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Some problems of the projectile motion with a square-law resistance

P. Chudinov, V. Eltyshev and Y. Barykin

Department of Engineering,
Perm State Agro-Technological University, 614990, Perm, Russia.
*e-mail: chupet@mail.ru

Received 25 July 2021; accepted 7 August 2021

The influence of the force of the quadratic resistance of the medium on the change in some interesting characteristics of the motion of the
projectile, which take place when the projectile moves in vacuum, is investigated. Loci are constructed numerically (and partly analytically)
ensuring maximization of the arc length of the projectile trajectory and non-decreasing of the length of the radius-vector. As examples, the
motion of a baseball, a tennis ball and a badminton shuttlecock are studied.
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1. Introduction purpose of this work is to study the effect of the quadratic
resistance of the medium on the change in angles 2 and 3.

The study of the motion of a projectile thrown at an angle e explain the appearance and meaning of angle 2. Let
to the horizon is a classic task of science and is included’ - initial velocity of the projectileg - acceleration of grav-
in introductory physics courses in colleges and universitiesiy- 1t is known [1,5], that when the projectile moves in vac-
In the absence of resistance of the medium, this problem ifum, the arc length of the trajectory as a function of the
all its aspects has been thoroughly investigated and is prébtrowing anglef, is determined by the formula
sented in various textbooks. Even schoolchildren know that V2 1+ sin @
to achieve the longest range one must to throw the ballata g,,.(9,) = —~ (sin 0o + cos? 6y In {%m(’D . ()
45° angle. However, not everyone knows that besides the g cos fo
aforer_nennoned v_vond_erful angle, there are other Interesting For a fixed initial velocityVy, this function has a local
throwing angles in this problem. We present them in the . o . .

X ) . maximum at, = 56.46° [1,5]. This angle provides the max-
Table | in ascending order of the angle value. In this case.

we will keep in mind that the indicated values were obtainecf’mum arc I(?ngth of_the projectile trajectory. .
. o Now let’s describe the angle 3 when the projectile moves
when the projectile was moving in a vacuum.

) ) in vacuum. In Ref. [2] Walker described an interesting prop-
For brevity, we will call these angles 1, 2, 3, 4 angles.erty of motion: the nature of the change in the length of the

For example, hereinafter, the term “angle 2" means the initia}adjys-vector depending on the magnitude of the throwing

throwing angle of the projectile, that provides the maximumangle. Figure 1 in Ref. [2] illustrates this property. The

length of the arc of its trajectory. The term “angle 3" meansfo||owing notation is used herer(z) = Va2 +y(x)? is

the initial throwing angle at which the nature of the change inthe |ength of the radius-vector of the projectile, and are

the length of the radius-vector of the projectile is modified.the Cartesian coordinates of the projectile. In the figure, for
Numbered 1 and 4 angles are not covered in this article. Thehe initial speed/, = 40 m/s, a family of curves = r(z) is

TABLE |. Remarkable angles of throw when the projectile moves 14'3-"‘

in a vacuum. [
120} A 52.5]
N° Remarkable  The property that provides 1005 %
throwing angle a given angle of throw. [ —
1 0o = 45° Maximum range at a 80; /7 %\v
given speed . 60 —A4 7 ST
2 6o = 56.46°  Maximum arc length of the 40:
projectile trajectory. S5
3 0o = 70.53°  Separation of the nature of the L
change in the length of the radius-vector. ot 2 4 8 g 100 120 140°™

4 6o = 90° Maximum height at a given speed.

FIGURE 1. Graphs ofr = r(z) function.
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the medium is considered. The purpose of this research is to

0.14(R, A i X ) !
¥ = study in more detail the effect of the quadratic resistance on
0.12k the change in angles 2 and 3.
R(x)
0.10}
HEAL 2. Study of the effect of square-law resistance
y¥) on the change in angle 2
0.06f
Let the projectile move in a medium with a square-law resis-
0.04f .
- R tance (Fig. 3).
0.02} “\90 Let's write down the equations of the projectile mo-
\ ¥ tion. Let us consider the motion of a projectile with mass
ol 002 004 008 008 010 012 014 m launched at an anglé, with an initial speed{, under
the influence of the force of gravity and resistance force
FIGURE 2. Graphs ofr = r(z), y = y(z) functions. R = mgkV?2. Hereg is the acceleration of gravity; is

_ ) ) the drag constant and is the speed of the object. Air re-

is constructed at various angles of throw in the range froMyisiance forcer is proportional to the square of the speed of
0y = 62.5° 10 0y = 80°. Each curve describes the move- o hroiactile and is directed opposite the velocity vector. It
ment of the projectile from the point of launch to the point s 5ssumed that the projectile is at the origin at the initial in-

of impact, where- = z. It can be seen from the figure that giant and the point of impact of the projectile lies on the same
the nature of the change in the parametelepends on the  4ri;ontaly — 0 (see Fig. 3). In ballistics, the movement of
value of the throwing angle. For example, at an angle of; hgiectile is often studied in projections on natural axes [3].

throw 0y = 62.5°, the parameter increases monotonically The equations of the projectile motion in this case have the
throughout the entire flight of the projectile. On the contrary,¢y-,

at an angle of throw, = 80°, the value ofr at first in-

creases, then decreases, and then increases again before the dV ) 9 do gcosf

point of incidence. There is a certain critical angle of throw a9 sinf — gkV?=, @ v

05" = 70.53° that separates these types of behavior of the dr dy .

parameter- and does not depend on the initial velocity T V cos®, i Vsin . ©))

(angle 3). This critical angle is determined from the condi-

tion of the existence of singleroot of the equation Hered is the angle between the tangent to the trajectory
dr of the projectile and the horizontat, y are the Cartesian
i (2)  coordinates of the projectile. The drag coefficiéris usu-

ally determined through the terminal velocity of the projec-
Figure 1 curve for the angléf” is shown in red. Plots tjle: k= 1/V;2,.

of functionsr :c:(x)’ y = y(x) are shown in Fig. 2. for Let us study the influence of the resistance of the medium
the throw anglé”. From Fig. 2 we can see that angle 3 al- 5 the change in the angle 2. In the case of quadratic resis-

ways corresponds to the position of the radius-vector on th?ance, the arc length of the trajectory is determined by the
descending branch of the projectile trajectory. following ultimate formula [4]:

Recently, studies have appeared [6,7] in which the influ-
ence of the forces of resistance of the medium on the change
in the characteristics of motion given in Table | is considered. A JV
The article [6] studies numerically the effect on the change in
angle 2 of resistance forces, which have a linear and quadratic
dependence on speed. For the case of a quadratic dependen
of the force of resistance of the medium on the velocity of the
projectile, a general conclusion is made about the increase ir
angle 2 in comparison with the case of the absence of re-
sistance. For the case of linear resistance, the dependenc
St = Si(0o) is approximated by a cubic polynomial rela-
tive to the projectile throwing angle. In Ref. [7], the influence
of only the linear resistance of the medium on the change of
angle 3 is considered. The results indicate a decrease of an
gle 3 with an increase of the coefficient of resistance of the
medium. This article follows the general direction of research
in Refs. [6,7], but only the case of the quadratic resistance oFiGURE 3. Some characteristics of the motion.
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S n:

1.2 g
\ S(6p) = St -n, where n= Ve
0

Figure 4 contains five curves. Red curve 1 was obtained
atk = 0, curve 2 was obtained & = 0.000625 s’/m?,

)Y""“&-u._z curve 3 atk = 0.002 s2/m?2, and curve 4 at = 0.022 s2/m2.
L The value of the initial speed is the same for curves 1, 2, 3,
3

1.0}

o A
o |/

o.ef // o
ot

0.2}

="

4: Vo = 40 m/s. Curve 1 corresponds to the movement of
V\ the projectile in vacuum, curves 2, 3, 4 at the used values of
LY

the drag coefficient describe the motion of a baseball, a ten-

N
A

NN

1 nis ball and a badminton shuttlecock in the air, respectively.
ot e Solid black lines on curves 2,3,4 were obtained by numerical
0.00 : 20 20 50 — 30\‘~— integration of the system of equations of projectile motion in

Eq. (3) by the Runge-Kutta method of the 4th order. Dotted
red lines on the same curves were obtained by using ana-
lytical approximations [8]. The complete coincidence of the
solid and dotted curves testifies to the high accuracy of the
approximations [8]. From the analysis of curves 1, 2, 3, 4 it

o, degrees

FIGURE 4. Graphs ofS = S(6y) functions.

g, dagrass can be seen that with an increase in the resistance coefficient
20 k, angle 2 enlarges. Blue curve 5 is obtained numerically and
2 represents the locus of points for which the arc length of the
80 e corresponding trajectory is maximum, on the pldsed,).
1 For a more detailed analysis, we will construct the locus of
70 points corresponding to one condition or another, on differ-
ent planes of parameters. This remark applies to both an-
gle 2 and angle 3. In other words, for any given values of
60 the initial velocity of the projectild}, and the drag coeffi-
cientk, the values of the paramet§y,... and angle 2 lie on
50 p curve 5. The start and end points of curve 5 have coordinates
0 50 100 150 (56.46°, 1.2) and (90, 0). Directly from Fig. 4 we can see
F 5 The l fth ints. for which — S th that curve 5 passes through the points of maximum of the
IlaGnUeTE 6.) € 10cuUS ot Ihe points, Tor which = Smax ONINE - oy rvess = S(0o). This means that for all points of curve 5
planetp o)- the condition is satisfied
dS(6o)
=0. 5
1 0 ®)
Str = 5o In (1+ Vg cos® o [f{00} — f{04}]) , We introduce the dimensionless parameter kV3. It
g has a clear physical meaning: - it is the ratio of the resis-
where tance force of the medium to the weight of the projectile at
sing - the moment the movement starts. In Fig. 5 the same curve
f(0) = vy +In <tan [2 + 4D (4)  5is shown on the parameter plafie 6,). Points 1 and 2 on

the curve correspond to the movement of the tennis ball and

In Eq. (4) 60, is the angle of incidence of the projectile the badminton shuttlecock, respectively. Motion parameters
for the tennis ball ard, = 70 m/s, k = 0.002 s?>/m?, for

(see Fig. 3). In contrast to Eq. (1), in which equality takes )
placed, = —fo, in this case the value of the angle of inci- Shuttlecock we havé, = 80 m/s, k = 0.022 $'/m?. The

dence is not known in advance and must be calculated. Thi&Urve in Fig. 5 allows to immediately determine the desired

can be done in two ways —numerical and analytically. The®Ngle 2 atthe given values &, & without calculations. The
first method consists in the numerical integration of the dif-Start and end points of the curve have coordinates (0, 55.46

ferential equations of projectile motion given by Eq. (3). Theand (160, 81.43.

second way makes use of high-precision analytical approxi-

mations [8] describing the movement of the projectile. Inthis3.  Investigation of the effect of square-law re-
research, both methods are used. The final resultis shownin  gjstance on the change in angle 3

Figs. 4, 5. Figure 4 shows plots of the dependence of the

normalized arc lengtl§ on the initial throwing angle for var- Let us turn to the study of angle 3. To calculate the length of
ious values of the resistance coefficiéntThe arc lengths  the radius-vector, you need to know the Cartesian coordinates
is made dimensionless by introducing a normalization factor:, y of the projectile at each point of its trajectory. We wiill
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70 leg)crl 1 it is equal to:65" = 68.5°, for curve 2:65" = 64.5° for
curve 3:05" = 57.9°. Solid black lines on curves 1, 2, 3 were
obtained by numerical integration of the system of equations
60 of projectile motion in Eq. (3) by the Runge-Kutta method
of the 4th order. Dotted red lines on the same curves were
obtained by using analytical approximations [8].

The final result is shown in Fig. 8. The locus of points for
which condition (2) is satisfied is numerically constructed on
the parameter plaifg§”, p). In fact, this is the locus of the
points of inflection of the length(x) of the radius-vector of
the projectile (point A in Fig. 2). For any given values of the
S S [P SN L L. L k initial velocity of the projectilel,, and the drag coefficient

02 04 06 08 10 12 14 k, the value of angle 3 will lie on the resulting curve. The
FIGURE 6. Dependencé;’ = 65" (k). start and end points of the curve have coordinates (0,7D.53
and (160,43.2). Points numbered 1, 2, 3 correspond to the
R movement of a baseball, a tennis ball and a badminton shut-
tle, respectively. The characteristics of the movement of these
05 — i sports equipment are shown in Table II.
/ Let us now prove an interesting property of angles 3. An-
gles 3 are found from the conditiafr /dt = 0. Let us dif-
o 2 ferentiate the radius-vector with respect to time taking into
03 /A' account Egs. (3):

i /| @_m%—i—y% ~ xVcosf +yVsinb
//ﬁl dt o T - T

= K(xcos@—i—ysin@) =0.
,

04

0.1

o o1 o2 o3  oa o5 This implies the equality: cos § +ysind = 0 ortan § =
—x/y. From the system of equations of projectile motion in
Eg. (3), we obtain the relatiotan ¢ = dy/dx. Comparing

. . ._these two relations, we obtain the differential equation
calculate them in the two ways mentioned above. Let us in-

vestigate how the critical throwing angle changes when a pro- dy z
jectile with a square-law resistance moves. First, we consider dr _Q’

the effect of the drag coefficierit on angle 3. In Fig. 6,

a family of curvesd§”™ = 65" (k) is numerically constructed whose solution has the form

for various values of the initial velocity. Curve 1 is plotted at

Vo = 20 m/s, curve 2 aV, = 40 m/s, curve 3 at, = 80 m/s. (x —x0)> + (y — y0)? = a®. (6)
From the figure it follows that with an increase in the value

of the resistance coefficient, the value of angle 3 decreases. This means that the Cartesian coordinatgg of the in-
For the convenience of the study, we make the quantities flection points of the radius-vector lengtfr), obtained from
andz dimensionless:R = r - n, X = z -n. In Fig. 7, a the conditiondr/dt = 0 for any values of the drag coefficient
family 1,2,3 of curvesR = R(x) is constructed at the same F lie on a circular arc of the form (6). Poiii?; (the center
values of the initial velocities as in Fig. 4 and for critical of the circle) has coordinates; (o, yo), parameter is the
values of the angle of throds”. Parametek is constant: radius of the circle. Let, y be dimensionless coordinates:
kE = 0.001 s>/m2. It can be seen from the figure that with # = nx, § = ny. Let's keep the previous designations for
an increase in the initial speed, angle 3 decreases. For curtkem:z,y. Itis difficult to determine the parameters, yo, a

FIGURE 7. Dependencé? = R(z).

TABLE Il. Characteristics of the motion of sports equipment.

sports equipment Vo, mis Vierm, M/s k=1/Vidm $/m? p = kV¢ 05"
baseball 50 40 0.000625 1.56 624.6
tennis 70 22 0.002 9.8 55.6
badminton 80 6.7 0.022 140.8 438.5
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cation of the points corresponding to the condition of Eq. (2)
is plotted on the planéz, y). Red points were obtained nu-
65 merically, solid black line represent an arc of a circle of the

form of Eq. (6) with dimensionless parameters:

60

‘ \2 zo = —0.480474, o =1.19222, a=1.28879. (7)
55]
\ The resistance coefficiehton curve runs through all val-

50 f ues of the interval0, co). The upper end of the arc has co-
ordinates(v/2/3,1/3) and corresponds to movement with-

45t S out resistance, the lower to movement with very high resis-

0 ) 100 150 P tance. Figure 9 is universal. It contains y coordinates,

. . B corresponding to the angles 3, for any values of spgezhd
FIGURE 8.wLocus of points meeting a conditiofr/dt = 0,0na  drag coefficient:. The upper and lower ends of the arc also
plane(p, 65") lie on the straight line (shown in green). This straight line is
given be the equation

Y
V2
0.35_ / y=5 (8)
0.30} The angle of inclination of the line (8) to the axis is
[ _ / 35.26'. Equation (8) can be deduced from the formulas of
0.25 // the article [2].
0.20f 7 4. Conclusion
0.15: / We have investigated the influence of the force of the
i / guadratic resistance of the medium on the change in some in-
0 10: teresting characteristics of the motion of the projectile, which
L take place when the projectile moves in vacuum. Numer-
e ically (and partly analytically) geometrical places of points
0.05¢ are constructed that ensure maximization of the arc length of
/ the projectile trajectory and a non-decreasing of the length
¥ f the radius-vector. Let us emphasize the diverse influence
704 o2 03 04 ¢ ¢

of the force of quadratic resistance on the magnitude of the
FIGURE 9. Locus of points meeting a conditiafr /d¢ = 0, on a studied angles 2 and 3. With an increase of the value of the
planeO.., resistance force, the value of angle 2 increases, and the value

of angle 3 decreases. It should also be noted the usefulness
analytically. Therefore, we will do the opposite —we will con- of the formulas in Ref. [8], which made it possible to signif-
struct sets of pointé&r, i) and for them we will select the cor- icantly reduce the amount of numerical calculations in this
responding equation of the circle. In Fig. 9, the geometric lo+research.
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