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Some problems of the projectile motion with a square-law resistance
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The influence of the force of the quadratic resistance of the medium on the change in some interesting characteristics of the motion of the
projectile, which take place when the projectile moves in vacuum, is investigated. Loci are constructed numerically (and partly analytically)
ensuring maximization of the arc length of the projectile trajectory and non-decreasing of the length of the radius-vector. As examples, the
motion of a baseball, a tennis ball and a badminton shuttlecock are studied.
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1. Introduction

The study of the motion of a projectile thrown at an angle
to the horizon is a classic task of science and is included
in introductory physics courses in colleges and universities.
In the absence of resistance of the medium, this problem in
all its aspects has been thoroughly investigated and is pre-
sented in various textbooks. Even schoolchildren know that
to achieve the longest range one must to throw the ball at a
45◦ angle. However, not everyone knows that besides the
aforementioned wonderful angle, there are other interesting
throwing angles in this problem. We present them in the
Table I in ascending order of the angle value. In this case,
we will keep in mind that the indicated values were obtained
when the projectile was moving in a vacuum.

For brevity, we will call these angles 1, 2, 3, 4 angles.
For example, hereinafter, the term “angle 2” means the initial
throwing angle of the projectile, that provides the maximum
length of the arc of its trajectory. The term “angle 3” means
the initial throwing angle at which the nature of the change in
the length of the radius-vector of the projectile is modified.
Numbered 1 and 4 angles are not covered in this article. The

TABLE I. Remarkable angles of throw when the projectile moves
in a vacuum.

N◦ Remarkable The property that provides

throwing angle a given angle of throw.

1 θ0 = 45◦ Maximum range at a

given speed .

2 θ0 = 56.46◦ Maximum arc length of the

projectile trajectory.

3 θ0 = 70.53◦ Separation of the nature of the

change in the length of the radius-vector.

4 θ0 = 90◦ Maximum height at a given speed.

purpose of this work is to study the effect of the quadratic
resistance of the medium on the change in angles 2 and 3.

We explain the appearance and meaning of angle 2. Let
V0 - initial velocity of the projectile,g - acceleration of grav-
ity. It is known [1,5], that when the projectile moves in vac-
uum, the arc length of the trajectory as a function of the
throwing angleθ0 is determined by the formula

Str(θ0) =
V 2

0

g

(
sin θ0 + cos2 θ0 ln

[
1 + sin θ0

cos θ0

])
. (1)

For a fixed initial velocityV0, this function has a local
maximum atθ0 = 56.46◦ [1,5]. This angle provides the max-
imum arc length of the projectile trajectory.

Now let’s describe the angle 3 when the projectile moves
in vacuum. In Ref. [2] Walker described an interesting prop-
erty of motion: the nature of the change in the length of the
radius-vector depending on the magnitude of the throwing
angle. Figure 1 in Ref. [2] illustrates this property. The
following notation is used here:r(x) =

√
x2 + y(x)2 is

the length of the radius-vector of the projectile, andx, y are
the Cartesian coordinates of the projectile. In the figure, for
the initial speedV0 = 40 m/s, a family of curvesr = r(x) is

FIGURE 1. Graphs ofr = r(x) function.
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FIGURE 2. Graphs ofr = r(x), y = y(x) functions.

is constructed at various angles of throw in the range from
θ0 = 62.5◦ to θ0 = 80◦. Each curve describes the move-
ment of the projectile from the point of launch to the point
of impact, wherer = x. It can be seen from the figure that
the nature of the change in the parameterr depends on the
value of the throwing angle. For example, at an angle of
throw θ0 = 62.5◦, the parameterr increases monotonically
throughout the entire flight of the projectile. On the contrary,
at an angle of throwθ0 = 80◦, the value ofr at first in-
creases, then decreases, and then increases again before the
point of incidence. There is a certain critical angle of throw
θcr
0 = 70.53◦ that separates these types of behavior of the

parameterr and does not depend on the initial velocityV0

(angle 3). This critical angle is determined from the condi-
tion of the existence of asingleroot of the equation

dr

dt
= 0. (2)

Figure 1 curve for the angleθcr
0 is shown in red. Plots

of functionsr = r(x), y = y(x) are shown in Fig. 2. for
the throw angleθcr

0 . From Fig. 2 we can see that angle 3 al-
ways corresponds to the position of the radius-vector on the
descending branch of the projectile trajectory.

Recently, studies have appeared [6,7] in which the influ-
ence of the forces of resistance of the medium on the change
in the characteristics of motion given in Table I is considered.
The article [6] studies numerically the effect on the change in
angle 2 of resistance forces, which have a linear and quadratic
dependence on speed. For the case of a quadratic dependence
of the force of resistance of the medium on the velocity of the
projectile, a general conclusion is made about the increase in
angle 2 in comparison with the case of the absence of re-
sistance. For the case of linear resistance, the dependence
Str = Str(θ0) is approximated by a cubic polynomial rela-
tive to the projectile throwing angle. In Ref. [7], the influence
of only the linear resistance of the medium on the change of
angle 3 is considered. The results indicate a decrease of an-
gle 3 with an increase of the coefficient of resistance of the
medium. This article follows the general direction of research
in Refs. [6,7], but only the case of the quadratic resistance of

the medium is considered. The purpose of this research is to
study in more detail the effect of the quadratic resistance on
the change in angles 2 and 3.

2. Study of the effect of square-law resistance
on the change in angle 2

Let the projectile move in a medium with a square-law resis-
tance (Fig. 3).

Let’s write down the equations of the projectile mo-
tion. Let us consider the motion of a projectile with mass
m launched at an angleθ0 with an initial speedV0 under
the influence of the force of gravity and resistance force
R = mgkV 2. Here g is the acceleration of gravity,k is
the drag constant andV is the speed of the object. Air re-
sistance forceR is proportional to the square of the speed of
the projectile and is directed opposite the velocity vector. It
is assumed that the projectile is at the origin at the initial in-
stant and the point of impact of the projectile lies on the same
horizontaly = 0 (see Fig. 3). In ballistics, the movement of
a projectile is often studied in projections on natural axes [3].
The equations of the projectile motion in this case have the
form

dV

dt
= −g sin θ − gkV 2,

dθ

dt
= −g cos θ

V
−

dx

dt
= V cos θ,

dy

dt
= V sin θ. (3)

Hereθ is the angle between the tangent to the trajectory
of the projectile and the horizontal,x, y are the Cartesian
coordinates of the projectile. The drag coefficientk is usu-
ally determined through the terminal velocity of the projec-
tile: k = 1/V 2

term.
Let us study the influence of the resistance of the medium

on the change in the angle 2. In the case of quadratic resis-
tance, the arc length of the trajectory is determined by the
following ultimate formula [4]:

FIGURE 3. Some characteristics of the motion.
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FIGURE 4. Graphs ofS = S(θ0) functions.

FIGURE 5. The locus of the points, for whichS = Smax on the
plane(p, θ0).

Str =
1

2gk
ln

(
1 + kV 2

0 cos2 θ0 [f{θ0} − f{θd}]
)
,

where

f(θ) =
sin θ

cos2 θ
+ ln

(
tan

[
θ

2
+

π

4

])
. (4)

In Eq. (4) θd is the angle of incidence of the projectile
(see Fig. 3). In contrast to Eq. (1), in which equality takes
placeθd = −θ0, in this case the value of the angle of inci-
dence is not known in advance and must be calculated. This
can be done in two ways –numerical and analytically. The
first method consists in the numerical integration of the dif-
ferential equations of projectile motion given by Eq. (3). The
second way makes use of high-precision analytical approxi-
mations [8] describing the movement of the projectile. In this
research, both methods are used. The final result is shown in
Figs. 4, 5. Figure 4 shows plots of the dependence of the
normalized arc lengthS on the initial throwing angle for var-
ious values of the resistance coefficientk. The arc lengthS
is made dimensionless by introducing a normalization factor

n:

S(θ0) = Str · n, where n =
g

V 2
0

.

Figure 4 contains five curves. Red curve 1 was obtained
at k = 0, curve 2 was obtained atk = 0.000625 s2/m2,
curve 3 atk = 0.002 s2/m2, and curve 4 atk = 0.022 s2/m2.
The value of the initial speed is the same for curves 1, 2, 3,
4: V0 = 40 m/s. Curve 1 corresponds to the movement of
the projectile in vacuum, curves 2, 3, 4 at the used values of
the drag coefficientk describe the motion of a baseball, a ten-
nis ball and a badminton shuttlecock in the air, respectively.
Solid black lines on curves 2,3,4 were obtained by numerical
integration of the system of equations of projectile motion in
Eq. (3) by the Runge-Kutta method of the 4th order. Dotted
red lines on the same curves were obtained by using ana-
lytical approximations [8]. The complete coincidence of the
solid and dotted curves testifies to the high accuracy of the
approximations [8]. From the analysis of curves 1, 2, 3, 4 it
can be seen that with an increase in the resistance coefficient
k, angle 2 enlarges. Blue curve 5 is obtained numerically and
represents the locus of points for which the arc length of the
corresponding trajectory is maximum, on the plane(S, θ0).
For a more detailed analysis, we will construct the locus of
points corresponding to one condition or another, on differ-
ent planes of parameters. This remark applies to both an-
gle 2 and angle 3. In other words, for any given values of
the initial velocity of the projectileV0 and the drag coeffi-
cientk, the values of the parameterSmax and angle 2 lie on
curve 5. The start and end points of curve 5 have coordinates
(56.46◦, 1.2) and (90◦, 0). Directly from Fig. 4 we can see
that curve 5 passes through the points of maximum of the
curvesS = S(θ0). This means that for all points of curve 5
the condition is satisfied

dS(θ0)
dθ0

= 0. (5)

We introduce the dimensionless parameterp = kV 2
0 . It

has a clear physical meaning: - it is the ratio of the resis-
tance force of the medium to the weight of the projectile at
the moment the movement starts. In Fig. 5 the same curve
5 is shown on the parameter plane(p, θ0). Points 1 and 2 on
the curve correspond to the movement of the tennis ball and
the badminton shuttlecock, respectively. Motion parameters
for the tennis ball areV0 = 70 m/s, k = 0.002 s2/m2, for
shuttlecock we haveV0 = 80 m/s, k = 0.022 s2/m2. The
curve in Fig. 5 allows to immediately determine the desired
angle 2 at the given values ofV0, k without calculations. The
start and end points of the curve have coordinates (0, 56.46◦)
and (160, 81.43◦).

3. Investigation of the effect of square-law re-
sistance on the change in angle 3

Let us turn to the study of angle 3. To calculate the length of
the radius-vector, you need to know the Cartesian coordinates
x, y of the projectile at each point of its trajectory. We will
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FIGURE 6. Dependenceθcr
0 = θcr

0 (k).

FIGURE 7. DependenceR = R(x).

calculate them in the two ways mentioned above. Let us in-
vestigate how the critical throwing angle changes when a pro-
jectile with a square-law resistance moves. First, we consider
the effect of the drag coefficientk on angle 3. In Fig. 6,
a family of curvesθcr

0 = θcr
0 (k) is numerically constructed

for various values of the initial velocity. Curve 1 is plotted at
V0 = 20 m/s, curve 2 atV0 = 40 m/s, curve 3 atV0 = 80 m/s.
From the figure it follows that with an increase in the value
of the resistance coefficient, the value of angle 3 decreases.
For the convenience of the study, we make the quantitiesr
andx dimensionless:R = r · n, x = x · n. In Fig. 7, a
family 1,2,3 of curvesR = R(x) is constructed at the same
values of the initial velocities as in Fig. 4 and for critical
values of the angle of throwθcr

0 . Parameterk is constant:
k = 0.001 s2/m2. It can be seen from the figure that with
an increase in the initial speed, angle 3 decreases. For curve

1 it is equal to:θcr
0 = 68.5◦, for curve 2: θcr

0 = 64.5◦ for
curve 3:θcr

0 = 57.9◦. Solid black lines on curves 1, 2, 3 were
obtained by numerical integration of the system of equations
of projectile motion in Eq. (3) by the Runge-Kutta method
of the 4th order. Dotted red lines on the same curves were
obtained by using analytical approximations [8].

The final result is shown in Fig. 8. The locus of points for
which condition (2) is satisfied is numerically constructed on
the parameter plain(θcr

0 , p). In fact, this is the locus of the
points of inflection of the lengthr(x) of the radius-vector of
the projectile (point A in Fig. 2). For any given values of the
initial velocity of the projectileV0 and the drag coefficient
k, the value of angle 3 will lie on the resulting curve. The
start and end points of the curve have coordinates (0,70.53◦)
and (160,43.2◦). Points numbered 1, 2, 3 correspond to the
movement of a baseball, a tennis ball and a badminton shut-
tle, respectively. The characteristics of the movement of these
sports equipment are shown in Table II.

Let us now prove an interesting property of angles 3. An-
gles 3 are found from the conditiondr/dt = 0. Let us dif-
ferentiate the radius-vector with respect to time taking into
account Eqs. (3):

dr

dt
=

xdx
dt + y dy

dt

r
=

xV cos θ + yV sin θ

r

=
V

r
(x cos θ + y sin θ) = 0.

This implies the equalityx cos θ + y sin θ = 0 or tan θ =
−x/y. From the system of equations of projectile motion in
Eq. (3), we obtain the relationtan θ = dy/dx. Comparing
these two relations, we obtain the differential equation

dy

dx
= −x

y
,

whose solution has the form

(x− x0)2 + (y − y0)2 = a2. (6)

This means that the Cartesian coordinatesx, y of the in-
flection points of the radius-vector lengthr(x), obtained from
the conditiondr/dt = 0 for any values of the drag coefficient
k lie on a circular arc of the form (6). PointO1 (the center
of the circle) has coordinatesO1(x0, y0), parametera is the
radius of the circle. Let̄x, ȳ be dimensionless coordinates:
x̄ = nx, ȳ = ny. Let’s keep the previous designations for
them:x, y. It is difficult to determine the parametersx0, y0, a

TABLE II. Characteristics of the motion of sports equipment.

sports equipment V0, m/s Vterm, m/s k = 1/V 2
term, s2/m2 p = kV 2

0 θcr
0

baseball 50 40 0.000625 1.56 64.6◦

tennis 70 22 0.002 9.8 55.6◦

badminton 80 6.7 0.022 140.8 43.5◦
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FIGURE 8. Locus of points meeting a conditiondr/dt = 0, on a
plane(p, θcr

0 )

FIGURE 9. Locus of points meeting a conditiondr/dt = 0, on a
planeOxy

analytically. Therefore, we will do the opposite –we will con-
struct sets of points(x, y) and for them we will select the cor-
responding equation of the circle. In Fig. 9, the geometric lo-

cation of the points corresponding to the condition of Eq. (2)
is plotted on the plane(x, y). Red points were obtained nu-
merically, solid black line represent an arc of a circle of the
form of Eq. (6) with dimensionless parameters:

x0 = −0.489474, y0 = 1.19222, a = 1.28879. (7)

The resistance coefficientk on curve runs through all val-
ues of the interval[0,∞). The upper end of the arc has co-
ordinates(

√
2/3, 1/3) and corresponds to movement with-

out resistance, the lower to movement with very high resis-
tance. Figure 9 is universal. It containsx, y coordinates,
corresponding to the angles 3, for any values of speedV0 and
drag coefficientk. The upper and lower ends of the arc also
lie on the straight line (shown in green). This straight line is
given be the equation

y =
√

2
2

x. (8)

The angle of inclination of the line (8) to thex axis is
35.26◦. Equation (8) can be deduced from the formulas of
the article [2].

4. Conclusion

We have investigated the influence of the force of the
quadratic resistance of the medium on the change in some in-
teresting characteristics of the motion of the projectile, which
take place when the projectile moves in vacuum. Numer-
ically (and partly analytically) geometrical places of points
are constructed that ensure maximization of the arc length of
the projectile trajectory and a non-decreasing of the length
of the radius-vector. Let us emphasize the diverse influence
of the force of quadratic resistance on the magnitude of the
studied angles 2 and 3. With an increase of the value of the
resistance force, the value of angle 2 increases, and the value
of angle 3 decreases. It should also be noted the usefulness
of the formulas in Ref. [8], which made it possible to signif-
icantly reduce the amount of numerical calculations in this
research.
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