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The entropy production rate a bridge between
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J.M. Nieto-Villara,∗, J. Rieumonta and R. Mansillab

aDepartamento de Quı́mica-F́ısica, Grupo A. Alzola de Termodinámica de los Sistemas Complejos de La Cátedra Lomonosov,
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It is shown how through the entropy production rate a natural unification between the formalism of classical thermodynamics and chemical
kinetics is achieved. It is also shown how the entropy production rate represents an alternative way to the sensitivity analysis method in order
to determine the fundamental steps in a reaction mechanism.
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1. Introduction

Traditionally, the idea that thermodynamics deals with equi-
librium and the chemical kinetics of change has been widely
accepted [1]. While to some extent this classification is
correct within the framework of classical thermodynamics,
where time appears implicitly, it leads undoubtedly to an ap-
parent divorce between thermodynamics and kinetics.

Consequently, in undergraduate courses, students face a
dilemma in the study of chemical reactions.

This apparent divorce between thermodynamics and
chemical kinetics can be resolved naturally through the ther-
modynamic formalism of irreversible processes, in particular
through the production of entropy per unit time [2].

This communication aims to show how through the en-
tropy production rate, on the one hand, the formalism of clas-
sical thermodynamics and chemical kinetics is unified. On
the other hand, it can be used in chemical kinetics as an alter-
native method to that of the sensitivity analysis for the selec-
tion of the fundamental steps in a reaction mechanism.

The paper is organized as follows: we first briefly review
the basic definitions in classical thermodynamics in Thermo-
dynamics framework section. Section The method of domi-
nating steps, focuses on the development of a thermodynamic
outline, based on the rate of entropy production in chemical
kinetics as an alternative method to sensitivity analysis for
the selection of the fundamental steps in a reaction mecha-
nism. Finally, some comments and remarks are presented in
the Conclusion.

2. Thermodynamics framework

Unlike other quantities widely used in thermodynamics, such
as work, heat, etc., entropy has always been a “dark” and
controversial subject within thermodynamics [3-7].

According to De Donder [8] the entropy change of a sys-
temdSs is given by

dSs = δSe + δSi, (1)

whereδSe is entropy flow, that is, the entropy exchanged with
the surroundings, whileδSi is the entropy production due to
irreversible processes. Thus, the fundamental postulate of the
Second Law establishes that every system evolves in the di-
rection ofδSi > 0, and reaches equilibrium whenδSi = 0
[8].

For an evolving system subjected to constraints, for ex-
ample temperatureT and the pressureP constants, the en-
tropy productionδSi can be evaluated through the variation
of Gibbs’s free energy [8]dGTp as:

δSi = − 1
T

dGTp . (2)

The temporal variation of the expression of Eq. (1) repre-
sents the entropy production rate as:

δSi

dt
= − 1

T

dGTp

dt
, (3)

whereδSi/dt ≡ Ṡi represents the entropy production rate
[2]. The termdGTp/dt can be developed by means of the
chain rule as a function of the degree of advance of the reac-
tion ξ as:

dGTp

dt
=

(
∂G

∂ξ

)

TP

dξ

dt
, (4)

where(∂G/∂ξ)TP
, according to De Donder and Van Ryssel-

berghe [9] represents the affinityA ≡ − (∂G/∂ξ)TP
, and the

termdξ/dt is the reaction rateξ. The rate of entropy produc-
tion Eq. (3) can be written as:

Ṡi =
1
T

Aξ̇ = − 1
T

∆Gξ̇, (5)
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whereA = −∆G [8].
The formula, Eq. (5) establishes a bridge between clas-

sical thermodynamics, “thermodynamics force”1T A and
chemical kinetics, the “flow”̇ξ the reaction rate. The affinity
A can be evaluated from the isotherm of the reaction [10] by
the equation:

A=RT ln KC−RT

k∑

i=1

vk ln Ck=RT ln
(

KC

ΠCvk

k

)
, (6)

whereKC = kf/kb is the Guldberg-Waage constant,R is
the gas constant,kf , kb are the specific rate constants of the
forward and backward reaction steps respectively,Ck is the
concentration of thek-th specie, and thevk are the stoichio-
metric coefficients that are taken, by agreement, as positive
for the products and negative for the reactants.

Therefore, the Eq. (6) can be written as:

A = RT ln


kfΠC

vk(f)
k(f)

kbΠC
vk(b)
k(b)


 . (7)

The rate of reactioṅξ for an elementary step of reaction
can be written as:

ξ̇ =
(
ξ̇f − ξ̇b

)
= kfΠC

vk(f)
k(f) − kbΠC

vk(b)
k(b) , (8)

whereξ̇f , ξ̇b are the forward and reverse reaction rate respec-
tively. Substituting formulas, Eq. (8) and Eq. (7) in to Eq. (5)
is obtained:

Ṡi = R
(
ξ̇f − ξ̇b

)
ln

ξ̇f

ξ̇b

≥ 0. (9)

The Eq. (9) analogously to Eq. (5) ends the controversy
related to the apparent “divorce” between classic thermody-
namics and chemical kinetics.

3. The method of dominating steps

It is known that the sensitivity analysis of differential equa-
tions has been used successfully in the study of reaction
mechanisms in chemical kinetics [11]. Edelson’s pioneer-
ing works [12-14] they allowed not only the determination of
the fundamental reaction steps in a mechanism, but also its
reduction. Later, Turanyi [15,16] implemented the method,
achieving a drastic reduction in the mechanism of the fa-
mous Belousov-Zhabotinsky reaction (BZ), (GTF) model
[17] from 80-reaction steps to 42-reation steps.

As an alternative method to the sensitivity analysis, we
proposed the use of the entropy production rate based on
Eq. (9), a so-called by usMethod of the Dominating Steps
[18]. For this; we postulate that those reaction steps that ex-
hibit a higher entropy production value would be the funda-
mental ones in a reaction mechanism.

Let be a mechanism composed of n-reaction steps andm-
species, represented by (10) such that

x1/i = x2/i

...

xm−1/n = xm/n. (10)

Thus, we have that the entropy production rate of the n-
reaction step is given by

Ṡi/n = R
(
ξ̇f/n − ξ̇b/n

)
ln

ξ̇f/n

ξ̇b/n

≥ 0. (11)

TABLE I. The entropy production rate of the fundamentals reaction steps for reduced GTF model (adapted from [18]).

Reaction step* Ṡi

(
J

s·K
)

Reaction step* Ṡi

(
J

s·K
)

1 4.7× 10−4 17 1.8× 10−4

2 2.9× 10−4 21 1.2× 10−6

3 4.5× 10−6 22 1.3× 10−3

5 2.0× 10−6 24 5.3× 10−6

7 2.0× 10−6 26 6.3× 10−6

9 8.6× 10−5 29 1.1× 10−6

10 7.8× 10−5 38 1.6× 10−6

11 2.6× 10−3 39 3.7× 10−6

12 2.6× 10−3 46 2.6× 10−6

13 3.1× 10−5 56 2.6× 10−6

14 2.1× 10−5 61 2.4× 10−6

15 7.0× 10−4 71 1.2× 10−6

16 5.1× 10−4 77 2.6× 10−6
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Then-reaction step will be dominant compared to (n−1)-
reaction step if it is true that:̇Si/n > Ṡi/n−1. To illustrate the
use and efficacy of the Method of the Dominating Steps, as
an example, we will show its use in the reduction of the orig-
inal GTF17 model with 80-reaction steps to 26-reaction steps
[18,19] as shown in Table I. An essential condition is that the
selected reaction steps reproduce the observed experimental
behavior [19].

On the one hand, it should be noted that the 26-reaction
steps selected are among the 42-reaction steps set by Turanyi
et al. [17] through the use of the sensitivity analysis to the
GTF model. On the other hand, this drastic reduction not
only incorporates the full richness of the pioneering work of
Field et al. [20] (FKN model), periodic oscillations, and it is
enough to account, in particular, for the experimental results
reported by Ruoff [21], chaotic behavior.

Finally, we have successfully extended the method to the
study of the glycolysis mechanism of cancer [22-25]. In the
last year, glycolysis of cancer has been a target in oncology
[26] Most tumor cells show a higher glycolytic rate than nor-
mal cells; this phenomenon is known in the literature as the
Warburg’s effect. The main objective was to identify reaction
steps that can be potential targets in cancer treatment.

From the model proposed by Marı́n et al. [27] for HeLa
and AS-30D tumor cells, 9-reaction steps were identified out
of 20-reaction steps. In this sense, 3 of them coincide with the
so-called “metabolic control points”; the other six have been
identified as potential targets in cancer treatment [28-30].

4. Conclusions

In summary, in this paper we arrive at the following conclu-
sions:

1. The rate of entropy production, as a generalization of
the Second Law of thermodynamics, represents per se
an extreme criterion that marks the directionality of
natural processes on a macroscopic scale and consti-
tutes a bridge between the formalism of classical ther-
modynamics and the chemical kinetics.

2. In biophysical-chemical systems, the rate of entropy
production, as a non-extreme criterion, generalizes
the so-called “maximum entropy criterion” [31] and
constitutes a complementary method to the sensitiv-
ity analysis of differential equations, which allows de-
termining the fundamental reaction steps in a reaction
mechanism.
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