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The misconception in graphene’s dispersion energy simulations
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This study aims to find equations and simulations that satisfy the characteristics of graphene’s energy dispersion and identify misconceptions
that may occur. Here we give students nine articles about graphene’s dispersion energy. They were asked to identify the equations, parameters,
and software used in each of the articles. The assignment was then to make the distribution of the data in a spreadsheet. The parameters used
were the lattice constant of 2.46̊A, the range of thek wave function for thex andy axes of−2πa to 2πa, and the interval for each range of
0.1. Each equation is divided into two parts,E(+) andE(−). The analysis was carried out by making a slice in the middle of thex andy

axes, as well as the main and off-diagonals. Graphene has Dirac points where the band gap is zero. This means that there is no distance or
very small distance between the valence and conduction bands. From this activity, it can be concluded that Rozhkov (2016) has the equations
and simulations that best satisfy graphene’s dispersion energy. Misconceptions occur in almost all existing equations and simulations.
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1. Introduction

The Covid-19 pandemic demands interesting and fun dis-
tance learning. Such learning must be directed towards mean-
ingful learning. The introduction of Material courses in the
pandemic era can be done by introducing materials related
to the lives around students [1]. Graphene is a material that
is discussed a lot these days. Graphene comes from single-
layer graphite [2]. Graphite can be found,e.g.: in pencil [3].
In the last decade, many articles have discussed equations
and simulations of graphene’s dispersion energy. These arti-
cles contain graphene’s dispersion energy equation, although
they produced different equations and simulations. The inter-
esting thing here is that we can ask students to find equations
and simulations that satisfy the characteristics of graphene’s
energy dispersion and identify misconceptions that may oc-
cur. This research is important because the simulations pro-
duced in the previous articles cannot show the Dirac points
as they are drawn in 3D so that some parts of the Dirac points
may not be directly apparent. This makes it difficult to distin-
guish equations and simulations according to the graphene’s
dispersion energy characteristics.

The spreadsheet software is used in this activity. The rea-
son is that students are familiar with spreadsheets and spread-
sheets do not require complex programming [4,5]. Moreover
spreadsheets can also be used to identify misconceptions [6].

Graphene is a 2D material consisting of hexagonal or
honeycomb-shaped carbon atoms [7,8]. There are two groups
of energy levels or orbitals, the bottom is called the valence
band and the top is called the conduction band [9]. Dirac
point is the meeting point between the valence band and the
conduction band in graphene. Graphene has a bandgap close
to or equal to zero. Graphene can be made from graphene

oxide (GO). GO has a bandgap proportional to the oxygen
atoms’ concentration. If the degree of oxidation increases,
the bandgap opens and GO has properties like an insulator.
The bandgap in GO is greater than zero [10,11].

In this article, we will discuss nine equations of
graphene’s dispersion energy. The nine equations are in
Eq. (1). The analysis was carried out by making a slice in
the middle of thex andy axes, as well as the main and off-
diagonals. These nine equations were chosen because they
have different shapes of the dispersion energy so that they
are interesting for further studies.

2. Method

The learning method was that students were given nine arti-
cles about graphene’s dispersion energy. They were asked to
identify the equations, parameters, and software used in each
of the article. The assignment was then to make the distri-
bution of the data in a spreadsheet as shown in Fig. 1. The
parameters used were the lattice constant of 2.46Å, the range
of thek wave function for thex andy axes of−2πa to 2πa,
and the interval for each range of 0.1. Each equation is di-
vided into two parts, namelyE(+) andE(−). Students were
asked to make data slices and curves in the middle of thex-
axis (±0.05; ky) in orange-colored cells (Fig. 1), the center
of they-axis (kx; ±0.05) in blue-colored cells (Fig. 1), main
diagonal (kx; ky) in yellow-colored cells (Fig. 1), and off di-
agonal (kx;−ky) in dark pink-colored cells (Fig. 1). The aim
is to make it easier to observe the Dirac point and energy gap
for each of the equations. Examples of the spreadsheet for-
mulas for the Rozhkov (2016) equation are shown in Table II
and III.
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TABLE I. Graphene’s energy dispersion formulas.
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TABLE II. Rozhkov’s formula for graphene’s dispersion energyE(+) part.

Cell Parameter Formula

A2 lattice constant = 2.46̊A

B2 hopping parameter = 2.5 eV

C5-BB5 x-axis Range (-2.55414; 2.54586), interval 0.1

B6-B57 y-axis Range (-2.55414; 2.54586), interval 0.1

C6-BB57 energy dispersion =$B$2*ABS(2*COS(SQRT(3)*$B6*$A$2)

(values in eV) +4*COS(SQRT(3)*$B6*$A$2/2)*COS(3*C$5*$A$2/2))

3. Results

Through the method used, students may easily determine the
equations and simulations that match the characteristics of
the graphene’s dispersion energy. The following is the expla-
nation for each simulation.

Slicing results of Luo (2010), Aydin,et al (2011), Muoth
(2013), and Adhikary,et al (2019) are shown in Figs. 2, 4, 6,
and 10. Based on these figures, it can be seen that the slic-
ing at the center of they, main, and off diagonal axes show

a bandgap that is large or not equal to zero. Only the slicing
in the center of thex-axis shows a relatively small bandgap.
This means that the electrons simply jump along the center
of thex-axis.

Fathi (2011) shows the slicing form as shown in Fig. 3. In
the figure you can see that the electrons easily jump along the
off diagonal. This can be seen from the small bandgap. For
slicing in the middle of thex, y axes, and main diagonal the
bandgap is quite large. Compared to other equations, Fathi’s
(2011) four slices show different shapes. In this case, the
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FIGURE 1. Rozhkov’s spreadsheet distribution data, a)E(+) and b)E(−) parts.

value of the beta parameter is not specified. If traced using
a spreadsheet simulation, it can be seen that the beta param-
eter does not have much effect on the distance between the
valence and conduction bands. So it will still show the sim-
ulation intended by Fathi (2011). However, the value of the

beta parameter affects the amount of energy dispersion. Be-
cause the value of the beta parameter is not specified, in this
article we set the value to 1.

Kolb (2012) shows the slicing form as shown in Fig. 5.
The four slices obtained show a relatively large bandgap.

Rev. Mex. Fis. E19010208
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TABLE III. Rozhkov’s formula for graphene’s dispersion energyE(−) part.

Cell Parameter Formula

A2 lattice constant = 2.46 Å

B2 hopping parameter = 2.5 eV

C5-BB5 x-axis Range (-2.55414; 2.54586), interval 0.1

B6-B57 y-axis Range (-2.55414; 2.54586), interval 0.1

C6-BB57 energy dispersion =-$B$2*ABS(2*COS(SQRT(3)*$B6*$A$2)

(values in eV) +4*COS(SQRT(3)*$B6*$A$2/2)*COS(3*C$5*$A$2/2))

FIGURE 2. Luo’s slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.

Brocks (2015) shows the slicing form as shown in Fig. 7.
Here, the slicing in this equation is different where the va-
lence band is at the top while the conduction band is at the
bottom. Slices in the center of thex, y, and off diagonal axes
show the same shape and a relatively large bandgap. Only
the slicing on the main diagonal shows the bandgap is close
to zero. This equation is the only one that has a different
slicing between the main and off diagonals.

Moreau (2016) shows the slicing form as shown in Fig. 8.
The bandgap is relatively small on the slicing in the middle
of the y-axis. Meanwhile, for the slicing in the middle of
the x-axis, main, and off diagonal shows a relatively large
bandgap.

Rozhkov,et al (2016) show a slicing form as shown in
Fig. 9. The four slices show that the bandgap is relatively
small or close to zero. Electrons easily jump on all four di-

rections, namely the center of thex, y, main, and off diagonal
axes. The number of Dirac points is also the largest compared
to other equations.

All the slicing that show large bandgap are not in accor-
dance with the characteristics of graphene’s dispersion en-
ergy. This is because the Dirac point of graphene should have
a zero bandgap. In fact these slicing appear to show GO mate-
rial rather than graphene. Hence, this can be a misconception
in understanding graphene’s dispersion energy. This miscon-
ception can be remedied by referring to the slicing results
of Rozhkov,et al (2016) as it satisfy the graphene’s disper-
sion energy where all slicing have small or zero bandgaps.
Another misconception is produced by the slicing result of
Brocks (2015),i.e.: switched position of the valance and con-
duction bands.
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FIGURE 3. Fathi’s slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.

FIGURE 4. Aydin, et al.’s,slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.
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FIGURE 5. Kolb’s slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.

FIGURE 6. Muoth’s slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.
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FIGURE 7. Brocks’ slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.

FIGURE 8. Moreau’s slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.
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FIGURE 9. Rozhkov,et al.’s., slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.

FIGURE 10. Adhikary,et al.’s, slicing data, middle a)x and b)y axes, c) main, and d) off diagonals.
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4. Conclusion

From this activity, it can be concluded that Rozhkov (2016)
has the equations and simulations that best satisfy graphene’s
dispersion energy. Misconceptions occur in almost all exist-
ing equations and simulations. Graphene has Dirac points
where the band gap is zero. This means that there is no dis-
tance or very small distance between the valence and con-

duction bands. On average, only one slicing has no or a
small bandgap for each equation above. There is one equation
where all slicing are far apart,i.e.: Kolb (2012). This is cer-
tainly not in accordance with the characteristic of graphene’s
dispersion energy. So it can be concluded that the use of
spreadsheets can help students identify the Dirac points in al-
most all parts of graphene’s dispersion energy, especially in
the center of thex, y, main, and off diagonal axes.
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