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The expressions for the energy matrix elements and for the radiative transitions in thejj coupling can be obtained from the respectiveLS

expressions by making a few simple changes. The results shown as examples are compared with other treatments, where the two formulations
are deduced in parallel, without making use of these simple rules. We emphasize that the rules were found by heuristic reasoning. In all
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(References 19 and 20).
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1. Introduction

In Atomic and Nuclear Spectroscopy the concept (or expres-
sion) ”LS coupling” is clear: it means that we rely on a
non-relativistic treatment of atomic and even nuclear theory:
the HamiltonianĤ explicitly contains the spin-orbit inter-
action, and works with both the orbital anguar momentum
(l, L1, L, etc.) and spin angular momentum(s, S1, S, etc.).
On the other hand, ”jj coupling” can mean both a non-
relativistic or a completely relativistic treatment: in the first
case, the angular moments are the same as before, whereas in
the second case, the spin moments do not appear in the for-
mulation. Some books develop both types of coupling, but
this is done independently, regardless of what is discussed in
this article: you can go directly fromLS expressions tojj
ones with a few simple changes. So, if you have a book that
deals with theLS case, you can go tojj expressions (rela-
tivistic or not) automatically.

A full development of the Atomic Theory based onLS
coupling can be found in Cowan’s book [1]. This book can
be considered as the culmination of previous works, also of
great theoretical value, such as those of Slater [2], Shore-
Menzel [3], Mizushima [4], Sobelman [5], Weissbluth [6]
and Condon-Odabasi [7]. Thus, with the use of the Racah
algebra, the calculation of the energy level structure and the
radiative transitions (E1, M1 and E2) can be written in terms
of closed-form expressions. It should be noted that, beyond
the theoretical results, explicit expressions for the energies of
the terms of complex configurations appear, to a large extent,
only in the Refs. [2, 7]. For the case of nuclear theory, a few
simple examples in the jj coupling are given in Ref. [8]. On
the other hand, in recent years several books have appeared

that deal with the Relativistic Theory of Atoms. In this re-
gard, we can mention the books by Johnson [9], Grant [10]
and Rudzikas [11].

The purpose of this work is to indicate that both sets of
expressions are simply related. Whereas a detailed discussion
is necessary for specialists, it may be too much for general
physicists. So, for example, in Laboratory Astrophysics, the
need arises for a conceptual handling of these topics for peo-
ple who need to run calculation codes without knowing, nec-
essarily, the finer details of the theory [12, 13]. Also, some-
thing similar happens in Collision Physics and Plasma Spec-
troscopy, where many theoretical and semiempirical expres-
sions for cross sections and rates were published in the LS
schema [14]. We ourselves had to apply both formulations
when studying the consistency of published levels in various
isoelectronic sequences [15–17].

In short, different researchers not specialists in the atomic
theory, can find profit in this work. The same goes for gradu-
ate students doing their master’s work. Those who have taken
standard courses in Quantum Mechanics and in Introductory
Atomic Physics (e.g.Ref. [18]) can use these results.

As we have indicated in the abstract, our results were
found by heuristic methods starting from the Cowan treat-
ment [1]. Attending to the question about the final goal of
this article, we can answer saying that if one knows the equa-
tions written in the LS schema, can translate them to the jj one
in a easy form. Several examples are shown in Sec. 7. There-
fore this work complements those presented as Refs. [19,20]
in this same Journal.



2 JULIO C. AGUIAR AND HÉCTOR O. DI ROCCO

2. Changes to be made

We will present our work by analyzing the expressions of the
atomic theory in theLScoupling, since this is the one exten-
sivey and clearly developed in Cowan’s booki. Furthermore,
if we have these expressions in LS coupling, it is easy to go
to jj coupling, as we will see below. The reciprocal case is
not simple since, in the relativistic jj formulation, the spin
angular moments do not appear and, therefore, we would not
know how to introduce them later.

It is very important to remark that the mathematical tech-
niques devoloped by Racah make it possible to completely
bypass explicit use of determinantal functions, and to write
down formulae for the direct evaluation of matrix elements
for coupled basis functions and so, obtain the observables
(energy levels, dipole line strengths, etc.). All the coefficients
of the theory, corresponding to both the energies and the tran-
sition probabilities, are expressed through the following types
of quantities:3n− j symbols(≡ S3nj), reduced matrix ele-
ments of various tensor operators (i.e.:

〈
l1

∥∥C(k)
∥∥ l2

〉
, etc.),

fractional parentage coefficients, unit and double angular mo-
mentum operators, etc. All these quantities were presented in
our previous papers [19,20].

Let’s start by remembering some relationships for var-
ious matrix elements of renormalized spherical harmonics
C

(k)
q = (4π/ (2k + 1))1/2

Ykq; for non-relativistic functions,
let |l〉 an eigenfunction of the operator̂l2; then the relation is

〈
l1

∥∥∥C(k)
∥∥∥ l2

〉
= (−1)l1 [l1, l2]1/2

(
l1 k l2
0 0 0

)
, (1)

results, where the left hand side is areduced matrix element
(denoted by a double bar) and the final symbol of the right
hand side is a3-j symbol[1, 6]. The analogous relation for
the relativistic case it is [9]:

〈
j1

∥∥∥C(k)
∥∥∥ j2

〉
= (−1)j1+1/2 [j1, j2]1/2

×
(

j1 j2 k
−1/2 1/2 0

)
. (2)

In some texts, the matrix element of the first
member is often denoted

〈
κ1

∥∥C(k)
∥∥κ2

〉
, being κ =

(−1)l+s+j (j + 1/2) = (l − j) (2j − 1) . With the formu-
las in the Appendix we can see that, starting from Eqs.(1) ,
(A.1) and(A.2) , we can get to Eq.(2) .

The above results influence the calculation of the various
matrix elements, which are made using the Racah algebra, so
that to go from LS formulae (from Ref. [1]) tojj formulae
([9] and/or [11]) we must do certain changes. In the next two
subsections we will indicate the changes to be made in the
LS expressions.

2.1. Relatively simple changes

1) Ignore all symbols of spin angular momentum type
(normally denoted bys, S, etc.) in the factors of typeδSS′

and override the values of(s, S...) in the exponents

(−1)something
, as well as in the 6j-symbols(≡ S6j) that con-

tain some angular spin momentum(s, S, etc.). If a S6j cor-
responding to spins has all its elements equal to zero, then
S6j = 1 (which is a general property of theS6j).

2) Change all the symbolsl, L, L... by the respective
j, J, J... keeping their meaning (i.e.: if L indicates the or-
bital angular momentum of the parent,J will indicate the
total angular momentum of the parent, etc.).

3a) If the expression given in the LS coupling contains
matrix elements of the form

〈
l1

∥∥C(k)
∥∥ l2

〉
, they are replaced

directly by
〈
j1

∥∥C(k)
∥∥ j2

〉
.

3b) Equivalently to 3a, given the relations(1) and(2) , if
in the text the combination

(−1)l1

(
l1 k l2
0 0 0

)
,

appears, it is replaced (in addition to the above cited changes)
by

(−1)j1+1/2

(
j1 j2 k

−1/2 1/2 0

)
.

2.2. Relatively complex changes

For the following changes, please refer to the Refs. [19, 20]
when necessary (where notions as the Wigner-Eckart theo-
rem, unit and double tensor operators, coefficients of frac-
tional parentage, etc. where introduced).

4) In the matrix elements of theunit tensor opera-
tor U (k),

〈
lN

∥∥U (k)
∥∥ lN

〉
, which is expressed in terms

of 6j-symbols and coefficients of fractional parentage
(cfp), the above changes 1-3 are made and the LS-
cfp

(
ln−1
i αiLi Si‖lni αiLiSi

)
are replaced by the jj-cfp(

jn−1α J‖jnαJ
)
, to obtain

〈
jN

∥∥U (k)
∥∥ jN

〉
.

5) In the case of the matrix elements of thedouble ten-
sor operators

〈
lN

∥∥V (k1)
∥∥ lN

〉
(basic to evaluate the spin-

orbit interaction in LS coupling), keep in mind that if the”S”
are removed, then the

〈
lN

∥∥V (k1)
∥∥ lN

〉
are transformed into〈

lN
∥∥U (k)

∥∥ lN
〉
, which is replaced by matrix elements of the

form
〈
jN

∥∥U (k)
∥∥ jN

〉
.

6) For the calculation of radiative transitions (transition
probabilitiesAij , or oscillator strengthsfij), we will find
a fundamental expression, given by the reduced matrix ele-
mentP(1)

αα′ where, with the indicesα, α′ we will indicate, for
brevity, the valuesn, l, j, etc., so we will writeP(1)no-rel

αα′ or
P(1)rel

αα′ , as appropriate:

P(1)no-rel
αα′ ≡ 〈nl ||r||n′l′〉 ≡

〈
l
∥∥∥C(k)

∥∥∥ l′
〉

I
(1)no-rel
αα′ , (3)

with

I
(1)no-rel
αα′ ≡

∞∫

0

Pnl r Pn′l′ dr. (4)

With the above rules, we can write directly

P(1)rel
αα′ ≡ 〈nlj ||r||n′l′j′〉 ≡

〈
j
∥∥∥C(k)

∥∥∥ j′
〉

I
(1)rel
αα′ , (5)
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beingI
(1)rel
αα′ the relativistic generalization ofI(1)no-rel

αα′ .
For brevity, in this work we will not give the results on

radiative transitions, which can be the subject of another pre-
sentation.

3. Energy expressions

To exemplify compliance with the previous rules, we start
with the case of energies in the simplest cases. We use atomic
units, where the electron chargee, the electron massme, the
Dirac constant} are unity and the energy is measured in ry-
dbergs (1Ry≡ 13.6 eV). Theoretical treatment of an atom
of atomic number Z with N electrons requires to solve the
Schr̈oedinger equation̂HΨ = EΨ, with the Hamiltonian

Ĥ = −
∑

i

∇2
i −

∑

i

2Z

ri

+
∑∑

i>j

2
rij

+
∑

i

ξi (ri) (li·si) , (6)

where the different operators are:∇2
i for the kinetic energy,

2Z/ri for the electron-nucleus interaction,2/rij for electro-
static interactions between the electrons andξi (ri) (li·si) for
the spin-orbit interaction.

Both in the non-relativistic case and in the electrostatic
part of the relativistic case, the average energy of a configu-
rationlN (or a sub-configurationjN ) can be written as a sum
over theN electrons or over theq shells:

Eav =
q∑

i=1

wi

{
Ei

k + Ei
n

+
1
2

(wi − 1) Eii +
1
2

∑

j 6=i

wjE
ij

}
, (7)

wherewi is the occupation number of the subshell. In stan-
dard notation,Ei

k is the kinetic energy,Ei
n is the electron-

nuclear energy and the electron-electron Coulomb energy is
calculated between two-electron product functions

Eij = 〈ij |2/r12| ij〉av − 〈ij |2/r12| ji〉av . (8)

Equation(8) can be written in term of the so called Slater
integrals (see below, Eq.(10) and the pedagogical works
[19, 20]). As an example, we take the case of the neutral
Carbon (C I). It is a common notation to useIa

k ≡ Ea
k + Ea

n

for the energies arising from the one-electron operators, such
that

Eav = 2I1s + 2I2s + 2I2p + E1s,1s

+ E2s,2s + E2p,2p + 4E1s,2s + 4E1s,2p + 4E2s,2p.

With respect to thisEav, we have to deal with inter-
electronic interaction in order to have theterms. Por ex-
ample, in the case of C I, they are1S, 3P and 1D. These

terms are splitted with respect to theEav : as follow: 1S :
Eav +12F 2 (pp) /25, 3P : Eav −3F 2 (pp) /25, 1D : Eav +
3F 2 (pp) /25. Many cases can be found in Ref. [7]. In the
following subsection we specialize to the case of two elec-
trons outside closed shells.

3.1. Simple configurations (two electrons outside closed
shells)

The fundamental result for two electrons outside closed shells
is, in general

〈ij |2/r12| tu〉 =
∑

k

rkRk (ij, tu) , (9)

whereRk (ij, tu) is the generalized Slater integral, calculated
in terms of the radial wave functions:

Rk (ij, tu) ≡
∞∫

0

∞∫

0

2rk
<

rk+1
>

Pi (r)

× Pj (s)Pt (r)Pu (s) dr ds. (10)

When i = t and j = u, we have the direct integrals
F k (ij) ≡ Rk (ij, ij) whereas wheni = u and j = t we
have the exchange integralsGk (ij) ≡ Rk (ij, ji) [20]. The
expressions for the coefficientsfk andgk of the direct and
exchange Slater integrals, respectively, will be presented af-
ter Eqs.(11) to (12) (so as not to repeat similar expressions
that can be confused). Examples for many cases of two elec-
trons outside closed shells can be found in Ref. [7] for LS
coupling. For jj cases, the appropriate Ref. [8] about Nuclear
Shell Theory.

3.2. Complex configurations

Following Cowan, we will indicate that the cases treated cor-
respond to:

a) the integrals for equivalent electrons
(
l
wj

j

)
; the

Coulomb contribution to the Hamiltonian matrix
element (over and aboveEav) has the form∑

j

∑
k>0 fk (lj lj)F k (lj lj) ,

b) direct integrals for non-equivalent elec-
trons

(
lwi
i l

wj

j

)
where the contribution is∑

i<j

∑
k>0 fk (lilj)F k (lilj) , and

c) exchange integrals, also for the case
(
lwi
i l

wj

j

)
, where

the contribution is
∑

i<j

∑
k>0 gk (lilj) Gk (lilj) .

The theoretical expressions forfk and gk are too long
to write down explicitly, but can be tested in a homemade
computer program; a pedagogical work was published in
Ref. [19]. In all cases the correspondence has been verified,
comparing Ref. [1] with Refs. [9, 11]. Many concrete exam-
ples are in Ref. [7] for LS; for jj cases we can cite [15–17].

Rev. Mex. Fis. E19020201
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3.3. Relation between the relativistic and the non-
relativistic jj expressions

In the relativistic case, we must consider the average en-
ergy of thesub-configurationsjN distinguishing, for exam-
ple,Eav

(
p2
−

)
from Eav

(
p2
+

)
and fromEav (p−p+) . To re-

duce them to the non-relativistic jj case, we simply equate
them:

Eav

(
p2
−

)
= Eav

(
p2
+

)
= Eav (p−p+) .

In nonrelativistic expressions, Slater integrals have the
form F k (n1l1, n2l2) and Gk (n1l1, n2l2) as, for example,
F 2 (2p, 2p) , etc. In the relativistic case, we will have expres-
sions of the formF k (n1l1j1, n2l2j2) asF 2 (2p+, 2p+) ≡
F 2

(
2p3/2, 2p3/2

)
, F 2 (2p−, 2p−) ≡ F 2

(
2p1/2, 2p1/2

)
,

etc. To go from relativistic jj to non-relativistic jj expressions,
the direct integrals are set equal, for example:

F 2 (nl+, nl+) = F 2 (nl−, nl−) = F 2 (nl+, nl−) ,

as well as exchange integrals.

4. Configuration interaction and the break-
down of the jj-coupling

This subject, of fundamental importance in Atomic and Nu-
clear Spectroscopy, is extremely complex in the most general
case, and is expressed through the integralsRk (ij; tu) and
the respective coefficientsrk (Eq. (9)). Simple examples are
the configuration interaction3p4s − 3p3d, 3p2 − 3s4d, etc.
A complete treatment for the LS case appears in the Ref. [1],
where the author identifies 13 cases.

A simple case is that of two electrons outside closed
shells; indicating the closed-shells by(cs)

(cs)nρlρnσlσ − (cs)n′ρl
′
ρn
′
σl′σ,

the coefficients for direct and exchange terms are given by
Eqs.(13.22− 23) of Ref. [1], and are calledrk

d,LS y rk
e,LS :

rk
d,LS = δLS,L′S′ (−1)l′ρ+lσ+L

〈
lρ

∥∥∥C(k)
∥∥∥ l′ρ

〉

×
〈
lσ

∥∥∥C(k)
∥∥∥ l′σ

〉{
lρ lσ L
l′σ l′ρ k

}
, (11)

and

rk
e,LS = δLS,L′S′ (−1)l′ρ+lσ+S

〈
lρ

∥∥∥C(k)
∥∥∥ l′σ

〉

×
〈
lσ

∥∥∥C(k)
∥∥∥ l′ρ

〉 {
lρ lσ L
l′ρ l′σ k

}
. (12)

When

nρlρ = n′ρl
′
ρ and nσlσ = n′σl′σ, then

rk
d,LS ≡ fLS

k and Rk (ρσ, ρσ) ≡ F k (ρσ) .

When

nρlρ = n′σl′σ and nσlσ = n′ρl
′
ρ then

rk
e,LS ≡ gLS

k and Rk (ρσ, σρ) ≡ Gk (ρσ) .

With the changes mentioned in Sec. 3, Eqs.(11− 12) be-
come:

rk
d,jj = δJJ ′ (−1)j′ρ+jσ+J

〈
jρ

∥∥∥C(k)
∥∥∥ j′ρ

〉

×
〈
jσ

∥∥∥C(k)
∥∥∥ j′σ

〉 {
jρ jσ J
j′σ j′ρ k

}
, (13)

and

rk
e,jj = δJJ ′ (−1)j′ρ+jσ

〈
jρ

∥∥∥C(k)
∥∥∥ j′σ

〉

×
〈
jσ

∥∥∥C(k)
∥∥∥ j′ρ

〉 {
jρ jσ J
j′ρ j′σ k

}
, (14)

respectively, as indicated in Eq.(4.132) of Ref. [9]. Analo-
gously to the LS case we will have, whennρlρ = n′ρl

′
ρ and

nσlσ = n′σl′σ, then rk
d,jj ≡ f jj

k and, whennρlρ = n′σl′σ
and nσlσ = n′ρl

′
ρ, we will have rk

e,jj ≡ gjj
k . It is impor-

tant to remark that in the relativistic case we must add, to the
Coulombian interaction, the Breit interaction [9,21].

Relatively simple cases are that ofsingle-configuration-
like interactions (i.e.: lw1

1 l2l
w3
3 − lw1

1 l′2l
w3
3 ) and Rydberg-

seriesinteractions (i.e.: nmlwm
m nσlσ − nmlwm

m n′σlσ). The
more general case ofarbitrary configuration interactionsis
treated in all generality in the Ref. [1]; various particular
cases of interest are in Ref. [11]. In all cases we have ver-
ified compliance with the rules mentioned in Sec. 3.

5. Examples

The energy of an atom (or ion) is given by the average value
〈Ψ|Ĥ|Ψ〉, beingĤ the hamiltonian given by Eq.(6) (or its
relativistic counterpart) andΨ the wave function constructed
in the LS or jj scheme. In the non-relativistic case, the spin-
orbit integralsζnl appear in both the LS and jj coupling. On
the other hand, in the relativistic hamiltonian there is no ex-
plicit operator for this interaction, so theζnl will not appear
in the relativistic jj scheme. Instead, the integralsRk appear,
which has been called the breakdown of the jj-coupling.

As an example, we will consider the sp configuration in
the three cases mentioned above [15]. Explicit expressions
in the casesnp2 andnp3 can be seen in the Refs. [16, 17].
It should be emphasized that the cases of pure couplings are
rarely found in practice, so in general the levels must be ob-
tained by diagonalizing the entire matrix(Hbb′ − Ekδbb′),
with Hbb′ ≡ 〈Ψb|Ĥ|Ψb′〉.

LS case
The energies forJ = 0, 2 are given by:

E
(
3P0

)
= E0 (sp)− G1 (sp)

3
− ζp,

E
(
3P2

)
= E0 (sp)− G1 (sp)

3
+

ζp

2
,

while for J = 1 the matrix

Rev. Mex. Fis. E19020201
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3P1
1P1

3P1 E0 (sp)−G1 (sp) /3− ζp/2 ζp/
√

2
1P1 ζp/

√
2 E0 (sp) + G1 (sp) /3

must be diagonalized. Being the matrix of dimensions2× 2 we could obtain analytical results, but this will not be possible for
larger dimensions. We see that only whenζp ¿ G1 (sp) are the levels grouped as singlet and triplet; this occurs in light and
few times ionized elements.

Non relativistic jj case

Now the energies will be

E
(
3P0

) ≡ (1/2, 1/2)0 = E0 (sp)− G1 (sp)
9

− ζp,

E
(
3P2

) ≡ (1/2, 3/2)2 = E0 (sp)− G1 (sp)
9

+
ζp

2
,

while for J = 1 we must to diagonalize the matrix

3P1 ≡ (1/2, 1/2)1
1P1 ≡ (1/2, 3/2)1

3P1 ≡ (1/2, 1/2)1 E0 (sp)−G1 (sp) /9− ζp ζp/
√

2
1P1 ≡ (1/2, 3/2)1 ζp/

√
2 E0 (sp) + G1 (sp) /9 + ζp/2

;

now, only whenζp À G1 (sp) the(j1, j2) manifolds are ordered as the single-particle energies:(1/2, 1/2) and(1/2, 3/2) .

Relativistic jj case

Now the spin-orbit integralsζp do not enter into the formulation and we will have the following results (where we must
note the difference between thep+ andp− orbitals and the differences between the energiesE0 (sp−) , E0 (sp+), etc.):

E
(
3P0

) ≡ (1/2, 1/2)0 = E0 (sp−)− G1 (sp−)
9

,

E
(
3P2

) ≡ (1/2, 3/2)2 = E0 (sp+)− G1 (sp+)
9

,

while for J = 1 we must to diagonalize the matrix

3P1 ≡ (1/2, 1/2)1
1P1 ≡ (1/2, 3/2)1

3P1 ≡ (1/2, 1/2)1 E0 (sp−)−G1 (sp−) /9
√

8R1 (sp−, sp+) /9
1P1 ≡ (1/2, 3/2)1

√
8R1 (sp−, sp+) /9 E0 (sp+) + G1 (sp+) /9

where the integralsR1 (ij, tu) appear. If we want to go from these expressions to the non-relativistic ones, then we must
cancel theR1 (ij, tu) integral and doE0 (sp−) = E0 (sp+) = E0 (sp) , G1 (sp−) = G1 (sp+) = G1 (sp) , etc., and add the
corresponding integralsζp.

6. Some applications of the present results

6.1. Analysis of the consistency of the published levels of
isoelectronic sequences

In the works [15–17] we show that many isoelectronic se-
quences, of the typesns np, ns nf, p2, p3 andp4, whose
experimental energy levels are in the NIST repository [22],
can be analyzed with advantage using thejj representation
more than theLS one. This is due, in part, to the existence
of more Slater parameters injj than inLS couplings: for ex-
ample,F 2 (nl+, nl+) , F 2 (nl−, nl−) andF 2 (nl+, nl−) in
place ofF 2 (nl, nl) , and so on.

6.2. Radiative transitions, cross sections and rate coeffi-
cients

As we have expressed above, in this work we will not give
the results on radiative transitions, which can be the subject
of another presentation. If any reader is interested, they can
request the expressions from the authors. In all cases the ap-
plication of the rules are in accordance with Ref. [11]. The
same type of angular factors that appear in the theory of ra-
diative transitions are necessary for the calculation of cross
sections and rates. The main goal of theoretical plasma spec-

Rev. Mex. Fis. E19020201
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troscopy is the calculation of cross sections and rate coeffi-
cients responsible for the excitation and formation of atomic
spectra. To this end, efficient and comparatively simple ap-
proximate methods for the calculation of cross sections and
rate coefficients are of paramount importance. The general
theory as well as the approximation of cross sections and rate
coefficients by analytic formulas is presented in Ref. [14] us-
ing the LS schema. All the machinery of Racah’s algebra is
present in the final expressions and they are easily translated
to jj schema.

7. Conclusions

The substitutions introduced in Section 3 were verified in
many circumstances: calculation of the coefficients of the
Slater integralsRk (ab, cd), of transition probabilitiesAif

and in the calculation of cross sections and rate coefficients
using semi-theoretical expressions [14]. We have started
from the LS-coupling treatment by Cowan [1]; however, un-
til equation (11.47) in his book the treatment is quite general.
Only in its Sec. 11-9 it calls for expansion in term of the LS
coefficients of fractional parentage

|lwαLS〉 =
∑

αLS

∣∣(lw−1αLS, l
)
LS

〉

× (
ln−1αL S‖lnαLS

)
, (15)

and from there he develops only the LS formalism. Surely, a
similar expansion, using the jj-cpf

(
jn−1α J‖jnαJ

)
allows

to obtain the corresponding results in the jj formalism.

Therefore, attending to the question about the final goal
of this article, we can answer saying that if one knows the
equations written in the LS schema, can translate them to the
jj one in a easy form. Several examples were shown in Sec. 7.
At the risk of boring the reader, we emphasize that the rules
were found by heuristic reasoning. In all cases the applica-
tion of the rules are in accordance with published results.

Appendix A

Of special interest to the treatment of Section 3 are two re-
sults that can be seen in Refs. [3] [10] [8]. The first one refers
to the relationship between the matrix elements for LS and jj
functions (withs = 1/2) :

〈
(ls) j

∣∣∣∣Ck
∣∣∣∣ (l′s′) j′

〉
= (−1)l+j′+k+s [j, j′]1/2

×
{

j j′ k
l′ l s

} 〈
l
∣∣∣∣Ck

∣∣∣∣ l′
〉
; (A.1)

the other result is a relationship between the following 3j
symbols:

(−1)j+j′+k+1

(
j k j′

1/2 0 1/2

)
= [l, l′]1/2

×
(

l k l′

0 0 0

){
j j′ k
l′ l s

}
. (A.2)

The important fact is that, starting from Eqs.(1) , (A.1)
and(A.2) , we obtain Eq.(2) .

i. In the middle of the year 2021, there have been more than 5500
citations to Cowan’s book and codes, and each year adds about
150 citations to this list.
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