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The quantum beam splitter revisited without a vacuum state
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E. M. Herńandez, E. Barrios, G. Armendariz Peña and V. Veĺazquez
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In this article we explain in a new light two fundamental concepts of quantum optics, the quantum beam splitter and the quantum interfer-
ometer, in terms of two state quantum wave functions. This method is consistent with the concept of entanglement, and hence the algebra
needed to describe them is reduced to additions and products of the components of the quantum states. Furthermore, under the premises of
this method it is possible to study quantum states of greater complexity, like those arising from the addition and products of single photon
states.
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1. Introduction

The beam splitter is an important element in quantum op-
tics. They play an important role in linear optics quantum
computing, where the transmission of wave packets through
beam splitters is usually described by unitary transformation
matrices. Through the experience of teaching introductory
quantum optics to undergraduates we have noticed that stu-
dents usually have problems understanding the role of vac-
uum states which are necessary in several quantum concepts
and experiments such as the Cassimir effect, Lamb’s dis-
placement, orthonormality of quantum coherent states, and
vacuum noise and its distortion. At the most fundamental
level two examples stand out due to the numerous questions
raised by the students, namelythe quantum beam splitterand
the quantum interferometer. Most introductory courses on
quantum optics [1, 2] acquaint the students with these sub-
jects by invoking the zero photon state,i.e. the vacuum state
|0〉. The reasoning behind it is that the algebra of the lad-
der operators does not preserve the usual properties. In other
words, the mathematical transformation imposed by the oper-
ator, for example the beam splitter, is not unitary. And hence,
it is necessary to introduce the extra state that allows to pre-
serve the transformation.This state is necessary to have an
unitary transformation, ensure the conservation of energy and
of the number of photons.

For this reason in this article, we endeavor to describe
and discuss the interaction between single photons and linear
mediums, like the beam splitter, based only on simple alge-
braic operations of the quantum components of single photon
states without the need to invoke the creation and annihila-
tion operators, although following a rigorous mathematical
analysis [1–3]. In Sec. 2 we will describe the quantum beam

splitter in terms of two quantum components. In Sec. 3 we
will employ our mathematical description to study the single
photon interference in a Mach-Zehnder inteferometer (MZI).
In Secs. 4 and 5 we will study how to use this tools to out-
line the concept of entanglement and polarization entangled
states, respectively. Finally in Sec. 6 we present our conclu-
sions.

2. The quantum beam splitter

In order to develop some intuition of our method we begin
by studying the case of two quantum states in a beam splitter.
When a photon goes through a beam splitter its output can be
described as follows, see Fig. 1,

|Ψ〉e =
1√
2

(
|Ψ〉T + i |Ψ〉R

)
, (1)

FIGURE 1. Possible outputs resulting from the interaction between
a single photon and a quantum beam splitter. When the beam split-
ter is 50:50, in other words the probability that the photon is trans-
mitted or reflected is 50%.
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where the superindexesT andR indicate the transmitted and
reflected outputs respectively, which are sufficient to denote
the direction of each possible outcome andi =

√−1 indi-
cates the phase changeei(π/2) due to reflection.

Equation (1) can be rewritten in terms of the single inci-
dent photon that enters the beam splitter on port 1,|Ψ〉1 = |1〉
as:

|Ψ〉e =
1√
2

(
|1〉T + i |1〉R

)
, (2)

Equation (2) indicates that the probability of the photon
being reflected or transmitted is the samei.e. 50%. This is
the case with two paths where each one has associated a prob-
ability amplitude, whose implications are well discussed by
Feynman [10]. We will denote this state aswave state, and
we will use it to identify the linear combination of states. It
is important to remark that if we put a detector at each output
we would observe anticorrelation, [4–6], meaning that the in-
cident photon will be either reflected or transmitted, but not
both.

3. Quantum interference

We consider now a Mach-Zender interferometer to analyze
the case of interference with single photons, see Fig. 2. Here
a phase control,θ, has been added to modify the phase of
the photon traveling along the armT . In this particular setup
there are two beam splitters, each of them can be described
in terms of Eq. (1). A single photon|Ψ〉1 = |1〉 enters to
the first beam splitter. Notice that this implies that the inputs
at the second beam splitter are of the same form as Eq. (2),
we only add the change in phase. Therefore the output of the
second beam splitter,|Ψ〉s, can be written recalling Eq. (1)
as:

|Ψ〉s =
1√
2

(
1√
2

[
eiθ |1〉Tt + i |1〉Rt

]

+
i√
2

[
eiθ |1〉Tr + i |1〉Rr

])
, (3)

where the indext andr denote the transmitted and reflected
paths of the second beam splitter.

FIGURE 2. Sketch of the Mach-Zehnder interferometer. A single
photon state,|1〉 is incident at the first beam splitter, BS1. The out-
put state|Ψ〉e is then taken to a second beam splitter, BS2, where
its output is later analyzed and correlated by detectors D, B, and
correlator C. M1 and M2 are the mirrors.

FIGURE 3. Probability vs phase angle of the two exits from the
Mach-Zender (B andD), after a single photon enters through the
input 1.

Rearranging the terms of Eq. (3), we can define two wave
equations, the reflected (right output),

|Ψ〉B =
1
2

(
eiθ|1〉Tt − |1〉Rr

)
=

1
2

(
eiθ − 1

) |1〉B , (4)

|Ψ〉D =
i

2
(
eiθ|1〉Tr + |1〉Rt

)
=

i

2
(
eiθ + 1

) |1〉D . (5)

Thus, the probability that the photon takes either theB or D
output are given by:

PB =
∣∣∣∣
1
2

(
eiθ − 1

)∣∣∣∣
2

=
1
2

(1− cos(θ)) , (6)

PD =
∣∣∣∣
i

2
(
eiθ + 1

)∣∣∣∣
2

=
1
2

(1 + cos(θ)) . (7)

In Fig. 3 the probability as function of the phase is pre-
sented for both exitsB andD.We observe that the phase can
determine the exit of the photon. Whenθ = 0 the photon
will exit thoughD port, whenθ = π/2 the photon has equal
probability to exit through either port, and whenθ = π the
photon will exit throughB port.

Now, lets consider the case of one photon incident in each
input of the beam splitter as shown in Fig. 4. Assuming both
states arrive to the beam splitter simultaneously, it is possi-
ble to write the output states as the product of two states de-
scribed by Eq. (8).

|Φ〉s =
1
2

(|1〉T1 + i|1〉R1)(|1〉T2 + i|1〉R2
)
, (8)

expanding the product above yields:

|Φ〉s =
1
2

(
|1〉T1 |1〉T2 + i|1〉T1 |1〉R2

+ i|1〉R1 |1〉T2 − |1〉R1 |1〉R2

)
. (9)
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FIGURE 4. Two identical photons enter each at each of the inputs
of a beam splitter. Observe that we distinguish them by labeling
them with the numbers 1 and 2 respectively

Given that the first and fourth terms are indistinguishable and
they have opposite signs, the equation above is reduced to:

|Φ〉s =
i

2
(|1〉T1 |1〉R2 + |1〉R1 |1〉T2

)
, (10)

translating it to the propagation directionsD and B, and
recalling that single photon states are indistinguishable, the
above equations is reduced to:

|Φ〉s =
i

2
(|2〉B + |2〉D) , (11)

which can be interpreted in a similar way as Eq. (1). This
would imply that the state in Eq. (11) refers to the case where
two photons exit through either pathD orB with a 50% prob-
ability. However, if we calculate the probability of having the
photon pair exiting through each port we get,

|Φ〉B = |Ψ〉D =
∣∣∣∣
i

2

∣∣∣∣
2

=
1
4
. (12)

Hence, we conclude that the output state in Eq. (11) is not
normalized. Therefore, we introduce a normalization factor
to fix this problem defined as:

|n〉 →
√

n!|n〉, (13)

that

|n〉|n〉 →
√

n!|n〉. (14)

By using this factor into Eq. (11), this turns into:

|Φ〉s =
i√
2

(|2〉B + |2〉D) , (15)

and hence the probability that the photon pair exits any output
in Eq. (15) is the expected 50%.

It is worth noting that any normalization factor introduced
should be applied to both the initial and final states.

Therefore, in the case of an arbitrary number of indistin-
guishable photons,n1 andn2, respectively, being incident at
each port of the beam splitter, the initial normalization should
be
√

n1!
√

n2!. Lets test this normalization factor for the case

where two states of two photons each are incident at the in-
put ports of the beam splitter. Without normalization we have
that:

|2〉1|2〉2 → 1
4

( [{|1〉T1 + i|1〉R1
}]2

× [{|1〉T2 + i|1〉R2
}]2 )

, (16)

and hence the output state is:

|Φ′〉s = −1
4

(|4〉B + |4〉D − 2|2〉B |2〉D) . (17)

If instead we use the normalization mentioned earlier, we
obtain:

|Φ′〉s=−1
2
×1

4

(√
24|4〉B+

√
24|4〉D + 4|2〉B |2〉D

)
, (18)

where the first factor is the inverse of the initial normaliza-
tion, thus:

|Φ′〉s = −
√

3
8

(|4〉B + |4〉D)− 1
2
|2〉B |2〉D, (19)

which is the correctly normalized state [11]. A careful read-
ing of Eq. (19) shows that the quantum interference destroys
the output combinations|1〉B |3〉D and|3〉B |1〉D.

Let us summarize the algebraic rules concerning the
quantum beam splitter:

a) Every photon that enters the beam splitter has one out-
put state that is the the lineal combination of the trans-
mitted and reflected quantum components.

b) If the initial state has more than one incident photon,
that enter simultaneously and with the same phase to
the beam splitter, the output state is the product of the
wave statesof every photon. In the event of photons
entering the beam splitter with some random delay,
then the output state will be a lineal combination of
each outputwave state.

c) Once the products and additions of the output states
are calculated, then they can be normalized by means
of Eq. (13), if, and only if, the states are indistinguish-
able; otherwise, each distinguishable group should be
treated separately.

3.1. Interference with an input wave state

By virtue of symmetry it is easy to foresee that if one was
to change the initial entrance port in the single photon in-
terference experiment, then the above discussion will remain
valid. Moreover, it would have the same mathematical de-
scription. However, when instead of a single photon we in-
troduce awave state, such as:

|ψi〉 =
1√
2

(|1〉1 + |1〉2) , (20)
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where the superindex denotes the incidence port in the first
beam splitter. After the first beam splitter the intermediate
state,|ψe〉, is:

|ψe〉D =
1
2

(|1〉1T + i|1〉2R
)
, (21)

|ψe〉B =
1
2

(
i|1〉1R + |1〉2T

)
. (22)

In the output of the second beam splitter|ψs〉, we obtain:

|ψs〉 =
1

2
√

2

(
eiθ

(|1〉1T
t + i|1〉2R

t + i|1〉1T
r − |1〉2R

r

)

+ i|1〉1R
t + |1〉2T

t − |1〉1R
r + i|1〉2T

r )
)

. (23)

Similar to the previous cases, the labels tells us which is
the output port:

|ψs〉D =
1

2
√

2
(ieiθ − eiθ + i + 1)|1〉D , (24)

|ψs〉B =
1

2
√

2
(eiθ + ieiθ − 1 + i)|1〉B . (25)

And the square of the probability amplitudes are:

PD =
1
2

(1− sin θ) , (26)

PB =
1
2

(1 + sin θ) . (27)

When comparing against the earlier case, we observe that
the interference remains. The only difference is the change of
phase, which arises from the fact that the output probability
for both ports has to comply withPB,D = 1/2.

4. Entanglement

Taking advantage of the methods derived before in this arti-
cle, we can derive the mathematical description of entangle-
ment with a pair of photons in a beam splitter.

In Fig. 5, a state containing the product of two polarized
and correlated photons is incident on one of the ports of a
beam splitter. Without loss of generality we will choose for
our treatment port 1, and describe the initial state|φ〉i as:

|φ〉i = |H〉1|V 〉1. (28)

FIGURE 5. Two photons with orthogonal polarization are incident
on the same port of a beam splitter.

And hence the output|φ〉s is given by means of Eq. (1)
as:

|φ〉s =
1
2

(|H〉D + i|H〉B) (|V 〉D + i|V 〉B) , (29)

which can be rewritten as:

|φ〉s =
1√
2

(
i|ψ+〉+ |ψ′−〉

)
, (30)

where

|ψ+〉 =
1√
2

(|H〉D|V 〉B + |H〉B |V 〉D) , (31)

|ψ′−〉 =
1√
2

(|H〉D|V 〉D − |H〉B |V 〉B) , (32)

which are entangled states. Therefore, if one measures the
coincidences between the two outputs of the beam splitter,
in other words performs a correlation measurement, the re-
sult would be an unique entangled state|ψ+〉 [12, 13]. Up
to this point it was not necessary to set labels for the beam
splitter outputs, since the symmetry of the experiment guar-
antees that either reflected or transmitted outputs would be
equivalent. Concerning the correlation measurement, this is
a post-selected entanglement measurement, and hence in it
we cannot distinguish the output state in Eq. (31) from the
Bell state in Eq. (32).

The story is entirely different if we select the initial state
to be somewhat different. Assume that a horizontally polar-
ized photon enters the beam splitter through port1, and a ver-
tically polarized photon is incident on the port2, see Fig. 6.
We can write the initial state as:

In this case the initial state|Φ〉i is:

|Φ〉i = |H〉1|V 〉2. (33)

By performing a mathematical development close to that
outlined in Eq. (3), we can describe the output of the beam
splitter when he incident state is Eq. (33) as:

FIGURE 6. Two photons with orthogonal polarization are incident
each at every of a beam splitter.
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|Ψ〉i =
1√
2

(
i|ψ′+〉+ |ψ−〉

)
, (34)

where

|ψ−〉 =
1√
2

(|H〉D|V 〉B − |H〉B |V 〉D) , (35)

|ψ′+〉 =
1√
2
(|H〉D|V 〉D + |H〉B |V 〉B). (36)

Notice that the state described by Eq. (34) is a Bell state
that can only be discerned by a coincidence -correlation ex-
periment.

5. Incoming entangled state

In this section we study what happens when the initial state at
one of the inputs of the beam splitter is entangled,e.g.a Bell
state|ψ+〉. Introducing an entangled state to the beam split-
ter implies that sometimes a portion enters the beam splitter
by port 1, and in others it goes through port2. An schematic
representation of this process is shown in Fig. 7.

If the input state has the form

|ψ+〉 =
1√
2

(|H〉1|V 〉2 + |V 〉1|H〉2) ,

then, the output state can be written as:

|Ψ〉s =
1

2
√

2

(
[|H〉D + i|H〉B ] [|V 〉B + i|V 〉D ]

+ [|V 〉D + i|V 〉B ] [|H〉B + i|H〉D ]
)
. (37)

Expanding the products we get:

|Ψ〉s =
1

2
√

2
(|H〉D |V 〉B + i|H〉D |V 〉D

+ i|H〉B |V 〉B − |H〉B |V 〉D
+ |V 〉D |H〉B + i|V 〉D |H〉D
+ i|V 〉B |H〉B − |V 〉B |H〉D). (38)

FIGURE 7. Bell states|ψ+〉 and|ψ−〉 as inputs into a beam splitter.

Reducing the above equations by eliminating opposite
terms yields:

|Ψ〉s =
i

2
√

2
(|H〉D |V 〉D + |H〉B |V 〉B

+ |V 〉D |H〉D + |V 〉B |H〉B ). (39)

Which results in:

|Ψ〉s =
i√
2
(|H〉D |V 〉D + |H〉B |V 〉B ). (40)

Observe that the equation above is almost identical to the
initial state, except for aπ/2 change in phase, or:

|Ψ〉s = i|ψ′+〉. (41)

It is important to point out that this process is reversible
except for a phase change. If we introduce|ψ′+〉 as the inci-
dent state instead, we will obtain at the output the state|ψ+〉.

Up to now, we have seen that when two identical photons
enter, simultaneously, through both ports of a beam splitter,
the outcome can be understood as destructive interference of
the photons when they exit both outputs at the same time.
Therefore, any coincidence measurement, with zero time de-
lay will be null. This fact is the basis of the Hong-Ou-Mandel
interferometer [14]. However, when photons are distinguish-
able, for example when they have different polarizations, the
interference will not happen if the state is not entangled, re-
call to this matter Eqs. (31) and (35). As remarked, this is not
exclusive to polarized states, and can be expanded to those
where photons are differentiated for having different ener-
gies or color. For example, Aspectet al. used entangled
states made of photons with different wavelengts, 551 nm
and 422.7 nm, with opposite polarization produced by a48Ca
jet [15–17] as the initial state in the so called the proof of
the existence of the photon experiment. In this work Aspect
showed the anti-correlation between the outputs of a beam
splitter. In other words, what their experiment, and many
others since, shown is that if one of these entangled states is
incident at one of the ports of a beam splitter, then, interfer-
ence is observed. Moreover, it takes place even with pho-
tons of different energies,i.e. color, and the coincidences of
such experiment are null correlations, when the time delay is
zero. Incidentally, this also the result when the an EPR state,
|Ψ〉e = |ψ−〉, enters the beam splitter, since the output will
be the same|Ψ〉s = |ψ′−〉, and the coincidences between the
output ports is once again null, at zero time delay.

The results summarized above bring us to some signif-
icant conjectures about quantum interference and entangle-
ment with single photons in beam splitters.

A beam splitter is a device which changes one entangled
state into another entangled, state with a different spatial dis-
tribution, i.e. :

|ψ+〉 −→bs |ψ′+〉, (42)

|ψ−〉 −→bs |ψ′−〉. (43)
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FIGURE 8. Bell states|φ+〉 y |φ−〉 incident at the input ports of a
beam splitter.

A consequence of the previous results is that since that
the beam splitter is a passive optical element, then it should
obey the conservation of correlation. That is, if the initial
state is not entangled the output state will not be entangled
either, even when the output is a combination of entangled
states, the total state will not be entangled. Then again, if the
initial state is entangled, the components of the output and
the total state will be entangled as well. Take for example an
EPR state of the kind|φ+,−〉, this state is incident on a beam
splitter as shown by Fig. 8; and it is described by:

|Ψ〉e = |φ+〉 =
1√
2

(|H〉1|H〉2 + |V 〉1|V 〉2) , (44)

and accordingly the output state will be:

|Ψ〉s =
1

2
√

2

(
[|H〉D + i|H〉B ] [|H〉B + i|H〉D ]

+ [|V 〉D + i|V 〉B ] [|V 〉B + i|V 〉D ]
)
. (45)

Expanding,

|Ψ〉s =
√

2
2
√

2
(|H〉D |H〉B + i|H〉D |H〉D

+ i|H〉B |H〉B − |H〉B |H〉D
+ |V 〉D |V 〉B + i|V 〉D |V 〉D
+ i|V 〉B |V 〉B − |V 〉B |V 〉D), (46)

and simplifying by eliminating similar terms, we have:

|Ψ〉s =
i

2
(|H〉D |H〉D + |H〉B |H〉B

+ |V 〉D |V 〉D + |V 〉B |V 〉B ), (47)

which is also an entangled state.

6. Conclusions

By using a method entirely based on [Schr̈odinger] wave
states, linear combination of single photon states through a
beam splitter, we have been able to derive the results con-
cerning interference with single a multiple photons.

We have also shown that using this method it is possible
to obtain the initial states out of the mixed states, orwave
states.

We believe that this intelligible analysis can help students
in the first acquaintances with quantum optics to grasp the
physics behind the interaction between photons and beam
splitters. The mathematical methods is straightforward, and
can be extended to study more intricate quantum states. We
have proved this point by exploringwave statesand we
showed that when one introduces any EPR polarized entan-
gled state through both inputs of a beam splitter, the latter
becomes an entanglement idler.
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