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Green function for the Grad-Shafranov operator
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The Grad-Shafranov equation, often written in cylindrical coordinates, is an elliptic partial differential equation in two dimensions. It de-
scribes magnetohydrodynamic equilibria in axisymmetric toroidal plasmas, such as tokamaks, and yields the poloidal magnetic flux function,
which is related to the azimuthal component of the vector potential for the magnetic field produced by a circular (toroidal) current density.
The Green function for the differential operator can be obtained from the vector potential for the magnetic field of a circular current loop,
which is a typical problem in magnetostatics. The purpose of the paper is to collect results scattered in electrodynamics and plasma physics
textbooks for the benefit of students in the field, as well as attracting the attention of a wider audience, in the context of electrodynamics and
partial differential equations.
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1. Introduction

The problem of finding the magnetic field of a circular current
loop is presented in electrodynamics textbooks such as those
by Landau and Lifschitz [1], Jackson [2], and Greiner [3], as
an example of the application of the vector potential in mag-
netostatics. Due to the symmetry of the problem, only the
azimuthal component is necessary. This component, on the
other hand, is related to the magnetic field flux through the
circular surface, which defines magnetic field surfaces around
the loop, as explained in plasma physics textbooks, like those
of Bellan [4], and Freidberg [5]. On the other hand, the Grad-
Shafranov equation arises from finding axisymmetric mag-
netohydrodynamic equilibria, like those found in Tokamaks,
and other toroidal confinement devices, such as the Reversed
Field Pinch, the Reversed Field Configuration, the Sphero-
mak, and the Levitated Dipole [6]. It describes the balance of
the magnetostatic forcej ×B and the plasma pressure force
∇p, wherej is the current density within the plasma andB
is the magnetic induction field. Finding these equilibria can
be reduced to the solution of a scalar elliptic partial differen-
tial equation in two dimensions known as the Grad-Shafranov
equation [4,5]. The solution of its free boundary problem re-
quires the knowledge of the Green’s function related to the
differential operator of the equation, which will be called the
Grad-Shafranov operator. While it is often given, it is not de-
rived in fusion books, such as those by Ariola and Pironti [7],
and Jardin [8]. The purpose of the paper is to collect these
scattered results for the benefit of plasma physics and mag-
netized fusion students, as well as to bring them to the at-
tention of a wider audience, in the context of magnetostatics
and partial differential equations. The paper is organized as
follows: The derivation of the vector potential for the circu-
lar loop current, in terms of complete elliptic integrals, and its
relation with the magnetic flux function is reviewed in Sec. 2.
The Grad-Shafranov differential operator is defined in Sec. 3,

and its Green’s function is obtained from the result in the pre-
vious section. In order to understand the context in which
such results are relevant for fusion research, the derivation
of the Grad-Shafranov equation is completed in Sec. 4, and
some concluding remarks are made in in Sec. 5.

2. Magnetic field for the circular current loop

We start by reviewing the derivation of the vector potential
for the circular loop current, following Refs. [1–3]. Then we
establish the relationship between the vector potential and the
magnetic flux across the surface defined by the loop, follow-
ing Ref. [7].

The equations for a time independent magnetic induction
field B are given by the Gauss’ law for its divergence and
Ampère’s law, for its curl as

∇ ·B = 0 , (1a)

∇×B = µ0j , (1b)

whereµ0 is the vacuum permeability. From Eq. (1a), we have
that the magnetic induction field can be written in terms of
the rotational of a vector potentialA asB = ∇×A, where
following Helmholtz theorem [9]

A(r) =
µ0

4π

∫
j(r′)
|r− r′|dV ′ , (2)

in which r is the vector from the origin to the observation
point andr′ the vector from the origin to a given source el-
ementj(r′). The relationship between the vector potential
and the the magnetic fluxψ across the surface, defined by a
circular current loop is established in this section, and a rep-
resentation for the magnetic field in terms of it flux will be
given.
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The circular loop current can be expressed in terms of
cylindrical coordinates(ρ, ϕ, z), as shown in Fig. (1), such
that the direction along theϕ angle, usually called azimuthal,
will be called toroidal, and that perpendicular to it, with con-
stantϕ, poloidal. Due to the axisymmetry of the problem
∂/∂ϕ = 0, andj = jϕêϕ. The vector potential is therefore
given from Amp̀ere’s law, Eq. (1b), as

∇2A = −µ0jϕêϕ, (3)

using Coulomb’s gauge∇ ·A = 0. Thus,A = Aϕêϕ. The
toroidal (azimuthal) symmetry implies that∂/∂ϕ = 0, so the
components of the induction field are

Bρ = −∂Aφ

∂z
, Bϕ = 0, Bz =

1
ρ

∂(ρAϕ)
∂ρ

. (4)

2.1. The vector potential for the circular current loop in
terms of elliptic integrals

The circle defining the current loop can be described in the
rectangular coordinates by

x = a cos ϕ, y = a sinϕ, (5)

so the components of the current densityjϕ along the circum-
ference are

jx = −jϕ sin ϕ, jy = jϕ cos ϕ , (6)

Due to the azimuthal symmetry, without loss of generality,
one can take the vector potential atϕ = 0, wherejx = 0,
jy = jϕ cosϕ. The objective is to findAϕ(ρ, z) on the plane
(x, z). Therefore the current density for a loop of radiusa,
lying on theX, Y plane, with a currentI can be expressed as

j(r′) = jϕêϕ = Iδ(ρ′ − a)δ(z′) cos ϕ′êϕ . (7)

In cylindrical coordinates

|r− r′| =
√

ρ2 + z2 + ρ′2 + z′2 − 2ρρ′ cos (ϕ− ϕ′) . (8)

Substituting Eqs. (7) and (8) in (2), with ϕ = 0,

Aϕ =
µ0I

4π

∫
ρ′dρ′dϕ′dz′δ(ρ′ − a)δ(z′) cos ϕ′√
ρ2 + z2 + ρ′2 + z′2 − 2ρρ′ cosϕ′

, (9)

which reduces to

Aϕ =
µ0Ia

4π

2π∫

0

dϕ′ cos ϕ′√
a2 + ρ2 + z2 − 2aρ cos ϕ′

. (10)

Using the change of variableψ = (π−ϕ)/2, cosϕ′ =
2 sin2 ψ − 1, andAϕ can be written in terms of complete
elliptic integrals. First, as

Aϕ =
µ0Ia

4π

4√
(a + ρ)2 + z2

π/2∫

0

2 sin2 ψ − 1√
1− k2 sin2 ψ

dψ ,

(11)

where

k2 ≡ 4aρ

(a + ρ)2 + z2
, 0 < k2 < 1 , (12)

and finally as

Aϕ =
µ0Ia

2π

√
a

ρ

[
(2− k2)K(k)− 2E(k)

k

]
, (13)

whereK(k) andE(k) are the elliptic integrals of first and
second type respectively, defined by

K(k) =

π/2∫

0

dψ√
1− k2 sin2 ψ

,

E(k) =

π/2∫

0

√
1− k2 sin2 ψdψ . (14)

The components of the magnetic field can be obtained
from Eq. (4) using the relations

∂K

∂k
=

E

k(1− k2)
− K

k
,

∂E

∂k
=

E −K

k
, (15)

or directly form Amper̀e’s law

B =
µ0I

4π

∮
dl× r

r3
, (16)

to obtain

Bρ =
µ0Iz

2πρ

√
k2

4aρ

[
2− k2

2− 2k2
E −K

]
, (17a)

Bϕ = 0 , (17b)

Bz =
µ0I

2πρ

√
k2

4aρ

[
ρK +

ak2 − (2− k2)ρ
2− 2k2

E

]
, (17c)

as shown in Ref. [10].

2.2. Relation between the vector potential and the mag-
netic flux

Let us consider the circular current loop of radiusρ as de-
scribed in the previous section, and shown in Fig. 1.

The poloidal flux,ψp is defined by the integral of thez
component of the magnetic field that crosses the circular sur-
faceS, and is given by

ψp(r) =

ρ∫

0

2π∫

0

Bz(s, z)sdsdϕ

= 2π

ρ∫

0

Bz(s, z)sds = 2πψ , (18)
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FIGURE 1. A circular current loop lying on theX, Y plane (Z = 0)
enclosing the surfaceS within the circle. In section II the contour
has a radiusρ′ = a. The currentI induces a magnetic fieldB,
whose componentBz crosses the surfaceS. The magnetic flux
function ψ(ρ, z) describes the magnetic surfaces around the cur-
rent loop.

On the other hand, from Gauss law for the magnetic field, in
the case of azimuthal symmetry (axisymmetry), which means
∂/∂ϕ = 0,

∇ ·B =
1
ρ

∂

∂ρ
(ρBρ) +

∂Bz

∂z
= 0 , (19)

which yields

ρ
∂Bz

∂z
= − ∂

∂ρ
(ρBρ) . (20)

Therefore, from Eqs. (18) and (20),

∂ψ

∂ρ
= ρBz,

∂ψ

∂z
= −ρBρ . (21)

Comparing Eqs. (4) and (21) it can be seen that

Bρ = −1
ρ

∂ψ

∂z
, Bz =

1
ρ

∂ψ

∂ρ
, ψ = ρAϕ . (22)

Thus, the vector potential can be written in terms ofψ, which
is proportional to the poloidal flux functionψp, modulus a2π
factor, asAϕ = ψ/ρ. Therefore, the poloidal magnetic field
can be written as

Bp = −∂ψ

∂z
êρ+

1
ρ

∂ψ

∂ρ
êz = ∇×(ψ∇ϕ) = ∇ψ×∇ϕ . (23)

This equation shows thatψ defines a stream function which
describes nested surfaces around the circular current loop.
The orthogonal coordinate system (∇ψ,∇ϕ,∇ψ ×∇ϕ) can
be defined, where∇ϕ = (1/ρ)êϕ. In this sense, the stream
function ψ plays the role of a “radial coordinate” from the
magnetic axis, defined by the circular current loop, and the
magnetic surface.

3. The Grad-Shafranov operator and its
Green’s function

Amp̀ere’s law, Eq. (1b), can be expressed in terms ofψ for
the circular current density loop as

µ0jϕêϕ = ∇×∇× (ψ∇ϕ) = −4∗ψ∇ϕ , (24)

where the Grad-Shafranov elliptic operator4∗ψ is defined
as

4∗ψ(r) ≡ ρ2∇ · [ρ−2∇ψ
]

= ρ
∂

∂ρ

(
1
ρ

∂ψ

∂ρ

)
+

∂2ψ

∂z2
= −µ0ρjϕ , (25)

in whichr = (ρ, z). (Observe this expression is equivalent to
Eq. (3), and can be derived from it whenA = (ψ/ρ)êϕ.
It must be remembered for that purpose that(42A)ϕ =
42Aϕ −Aϕ/ρ2.)

Sincejϕ may be in general an extended source, Eq. (25)
can be solved by means of the Green’s functionG(r; r′) of
the4∗ operator, which is simply the solution for a circular
filament loop of radiusρ0:

4∗G(r; r′) = ρ2∇· [ρ−2∇G(r; r′)
]

= µ0ρδ(r−r′) . (26)

From Eqs. (25) and (26) the following Green’s identity can
be derived

1
ρ2

ψ4∗G(r; r′)− 1
ρ2

G(r; r′)4∗ψ

= ∇ ·
[
ψ

1
ρ2
∇G(r; r′)−G(r; r′)

1
ρ2
∇ψ)

]
. (27)

Substituting Eqs. (25) and (26) in the left hand side of
Eq. (27), integrating over the cross section of the current in
the (ρ, z) plane, and using the divergence theorem to turn the
integral on the right hand side into a contour integral, the so-
lution for the functionψ(r) can be written as

ψ(ρ, z) =
∫

G(r; r′)jϕ(r′)dS − 1
µ0

∮

×
[
ψ(r′)
ρ′2

∂

∂n′
G(r; r′)− G(r; r′)

ρ′2
∂

∂n′
ψ(r′)

]
dl , (28)

where the contour integral includes the boundary conditions,
and in the absence of them can be set to naught.

Sinceψ = Aϕρ, it’s now clear that the Green’s function
for Eq. (26) is given by the toroidal (azimuthal) component
of the vector potentialAϕ of the circular current loop. From
Eq. (13) it can be expressed as

G(r; r′) =
µ0I

2π

√
ρρ′

[
(2− k2)K(k)− 2E(k)

k

]
, (29)

wherea in Eq. (13) has been replaced byρ′. This is the ex-
pression forG(r; r′) given by Refs. [7,8].

In practice, the boundary conditions in Eq. (28) may be
replaced by the contributions of external coils around the
main current densityj, which in the case of magnetic con-
finement is that of the plasma. The role of such external coils
would be to control the shape and position of the plasma col-
umn.
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4. The Grad-Shafranov equation

While in devices like the Reversed Field Configuration and
the Levitated Dipole, the poloidal magnetic field is sufficient
for confinement, in most cases, such as the Tokamak, Re-
versed Field Pinch and Spheromak, a toroidal (azimuthal)
magnetic field is also required. From Ampère’s law∇·j = 0,
so it is possible to treat the current density in an analogous
way as the magnetic field in Sec. 2. From this fact, and the
assumption of axisymmetry it follows from Ampère’s law, in
analogy to Eqs. (22), that there exists a stream functionχ
such that

jρ = −1
ρ

∂χ

∂z
= − 1

µ0

∂Bϕ

∂z
,

jz =
1
ρ

∂χ

∂ρ
=

1
µ0ρ

∂

∂ρ
(ρBϕ). (30)

Additionally,

jϕ =
1
µ0

(
∂Bρ

∂z
− ∂Bz

∂ρ

)
= −µ0ρ4∗ψ , (31)

as shown earlier. From Eqs. (30) it follows that Bϕ =
µ0χ/ρ, so definingF (ρ, z) ≡ µ0χ(ρ, z) the toroidal mag-
netic field can be expressed asBϕ = (F/ρ)êϕ. Combining
this result with Eq. (23), it is found that the total magnetic
field for the axisymmetric case can be written as

B = Bp + Bϕ = ∇ψ ×∇ϕ + F∇ϕ . (32)

Thus, from Amṕere’s law Eq. (1b), µ0jp = ∇F × ∇ϕ =
∇× F∇ϕ.

The Grad-Shafranov equation is derived from the balance
of magnetostatic force and the plasma pressure force:

∇p = j×B = jϕ ×Bp + jp ×Bϕ . (33)

from where it is found that

∇p = − 1
µ0ρ2

[4∗ψ∇ψ − F∇F ] . (34)

As can be seen from Eq. (33),

∇p ·B = 0 = ∇p · j , (35)

which means that the pressure is constant on surfaces where
both the magnetic field and the current density lie. Since the
magnetic surfaces are defined by the magnetic flux stream
function, then∇p(ψ) = p′(ψ)∇ψ and∇F (ψ) = F ′(ψ)∇ψ,
where the primes denote derivative with respect to the argu-
ment, so the pressure balance equation can finally be written
as a scalar partial differential equation known as the Grad-
Shafranov equation:

4∗ψ = −µ0ρ
2p′(ψ)− F (ψ)F ′(ψ) = −µ0ρjϕ . (36)

Since it is in general a nonlinear equation it is usually solved
numerically, as explained in Ref. [8], for instance. Addition-
ally, the toroidal plasma column may be surrounded by cir-
cular coils for control of its shape and position. In that case,
finding the equilibrium is posed as a free-boundary problem,
in which the poloidal flux function has a contribution by each
of thei coils given by

ψi(r) =
∫

jϕ(r′)G(r; r′)dS . (37)

5. Conclusions

The Grad-Shafranov equation describes the magnetohydro-
dynamic equilibrium for toroidal axisymmetric plasma con-
finement devices. Its solutions define nested magnetic sur-
faces around a magnetic axis, in terms of a poloidal flux
functionψ. On the other hand, this flux function is related to
the azimuthal (toroidal) component of the vector potential by,
Aϕ = ψ/ρ. Since the solution forAϕ is that of the circular
current loop, it is possible to obtain through this relationship
the Green function for the elliptic differential operator4∗

in terms of complete elliptic integrals, as shown in Sec. 3.
The solution forψ in terms of the Green’s function, includ-
ing the line integral, which includes the boundary conditions
was shown.
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