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Green function for the Grad-Shafranov operator
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The Grad-Shafranov equation, often written in cylindrical coordinates, is an elliptic partial differential equation in two dimensions. It de-
scribes magnetohydrodynamic equilibria in axisymmetric toroidal plasmas, such as tokamaks, and yields the poloidal magnetic flux function,
which is related to the azimuthal component of the vector potential for the magnetic field produced by a circular (toroidal) current density.
The Green function for the differential operator can be obtained from the vector potential for the magnetic field of a circular current loop,
which is a typical problem in magnetostatics. The purpose of the paper is to collect results scattered in electrodynamics and plasma physic:
textbooks for the benefit of students in the field, as well as attracting the attention of a wider audience, in the context of electrodynamics and
partial differential equations.
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1. Introduction and its Green'’s function is obtained from the result in the pre-
vious section. In order to understand the context in which

The problem of finding the magnetic field of a circular currentgych results are relevant for fusion research, the derivation

loop is presented in electrodynamics textbooks such as tho$f the Grad-Shafranov equation is completed in Sec. 4, and

by Landau and Lifschitz [1], Jackson [2], and Greiner [3], assome concluding remarks are made in in Sec. 5.

an example of the application of the vector potential in mag-

netostatics. Due to the symmetry of the problem, only the
azimuthal component is necessary. This component, on th2. Magnetic field for the circular current loop

other hand, is related to the magnetic field flux through the

circular surface, which defines magnetic field surfaces aroun#Ve start by reviewing the derivation of the vector potential
the loop, as explained in plasma physics textbooks, like thostr the circular loop current, following Refs. [1-3]. Then we
of Bellan [4], and Freidberg [5]. On the other hand, the Grad-€stablish the relationship between the vector potential and the
Shafranov equation arises from finding axisymmetric magmagnetic flux across the surface defined by the loop, follow-
netohydrodynamic equilibria, like those found in Tokamaks,ing Ref. [7].

and other toroidal confinement devices, such as the Reversed The equations for a time independent magnetic induction
Field Pinch, the Reversed Field Configuration, the Spherofield B are given by the Gauss’ law for its divergence and
mak, and the Levitated Dipole [6]. It describes the balance oAmpere’s law, for its curl as

the magnetostatic forgex B and the plasma pressure force

Vp, wherej is the current density within the plasma aBd V-B=0 , (1a)

is the magnetic induction field. Finding these equilibria can Y x B = uoi (1b)

be reduced to the solution of a scalar elliptic partial differen- Hol

tial equation in two dimensions known as the Grad-Shafranovvhere“O is the vacuum permeability. From EA], we have
equation [4, 5]. The solution of its free boundary problem ré-y, i ye magnetic induction field can be written in terms of

qyires the knowledge of the Grgen’s fu'nctio.n related to th he rotational of a vector potential asB — V x A, where
differential operator of the equ'atlpr), which WI|| be. galled thefOIIOWing Helmholtz theorem [9]

Grad-Shafranov operator. While it is often given, it is not de-
rived in fusion books, such as those by Ariola and Pironti [7], o i
and Jardin [8]. The purpose of the paper is to collect these Afr) = E/
scattered results for the benefit of plasma physics and mag-

netized fusion students, as well as to bring them to the atin which r is the vector from the origin to the observation
tention of a wider audience, in the context of magnetostaticgoint andr’ the vector from the origin to a given source el-
and partial differential equations. The paper is organized asmentj(r’). The relationship between the vector potential
follows: The derivation of the vector potential for the circu- and the the magnetic flux across the surface, defined by a
lar loop current, in terms of complete elliptic integrals, and itscircular current loop is established in this section, and a rep-
relation with the magnetic flux function is reviewed in Sec. 2.resentation for the magnetic field in terms of it flux will be
The Grad-Shafranov differential operator is defined in Sec. 3given.
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The circular loop current can be expressed in terms ofvhere
cylindrical coordinatesp. ¢, z), as shown in Fig. (1), such k2 = 4a2p S 0<k <, (12)
that the direction along the angle, usually called azimuthal, (a+p)?+z
will be called toroidal, and that perpendicular to it, with con- g finally as
stantp, poloidal. Due to the axisymmetry of the problem

0/0p = 0, andj = j.é,. The vector potential is therefore A = wola [a [(2—Kk*)K(k)—2E(k) 13
given from Amgere’s law, Eq.1b), as 7 o \p k ’ (13)
V2A = —i0jp€,, (3)  whereK (k) and E(k) are the elliptic integrals of first and
using Coulomb’s gaug® - A = 0. Thus,A = A,é,. The second type respectively, defined by
toroidal (azimuthal) symmetry implies thaf 9y = 0, so the /2
components of the induction field are K(k) = / dy
V1~ k2sin2
B= %4 p _o p _100A) o ViTHSHY
P 9z Y TR p 9p /2
2.1. The vector potential for the circular current loop in E(k) = / V1= k2sin® pdy (14)
terms of elliptic integrals 0

The circle defining the current loop can be described in the The components of the magnetic field can be obtained

rectangular coordinates by from Eq. 4) using the relations
T =acosyp, y=asinp, (5) oKk E K OE _E-K (15)
_ ] ok k(1—-k2) Kk’ ok ko7
so the components of the current dengityalong the circum-
ference are or directly form Ampee’s law
jo = —Jesing, jy, = jpcose, (6) g Mol [dlxr (16)
 Arm r3
Due to the azimuthal symmetry, without loss of generality,
one can take the vector potential@t= 0, wherej, = 0,  to obtain
Jy = j, cos . The objective is to findd, (p, z) on the plane
(z, z). Therefore the current density for a loop of radiys B _ polz | k2 [2—Kk? oK
. : b = — |——=F— , (17a)
lying on the X, Y plane, with a current can be expressed as 2mp \| dap |2 — 2k2
i) =jyoe, =I6(p" — a)d(2') cos '€, . (7) B, =0, (17b)
In cylindrical coordinates I 2 2 (2-k?
y B L B Dl C el 13 IO 25
2mp \ dap 2 — 2k2

e —v'| = \/p? + 22+ p2 + 22 = 2pp' cos (p — ¢') . (8)

Substituting Eqs/4) and B) in (2), with ¢ = 0, as shown in Ref. [10].

4 Mol [ pldp'dp'dz'd(p" —a)d(2") cos ¢’ (99 22 Relation between the vector potential and the mag-
T Arx VR 22+ 2+ 22 — 2pp cos netic flux

which reduces to Let us consider the circular current loop of radjusis de-
o scribed in the previous section, and shown in Fig. 1.
/ / . . . .
_ hola d¢' cosp The poloidal flux,y, is defined by the integral of the
A, = . (20) p 1S e -
am J Va4 p? + 22 — 2apcos ¢’ component of the magnetic field that crosses the circular sur-

facesS, and is given by
Using the change of variable = (7 — ¢)/2, cos¢’ =

2sin®v — 1, and A, can be written in terms of complete £
elliptic integrals. First, as Pp(r) = //Bz(s,z)sdsdgp
x/2 0 0
A _ mola 4 2sin? ) — 1 i b
v 4m \/(a +p)? + 22 ) \/1 — k2sin? ¢ ’ = QW/BZ(S, z)sds = 2, (18)
(11) 0
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% where the Grad-Shafranov elliptic operatt¥y is defined
P as
P
ST ) AY(x) = p*V - [p7*VY]
L7 ~ / 0 (1ay\ 9%
BT —— =r5- =5 )+ 5 = —Hovde,  (25)
*\f(*)/(\ e ! Pop <p 80) 9z* Hople
\‘ ///\"‘ =R /\\; p 4 B z
T e L4 L in whichr = (p, z). (Observe this expression is equivalent to
- . Eqg. 3), and can be derived from it whe = (¢/p)é.,.
2 It must be remembered for that purpose thafA), =
X N?A, — Ay /p”)

Sincej, may be in general an extended source, [28) (
can be solved by means of the Green’s functi®fr; r’) of
the A* operator, which is simply the solution for a circular
filament loop of radiugg:

FIGURE 1. Acircular currentloop lying on th&, Y plane ¢ = 0)
enclosing the surfac& within the circle. In section Il the contour
has a radiup’ = a. The current/ induces a magnetic fiellB,
whose componenB, crosses the surfacg. The magnetic flux

function ¢ (p, z) describes the magnetic surfaces around the cur-
rent loop. N*G(r;x') = p’V - [p?VG(r;r')] = popd(r—1'). (26)

On the other hand, from Gauss law for the magnetic field, irFrom Egs. 25) and 26) the following Green’s identity can
the case of azimuthal symmetry (axisymmetry), which meange derived

9/0¢ =0, . )
190 0B, YN G(r;r’) — = G(r;r)A*
vB= 00py 2By g EYAO) T pOnATy
pOp 0z ) )
which yields =V |5 VG(r;r) = G(r;r') 5 V)| . (27)
0B, 0 p p
ra, = —87)(03,3) : (20)
Substituting Eqgs. 145 and 26) in the left hand side of
Therefore, from Eqs[1) and €0), Eq. (27), integrating over the cross section of the current in
aj _ @ _ the (p, z) plane, and using the divergence theorem to turn the
= pB,, = —pB,. (21) . ) o .
ap 0z integral on the right hand side into a contour integral, the so-
1oy 1oy _ 1
Bp__;E7 B, = 587107 ¢—PA¢ (22) w(pjz):/G(r;r/)jw(r/>d5'—%%
Thus, the vector potential can be written in termgptvhich b(r') @ G(r;r') 8
is proportional to the poloidal flux functiog,, modulus &m { - ?G(r;r’) — - a/w(r’)} dl, (28)
factor, asd, = 1/p. Therefore, the poloidal magnetic field p n p "
can be written as where the contour integral includes the boundary conditions,
B, - _ajép+}3jéz _ Ux (V) = Vix V. (23) andinthe absence of them can be set to naught. .
0z p 9p Sincey = A,p, it's now clear that the Green’s function

This equation shows that defines a stream function which for Eq. (26) is given by the toroidal (azimuthal) component
describes nested surfaces around the circular current loopf the vector potentiall,, of the circular current loop. From
The orthogonal coordinate systeRiy, Vi, Vi) x V) can  EQ. (13) it can be expressed as

be defined, wher& y = (1/p)é,. In this sense, the stream )

function v plays the role of a “radial coordinate” from the (. ) _ &I\/;Tp’ (2 - k*)K(k) — 2E(k) (29)
magnetic axis, defined by the circular current loop, and the ’ 2m k '
magnetic surface.

wherea in Eq. (13) has been replaced by. This is the ex-

. pression foiG(r; r’) given by Refs. [7,8].

3. The ,Grad-S.hafranov operator and its In practice, the boundary conditions in E@8[ may be
Green’s function replaced by the contributions of external coils around the

main current density, which in the case of magnetic con-

finement is that of the plasma. The role of such external coils

would be to control the shape and position of the plasma col-

pojp€e =V XV X (Vo) = -A"YpVe, (24) umn.

Ampere’s law, Eq./Lb), can be expressed in termsoffor
the circular current density loop as
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4. The Grad-Shafranov equation As can be seen from Ed33),

While in devices like the Reversed Field Configuration and (35)
the Levitated Dipole, the poloidal magnetic field is sufficient
for confinement, in most cases, such as the Tokamak, R&vhich means that the pressure is constant on surfaces where

versed Field Pinch and Spheromak, a toroidal (azimuthallpoth the magnetic field and the current density lie. Since the

Vp-B=0=Vp-j,

magnetic field is also required. From Agme’s lawV -j = 0,

magnetic surfaces are defined by the magnetic flux stream

so it is possible to treat the current density in an analogouinction, therVp(v) = p(1)) VY andV F (1) = F'(¢) Vi),
way as the magnetic field in Sec. 2. From this fact, and thavhere the primes denote derivative with respect to the argu-

assumption of axisymmetry it follows from Arape’s law, in
analogy to Eqgs. 22), that there exists a stream functign
such that

10x _  10By

o= 00z o 0z’
10x 1 0
Jz=—7- = —=-(pBy). (30)
pOp  pop 3/)( ¢)
Additionally,
. 1 (0B, 0B.\ _ "
Jo = /TO (62 - 3p ) = —popA*Y, (31)

as shown earlier. From Eqs/3Q) it follows that B, =
toXx/p, S0 definingF(p, z) = pox(p, z) the toroidal mag-
netic field can be expressedBs, = (F/p)é,. Combining
this result with Eq. 23), it is found that the total magnetic
field for the axisymmetric case can be written as

B=B,+B,=V¢y xVp+ FVep. (32)
Thus, from Amgre’s law Eq. D), poj, = VF x Vo =
V x FV.

ment, so the pressure balance equation can finally be written
as a scalar partial differential equation known as the Grad-
Shafranov equation:

DY = —pop?p () — F(Y)F' ()

Since it is in general a nonlinear equation it is usually solved
numerically, as explained in Ref. [8], for instance. Addition-
ally, the toroidal plasma column may be surrounded by cir-
cular coils for control of its shape and position. In that case,
finding the equilibrium is posed as a free-boundary problem,
in which the poloidal flux function has a contribution by each
of the: coils given by

(36)

—10PJyp -

P;(r) = /jg,(r')G(r;r’)dS. (37)

5. Conclusions

The Grad-Shafranov equation describes the magnetohydro-
dynamic equilibrium for toroidal axisymmetric plasma con-
finement devices. Its solutions define nested magnetic sur-
faces around a magnetic axis, in terms of a poloidal flux
function+. On the other hand, this flux function is related to

The Grad-Shafranov equation is derived from the balancéne azimuthal (toroidal) component of the vector potential by,

of magnetostatic force and the plasma pressure force:

Vp=jxB=j,xB,+j, xB,. (33)
from where it is found that
1
Vp=—-——= [A*)V) — FVF] . (34)

fop

A, = 1/p. Since the solution forl,, is that of the circular
current loop, it is possible to obtain through this relationship
the Green function for the elliptic differential operator*

in terms of complete elliptic integrals, as shown in Sec. 3.
The solution fory in terms of the Green’s function, includ-
ing the line integral, which includes the boundary conditions
was shown.
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