add over all possible values
1 of P, while in Statistical Physics, we add over all possible
~ ﬁ/ﬂlﬂzdp- (19) Vvalues ofk. In summary, the following relations hold:
0 IL[P] — DOS, M 2[Pl—n P—k  (21)

On the other hand, consider the average number of parti-
cles obeying Maxwell-Boltzmann statistics at some tempera- Students may find it fruitful to reflect on the similarity
tureT. The average number of particles with eneedly] is  between the constructions of the solution of these two very
given byni[e], wherek is the wavenumber. different problems (one physical, one electoral) and the use-
The functionfi[] can also be regarded as the probability fulness of the concept of random walks inside and outside of
of finding one of theV particles with energy. To obtain the the realm of Physics.
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Appendix LOFT ¢ :

A. On calculating the thresholdé.. v 18
We now calculate the threshald below whichIl; ~ 1 with 6 H
help from Fig. A.1. II1 will be close to 1 if the following 0.6 ®
two conditions are met simultaneously: 1) The peaKIef I t{--------- 2
(point #1) is located to the right of the point whédie begins =i 0.4 -4

to decrease (point #2), and 2) The point whHrebegins to

increase (point #3) is located to the right of the point where 15

II, begins to increase (point #4). Considering all positions 02 -

for 6 = 0.5, point #1 is at—u,, while the position of the

middle point ofTI; (point #5) isZ,/2. It is important to re- 0.0 =0
alize that the location of points #2, #3, and #4 is somehow 0.40 0.45 0.50 0.55 0.60
arbitrary because these points mark the point where an expo P

ne.ntlal function ends or begms' Wwe cwcumyent this |§sue b)i:IGURE A.1. ProbabilitiesII; (left axis) andII, (right axis) with
using the so-calleflo rule, which states that it is sensible to parameters such thit; ~ 1, showing the relevant points needed

assume that the non-zero portion of a normal distribution re;y estaplish this condition.
sidesintherang8u —o < P < 3u+ o, (99.7% of the total
area of a normal functioW (11, o) resides in this range). To B. Onwhy 7, = xgn/m

calculate this standard deviation, note now, as we mentione\c/iv lcul h bability that th .. f
earlier, that even though the variancdbfis not constant, it he waé)nt to calculate t_e probability t a_t t ehposnpn a tr:er
is a very slowly varying function of. the subsequent: steps is no more negative than minus the

Thus, we can safely regard it as being independent oposition after the firsk steps were taken, ofzo. This prob-
P and equal to the value it attains & = 0.5, which is ability is given by the _shaded are in Fig. B.1 since the_ new
(1/2)n=1/2. We then follow the3s rule, and place point ra”do”.‘ varlabl_eZ (defined as the average of the remaining
#3 a distancedo to the right of ;. Explicitly, point #3 is steps) is glso given by a normal d|str|but|pn. Recall that, by
at —puy + (3/2)n_1/2 — —(1/2)(1 + x0) + (3/2)n_1/2_ construction, bothX and Z are averages |.nstead of s!mple
Considering thafll, is the integral of a normal function sums of steps, but_also that m and n are in gene_ral different.
with 02 = (1/n)4P(1 — P) and following the same C(_)n_sequently,—zo Is in not equal to—z,. To Cla”.fy why
reasoning as before, then point 4 is located(at/2) — thls is so, suppose that after= 200 votes, there is a lead
(3/2)m=1/2 = (zon/2m) — (3/2)m=1/2, while point 2 is given byxg = 0.2 a}nd that there are only, = 100 votes Igft
located a{zon/2m) — (3/2)m~1/2. Then, condition 1 men- j[O be counted. This lead comes from a 40-vote lead sigce
tioned at the beginning of the appendix is met when: is the excess number of steps (or votes for that candidate) di-
vided byn. But these 40 votes represent a larger percentage
Zo (1 n 2) 3 <1 _ \/7> >0 (A1)  Of the remainingn votes,zy = 40/100 = 0.4. Because this
2 m 2y/n m) ~ relationship is linear, in general, we will havg = zon/m.
while, condition 2 is met when:

o ( n) 3
—~(1+—)—-=—=>0. A.2 50F
2 U m) T aym = “a
Both conditions will be simultaneously met if the product of 3 40k
these last two expressions is positive. After simplifying this 3
product and substituting = m/N and N = n + m, we @
arrive at: g 30
a2(1—9)+39<—3+3{1+\/9*1—1}9 2 56 -
3
—ay/(1- ) > 0. A. S
ay/(1-60)) >0 (A.3) £ ok
wherea? = Nz3. Then,fr can be calculated numerically
for eachxy by requiring that this expression equals zero. 0 =l L
A good approximation can be obtained for cases in which -0.4 -0.2 0.0 0.2 0.4

saturation happens when relatively few votes remain to be e
counted, like those shown in Fig. 5. In those cases, we caRIGURE B.1. Probability density given the random variable
estimatedr by expanding the above expression in the Tay-along with the position of the walk in this frameworky, =

lor series around zero to first orderfranday. This leads zon/m. The shaded area gives the probability that the walk will
directly to Eq. (17) in the main texy ~ «?/9 = Nz32/9. not reverse the result for a given
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C. Implementation in mathematica

Finally, we present an example of the implementation in p o 14P P

Mathematica of Eq. (16) to calculate the probability that theal[ -, n-] = n 1-P),

leading candidate will win. o (X011 [P])? /201 [Pn]?

M1[P_,n_] :=2Ax

Nrotar = 1000, V2ral[P,n]
m = 200, I2[P_,n_,m_,X0_,] ::%

_50.5

~100° y [1+Eero+u2[P]]
X =24 -1, V202[P,m)]
Zo = X0 Listl := Tablg{P, 71[P,n]}, {p, AP,1 — AP, AP}]

m
) List2 := Tablg{ P, 72[P,n, m, Z0]}, {p, AP,1 — AP, AP}]

Az =~

T ListaTotal 1:= Tablg{ P, 71[P, n]x2[P, n,m, Z0]}
AP = Az,

{P,10AP,1 — 10AP,AP}]
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