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The Standard Model contains three coupling constantsas and as associated to the intern symmetry groups. However, even such
constants are named like that, in fact they are not, they are energy dependent functions. The functional form of the evolution satisfies a se
of coupled differential equations the couplédunctions. In general thesgfunctions are highly coupled, from this arises the necessity of

using numerical methods for the solution of the problem, because it is not possible to obtain it analytically. In this work it is used the adaptive
Runge-Kutta method for a set of ordinary differential equations. The physical motivation of this work arise from the fact that the coupling
constantsy;, ae andag are associated to the electromagnetic interaction, the weak interaction and the strong interaction, respectively. In the
Standard Model, the solutions fan, andas intersect in a point, which can be interpreted as a unification of two fundamental interactions
exists. Nevertheless, using the minimal supersymmetric extension of the Standard Model, the three coupling constants intersect in a region
reaching what is known as the Grand Unification.
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1. Introduction anti-commutative variables. This brings a new phenomenol-
ogy in collider experiments and, as it shall be studied in this
Particles and its interactions are tested mainly in high-energdocument, in the mathematical aspects of the theory. One
collider machines. The highly precise observables meaof the most impressive features is the unification of the three
sured in those machines supports strongly the so-called Stafindamental forces of the SM, the Grand Unification Theo-
dard Model (SM). The SM is a unitary gauged quantumries (GUT). A distinctive signature of the GUT, is the proton
field theory of fermions and bosons. It was build over andecay, the existence of mediating particles between the gauge
SU(3). x SU(2)r x U(1)y which is broken spontaneously groups shall bring this phenomena in nature. However, the
to anSU(3). x U(1)q theory. The unbrokeSU (3). gauge  price to pay is that supersymmetry duplicates the number of
group is the responsible of the stability of the proton throughparticles. There are several experimental constraints to su-
the prediction of confinement. On the other hand, the elecpersymmetric theories, however, there are no doubt that the
troweak theory is broken to a symmetry group where the elecdark matter problem is still present and supersymmetry shed
tric charge( is the conserved quantity in the Noether theo-light to the solution of these unsolved problems in the SM.
rem; the path to this theory ISU(2), x U(1)y — U(1)q.
The mechanism for breaking symmetries turns out to gener- In this document, we present the study of the running
ate masses for all particles in the SM. Furthermore, it givesf the three gauge coupling of the SM and its minimal su-
rise to massless and massive gauge bosons which are resppersymmetric extension, the so-called Minimal Supersym-
sible of the fundamental interactions. metric Standard Model (MSSM). The behaviour of the cou-
Symmetries and its implications in nature are then cruciapling constants over the energy scale is dictated by a set of
to understand the reactions taking place, for instance, at theoupled ordinary differential equations, the so-calbefdinc-
LHC. However, even if the SM can explain mostly all ob- tions. Therefore, the solution cannot be obtained analytically
servables, it lacks an explanation of the cosmological probthus it is necessary to solve it numerically. In particular, in
lems and it starts to manifest some tensions with other highlghis work, we solve the two-loog functions by implement-
precise observables as the anomalous magnetic moment iofg the Dormand-Prince method. This document is organized
the muon. Many ideas come to play in order to solve thoses follows: we start by presenting an overview of the funda-
problems such as the inclusion of extra particles and intermental interactions and the Standard Model; then, we ana-
actions. However, the symmetry principle of the SM is un-lyze the mathematical properties of tRefunctions at one-
touched in almost all extensions of the SM. There is one podoop accuracy and we exhibit the complexity of the two-loop
sibility which solves the dark matter problem and maintainsbeta functions; then, we present the Dormand-Prince method
the symmetry groups unharmed, supersymmetry. Besideshich belongs to a collection of methods knownaatapta-
supersymmetry is a natural extension of the SM since it onlyive Runge-Kutta methopinally, we present our results and
enlarges the commutative space-time dimensions to includeonclusions.
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2. Fundamental interactions The weak interaction is expressed between particles
with a property known alavor (also called flavor charge); it
The Philosophigenaturalis principia mathematiday Isaac  has a range less thd®—'°> m and is responsible for tHa-
Newton [1] is the first publication where a rigorous explana-vor change®f the elementary particles, it is also responsible
tion of the movement of macroscopic bodies was presentedor the decay of nuclear particles into lighter particles, and it
In this work, three laws of motion are found which are baseds crucial to understand some radioactive processes (such as
on the idea that for changing the movement state of a bodshe beta decay).
are necessarfprces acting on it; the nature of these forces  Finally, the strong interaction is experienced between
are of different kinds such as, friction, viscosity, weight, etc.particles with a property known aslour (also called colour
Hence, the study of fundamental forces has been carried isharge); it is attractive and has an approximately range of
the forthcoming years, leading to the actual knowledge ofil0—'®> m, so this interaction is not perceptible at scales larger
the four fundamental interactiongravity, electromagnetic  than the atomic nucleus;t is the responsible for the stability
strong andweak. of the atomic nucleus and, thereby, of all known matter. The

Thegravitational interaction is the most known among discovery of this interaction came out from the unexpected
the fundamental interactions. It is present between all partinature of the atomic nucleus. If the nucleus is formed by
cles with non vanishingnass it is uniquely attractive and it protons and neutrons, it was expected the repulsive of the
has an apparently infinite range, therefore, it is responsibleharged particles in the nucleus rendering the nucleus un-
of the movement and configuration of the massive objects atable. Latter, it was shown that there is a strongest force
large scale in the universeNevertheless, the theoretical de- that keeps protons together, the strong force. This reali-
scription of this interaction at the quantum level is one of thesation was understood in 1964 with the theorygontum
most technically challenging. At this level, the isolation of chromodynamic§QCD), proposed by M. Gell-Mann and G.
the gravitational force to all others demands new technologyweig [4-6].
in order to measure the interactions of the order(of*° as in
Fhe recgntdiscovery ofgravita';ional waves [2]. Hoyvever, it is3. Standard Model
imperative to understand gravity at the microscopic level be-
cause, even if its interaction strength is the lowest comparegs previously mentioned, all forces that govern the phenom-
with the other three interactions (see the Table I), according tena of the universe are the manifestation of the four funda-
General Relativity, the gravitational interaction affects massmental interactions. However, what is the mathematical de-
less particles such as the photon (the particle associated wiitription of all these interactions at the fundamental level?
light). Although, since most experiments are not sensible yefurthermore, there is still a question about the composition
to the gravitational interaction at those scales, its role caf the matter and how the fundamental building blocks inter-
be neglected in nuclear processes and high energy collisiorgt among each others. These questions are well explained in
without mayor inconveniences. the context of thé&Standard Model.

Theelectromagnetic interactionis manifested between The Standard Model (SM) is the theory that describes the
particles withelectric charge it can be attractive or repul- strong, electromagnetic and weak interactions between ele-
sive (unlike the gravitational) and it has also an apparentlynentary particles. It postulates the existence of two classes of
infinite range of action. It conducts almost all phenomena ofundamental spin-1/2 particles that conform matter: quarks
our daily life (as friction, electricity, chemical reactions and and leptons. They can constitute, in the right proportions,
optic effects). This interaction is very well known but its con- any atom and therefore any type of matter in the universe. It
cept has been changed over the years. The interpretation afso postulates the existence of another group of spin-1 ele-
the electric and magnetic phenomena independently has beeatentary particles, the gauge bosons, that act as carriers of the
proven wrong in 1865 when James C. Maxwell was able tdundamentals interactions [7]. Additionally, the SM contains
unified both phenomena. Furthermore, its quantum impli-a single spin-0 particle, theiggs bosonwhich is responsible
cations give rise to the interaction described in the contexfor endowing the particles with mass [8, 9].
of quantum electrodynami¢QED), the interaction between Bosonsowe their name to the fact that they obey the
electrons and photons. Bose-Einstein statistiéé and, as it was mentioned before,
gauge bosons are the particles which mediates the funda-
TABLE |. Relation between the strength of the four fundamen- mental interactions between particles. In nature, experiments
tal interactions.* (These calculations are made for two quarks athave measured the characteristics of four gauge bosons: pho-
3 %1077 m)[3]. tons, gluons W+ and Z°. Photonis the boson associated
to the electromagnetic interaction, thkeionis related to the

Interaction Ratio strong interaction and thé + and Z° bosonsare associated
Strong 60 to the weak interaction. As it was stressed in the previous
Electromagnetic 1 section, up-to-date there is no experimental evidence of the
Weak 1074 existence of the mediator of the gravitational interaction, the
Gravitational 1074 graviton. Experiments dedicated to search for the graviton
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formed as quark-antiquark paitsThe best known hadrons

TABLE Il. Standard Model Bosons. are protons and neutrons, because they formed the nucleus of
. the atom. The internal structure of the protofuigd), that is,
Name Symbol Mass Electric two u-quarks and one-quark and, the internal quark com-
(GeV/c?) charge ¢) position of the neutron ifidd), it means that it is formed by
Photon ol 0 0 two d-quarks and one-quark [11].
Gluon g 0 0 Although the properties of quarks are well known, free
W= boson wE 80.425 11 quar_ks have not been o!etected_ yet, that is, they are always
0 0 confined to hadrons. This explain why quarks can have frac-
Z" boson Z 91.187 0

tional electric charge and it is also the reason why the range
Higgs boson H 1255 0 of strong interactions are not beyond the atomic nucleus.
Leptons are the other group of particles that compound
are not built yet; however, the LHC is continuing on seekingmatter, the electron being the best understood. It is know that
for new particles and interactions and the quantum particle ofeptons are particles susceptible to weak and electromagnetic
gravity is one of most wanted. Recent LHC searches standgteraction, however, it has not been able to determined that
that the graviton must have a mass lower thai0~>* eV/c>  they are capable or not to interact with the strong interaction.
[10]. Another leptons that have been deeply investigated are neu-
Regarding the SM, it contains the three stronger interactrinos because they have a very small mass (in the beginning
tions of all, neglecting the gravitational interaction in all cal- jt was thought that they were massless) and almost they do
culations. All known gauge bosons are presented in Table llnot interact with matter. These particles can reveal the com-
The spin-1/2 particles are the main constituents of matteplete image of universe from the moment it was formed (the
They are considered as structureless particles and they obgyg Bang), since theseemnants neutrinoare still found in
the Fermi-Dirac statistics, for this reason, they are called the farthest regions of the horizon of space.
fermions. This feature allows for layered arrangements of  As it was shown in the Table Il and Table Ill, the mass of
atoms and favouring more complex structures, from atoms tgne particles is expressed in units of energy avefc is the
galaxies. Besides, fermions can be classifieduarks and  speed of light in vacuum). We can use these units by virtue
leptons of the equation that Einstein derived in the Special Relativity
There are six known leptons: electrar), muon (=),  theory,E = mc? ** [12]. This equation gives a relation be-
tau (~), electron neutrinoz(.), muon neutrinox,,) and tau  tween the rest mass and energy of a body, rearranging in such
neutrino ¢-); and six quarks: upd), down (), charm ¢),  a way thatn = E/c2. Electron-volts (eV) units are used in-
strange £), bottom ) and top (), see Table IIl. Unlike lep-  stead of Joules because the eV definition is more suited to
tons, quarks have a property called colour and each one caflementary particles scale than the Joules definition. 1 eV
present three colours: red, green and blue. is the energy acquired by an electron moving between two
Due to the strong interaction, quarks create larger strucpoints that are at an electrical-potential of 1 V; on the other
tures known asiadrons. baryonswhen they are formed by hand, 1 J is the work done by a constant force of 1 N moving
three quarks or three antiquarks, wresonswhenthey are  a body a distance of 1 m. The relation between both units is
1eV=1.602x 10~17 J.

TABLE Ill. Standard Model Fermions. ) )
4. Coupling constants, beta functions and

Family Symbol Mass Electric .
5 gauge couplings
(MeV/c?) charge ¢)
e~ 0.511 -1 So far, we have stated that the fundamental interactions have
Ve <3x107°¢ 0 different intensities, so itis useful to use parameters that show
e 105.658 1 a value that allow us to know and compare the magnitudes of
Leptons each interaction. Here is where the SM makes use afdbe
Yy <0.19 0 .
- pling constants
T 1.776.99 -1 The coupling constantsof the fundamental interactions
vr <182 0 are dimensionless constants that tell us the strength of each
u 1.5 +2/3 interaction. The approximate values of each coupling con-
d 4.0 ~1/3 stant are shown in Table IV. It should be clarified that, for
the purposes of this work, the notatiof, as andag will be
c 1.275 +2/3 . .
Quarks used for the coupling constants of the electromagnetic, weak
5 95 —1/3 and strong interaction, respectively. Among these coupling
t 173.210 +2/3 constants, the best knownds, which is calledine structure
b 4.180 -1/3 constantand itis assigned the symbel This constant is

Rev. Mex. Fis. E20010201



4 E. TIRADO-FELIX AND R. J. HERNANDEZ-PINTO

It is worth appreciating that Eq1) has the most general
TABLE IV. Aproximate values of the coupling constants of the fun- two-loop contribution to the? function. It can be used to de-
damental interactions (atGeV). scribe the SM running of the gauge couplings, or the running
of gauge coupling in different models, as it shall be used in

Interaction Symbol Value the minimal supersymmetric extension of the SM.
Strong as 1 In the SM, theh; coefficients are given by,
Electromagnetic a1 1/1367 , 4 1 22 4 1
_ = _——n, - — =— —-Ng— =
Weak o) 10 1 3Tlg 10° 2 3 3" T 5
Gravitational Qg 107% 4
by =11 = ony, 2

related to the electromagnetic interaction that appears in var- ] ) -
ious physical processes and it was introduced in 1916 by¥heren, is the number of generations or families. Ex-
Arnold Sommerfeld while he was working in the atomic Perimental results indicate that the most consistent value is

model of Bohr. In his work, Sommerfeld usedto quan- "¢ = 3 In addition,by, coefficients are given by the entries
tify the gap in the fine structure of the spectral lines of the®f the matrix,

hydrogen atom [13]. 0 0 0 19 1 11
As specified in Table 1V, the values of a given coupling 1530

constant is set at the energy bfGeV. Why it is specified )= 0 % 0 —n, % % %

this value if they are calledonstant® This value is set be-

cause these couplirgpnstantsare not really constant in en- 0 0 102 4 4 716

ergy. The coupling constants are dependent functions on the 1o 3

energy scale at which one is performing a calculation, thus % 1‘% 0

at a bigger energy scale the given values are not the same.

To be able to know the behaviour of the coupling constants, - % %‘5 0. (3)

they are used a set of differential equations known assthe

functions 0 0 O

The 3 functions are differential functions that describe
the evolution of some parametgr known asgauge cou-
pling, according to the energy scale Gauge couplings are

On the other hand, these gauge couplings are closely re-
lated to the coupling constants, which satisfy the following

related to the SM gauge grougd/ (3). x SU(2), x U(1)y, equation,
namely,gs, g» andg;. The importance of these parameters g2 .
is that they are used to series expand expression in pertuba- = for i=1,2,3. (4)

tive calculations’? In this aim, the expressions obtained for . , )

3 functions are known as a series expansion in those paranjérefore, once the evolution of the gauge couplings with re-
eters. As mentioned before, the gravitational interaction iSPECt t0 €nergy is obtained, we will be able to know how the
not considered in the Standard Model, therefore we will on|yC°“P"”_9 constan'Fs evolve W't_h energy.

have functions for the others three interactions. At first order in perturbation theory, the so-callede-

At second order in perturbation theory, so callee- loop calculation,3 functions only take into consideration the
loops®i gauge couplinggs, g» andgs evolvé according to term proportional td;. This simplification makes the calcu-
differential equations of the, form lation more simple than solving it analytically. In this sce-

' nario, the set of differential equations is given by,
3 P
dgy 9 9r9; dgn g
e =-b - b 1 hac- LA L =
g = e = b Zl gy @ - Uz o =123 0)

where the coefficients; are the same as those in EqR). (

wheret = log(Q/Qo) andl = 1, 2, 3. TheQo term iS g get has the functions decoupled, however, its solution
an arbitrary energy scale that is chosen to fix the experimensy 5| pe |ess accurate than the two-loop calculation. Never-

tal measurements. For the purpose of this work it iS Usegheess it is important to highlight its analytic behaviour. At

Qo = 1 GeV. Itis also important to mention thatin EA)( 4 arpitrary energy scate — M and with initial conditions

is omitted a last term that represents Yukawa couplings cong—l(M), for 1 — 1,2, 3, the solution of Eq%) is found to be,

tributions [14]. This approximation can be used at this step

because its contribution is very small with respect to the con- B 1

tributions presented in Ecd). Furthermore, if Yukawa terms 9(Q) = 9 b 0 ’

are added, one needs to add the evolution of them according \/[QI(M)] + (552) In (H)

to the so-called anomalous dimensions at two-loops, which is

out of the reach of this work. [=1,2,3. (6)
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In this way, the coupling constants are: there is one known aslinimal Supersymmetric Standard

Model (MSSM), which owes its name to the fact that it con-
a(Q) = 1 , tains the smallest number of new particle states and new inter-

4m ([gl(M)]’2 + (&) In (%)) actions consistent with phenomenology. Within the MSSM,
the Grand Unification is possible at energy scales of the order

1=1,2,3. (7)  of 10'6 GeV. The estimated scale is given by the evolution of

the ¢ functions.
5. Unification of fundamental interactions The functional form of the associatgdl functions ex-

pressed in Eq/l) and Eq. 6) are the same for the MSSM,
Throughout history, we have learned that the study of differwith the only modification of the coefficients and b, of
ent phenomena converged to the analysis of the four fundéd=d. (2) and Eq. B). In general, the coefficients at one-loop
mental interactions. It seems that, under a particular point ofan be obtained by investigating the mathematical structure
view, all kind of forces can be understood as a manifestatio®f the gauge groups. Considering asiy/ (V) gauged QFT
of one of these forces. This line of thinking gives rise to theor SUSY QFT, thé; coefficients are given by [14],
unificationconcept. The best example of unification was the 1 4 1
one happened between the electric and magnetic phenomena. by = — C2(G) — - K S2(F) — =nS2(5), (8)
The unification of these two aspects into a single concept is 3 3 6
rigorously explained in Maxwell's equations. Therefore, it where C5(G) is the quadric Casimir invariant acting over
is natural to pursue the answer of the question: are the foujauge fieldsS,(F) and Sy (S) are the Dynkin indices over
fundamental interactions really different or are they simply afermion and scalar field representations respectively=
consequence of an unknown interaction? {3,1} for Dirac and Weyl fermions ang = 1,2 for real

The seek to the answer to this question take us back tand complex scalar fields respectively. In the MSSM, the nu-

the period of 1960-1970, 100 years after the unification ofmerical values of these coefficients are [20]:
electromagnetism. The weak theory was observed primarily
by experiments and the main theoretical contributions were by = _g’ by = —1, by = 3, (9)
made by Steven Weinberg [15], Abdus Salam [16] and Shel- 5
don Glashow [17], all of them working independently. The and, the two-loop contributions are given by,
agreement between theory and the experimental data needed,

from the theory side, the inclusion of the electromagnetic in- oz s
teraction meaning that, this interaction necessarily must be (b) = — 9 95 94 |. (10)
unified with the weak interaction in a single interaction, so 151 o 1

o

calledelectroweak interactian

The path to unification implies that if weak and electro-
magnetic interactions are of the same order, then the masg
of the Z° boson is negligible and isn equal footingvith the

It is possible to appreciate that the differential equations
ociated to thg functions are functionally the same, but
) _ with different coefficients, so it is of interest for this work to
photon [18]. Although, the problem is that it is known that thefinol away to solve them numerically, and to show the Grand

mass of thez” boson is not insignificant and, in fact, itis the_ Unification is present in supersymmetric theories such as the

e .t oy s 1L o st o 85N n e et secton,we presnt he methd used
' 9y his work to solve the coupled differential equations for a

have the same intensity. The explanation to these facts can :

be found in the unification of the electroweak theory througﬁ}arge range of energy scales, the Dormand-Prince method.

the SU(2) x U(1)y gauge groups. Once the electromagnetic

and weak interactions were unified, the next step on the lis. The Dormand-Prince method

would be try to unify the other interaction that is within the

SM: the strong interaction. This theoretical unification of theFor the solution of the set of differential equations given

three interactions is known as t&rand Unification. Un- by EQq. @), for the SM (coefficientes of Egs. 2 (2.2),

fortunately, in the context of the SM this unification does not(2-3) and [8)) and the MSSM (coefficients of Egs9)(and

occur, but it is still possible to achieve within the framework (10)), we performed th&©ormand-Prince method which is

of supersymmetry part of a collection of methods to solve ordinary differential
Supersymmetry is a theory’ unverified experimenta”y, equations with initial conditions, known aﬂaptive Runge-

that describes a Symmetry between bosons and fermiong_utta methods. In the fOIIOWing, we recall the ideas behind

Both quantum states are related through a supersymmeiie method.

ric transformation, which changes a bosonic state into a Let us start with an ordinary differential equation with

fermionic state and vice versa. Besides, each particle iitial condition,

associated to a supersymmetric partner that differs in spin ,

by a half-integer [19]. Within the supersymmetric theories, y = fty), y(to) = yo- (11)
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The expression of the explicit Runge-Kutta method of or-estimate the truncation error used in both formulas and there-

derp comprise a weighted average of values ¢f, y) taken
at different points in the interval, < t < t,41, given a
numbers of stages, is expressed by,

y(t+h) =yt (12)

fore, to make the appropriate adjustment:.ofThe calibra-
tion of the step size is extremely important because it could
find solutions in faster computation time and, therefore, there
is no delay in finding the appropriate step size.

The Dormand-Prince method uses Runge-Kutta methods
of order 4 and 5 with a total of 7 stages, so the set of equations

)+ Zdzkl,
is,

where the valué’™ represents the spacing over the values of

t; and, ya(t+h) = +Zd4zkz7
ki =nhf(t,y), (13)
i y5(t+h) )+ Z ds kg, (20)
k‘lzhf t—|—cih,y+h2ai,jkj y
J=1 with
1=2,3,...,8. (14) k; = hf(t,y),
The coefficientsa; ;, d; and¢; vary according to the 7
method used, but in order for the method to be consistent ki=nf|t+chy+ hZai,jkj ,
it must satisfy that j=1
i=23,..,7. (21)

(15)

=1

In addition, to obtain a Runge-Kutta method of order

The coefficients of the method are given in Table V and
the matrixa is,

(hence, to obtain an overall truncation error@fh?)), the 0 0 0 0 0 0
relation, )
s 0 0 0 0 0
1—1 5
;am =C; for 1=2,3,...,s, (16) % % 0 0 0 0
must be fulfilled [21]. =% -1 F 0 0 0
This method is also useful for a systemraffirst order 10372 25360 oasas 212
ordinary differential equations, 6561 2187 6561 729 0 0
y; = f’L (ta Y1,Y2, -+ ym)a yv(tO) = Yoi, (17) % _% 456274372 14% - 158160536 0
fori =1,2,...,m. Hence, itis simpler to write the formalism 35 0 500 125 2187 11
in vector form. Defining o8 s de2 o oTsE s (22)
Y=z, ¥m)s £=1,%2Ym), ki =hf, Thus, we have that the formula of order 4 is used to im-
plicitly estimate the truncation error, so that the truncation
‘ error is given by:
kl:hf t+cih,y+h;ai,jkj 5 .
” E(h) =ys(t+h) —yat+h) = (ds — da)ki. (23)
1=2,3,...,58, (18) =1
heref Note that this error is a vector where each comporignt
theretore, corresponds to the truncation error of thevariables, so we
have to choose a way to measure a value of the e(roy.
y(t+h) )+ Zdzkz (19)  The choice employed is to useean squared erroto con-

sider all the variables. Thus, in this work, we decide to use

Adaptive Runge-Kutta methods estimate the truncatior{® Step size
error in each step of the solution and automatically adjust the
step size to keep the error within the limits specified by the
user. These techniques use two explicit Runge-Kutta meth-
ods: one of ordep and another of ordep + 1, in order to

(24)
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i) In adition, in order to avoid a very large step, it is im-

TABLE V. Coefficients of the Dormand-Prince method. plemented the restriction,
l d4l dsl Cy h2
, 5179 35 - 0.1< T < 10. (30)
57600 384 1
1
2 0 0 5 iii) One of the advantages of the Dormand-Prince method
3 7571 500 3 . i . .
16695 1113 10 is that it is only necessary to compute diredtlyonce, since
4 398 1z 2 it is satisfied that: if thes—th computation of the step is ac-
5 - 39329029070 - % % cepted,
6 3100 5 1 Bt
7 ﬁ 0 1 (kl)n+1 = Zn (k7)n ; (31)

Error control is obtained by adjusting the increment.of and if then—th computation is not accepted,

such that the errar(h) is approximately equal to a preset tol- i1
erancee. Since the method of order 4 has a local truncation (k1)nt1 = T(kl)”' (32)
error of &(h5), we have that, "
5 iv) Finally, since this method chooses the step size it con-
e(hi) (M siders optimal, the energies where the value of the coupling
~[— (25) i . .
e(hs) ha constants are calculated will most likely to be different for
In this way, once the stef;, and the erroe(h,) are ob- dlffergnt models; for mstangg, for the SM gnd the M.SSM'
. . i i . This is why we use the functionterpldof the interpolation
tained, the step, obtained with a specific toleraneés: 2 ) o
modulescipy.interpolatef the librarySciPy in order to per-
¢ 3 form the calculations of the coupling constants at common
e(hl)} (26)  energies between models.

If € > e(hy), the truncation error is good enough so the7
calculation is accepted and the stiepis taken for the next
point (here is where the step increases). On the other hand,{f,e numerical solutions of thg functions of SM at one
e < e(hy), the error is out of the accepted range, so this SteREq. [5)) and two loops (Eq/X)) using the Dormand-Prince
is repeated witthy, which leads to a reduction of the step in method are plotted in Fig. 1. Since coupling constants have
order to obtain a better result [22]. values between 0 and 1, it is common to present, for a bet-

In this work, we have that the initial conditions of the ey visualization of the solutions, the inverse of each coupling
gauge couplings are given at the energy of the top quark masggnstant
-t

my = 173.37 GeV [23],

g1(my) = <\/§> (0.3594), ]

g2(my) = 0.64654, gs3(my) = 1.16666.  (27)

h2%h1{

Results

Hence, with this initial conditions, the solutions of EE) ( 40 1
take the valued/ = m, andg;(m;). In the case of Eq/1) ﬁ
we have a system of three coupled differential equations,

arly
30 A

aly

9/1 :fl (Q3913927g3)7 gé :f2 (QvglagQagZﬁ)a == azly
20 1 — a1

95 = f3(Q: 91,92, 93) , (28) iy

2-2L

and where the tolerance has a value ef 1019, Finally, it 101 — agly

is important to make three clarifications about the code used : - : ! ; - : ;

107 10° 107 10% 11! 108 10 10V

for the Dormand-Prince method,

i) The relation found between the stépsandh, is based
on an approximation, therefore, it is good to have a smal¢
safety margin, so the relation used is,

Q (GeV)

IGURE 1. Evolution of the coupling constants in SM at two loops.
he values ofv;! (blue),a; ' (orange) andv; ' (green) are those
corresponding to the electromagnetic, weak and strong interaction,
L respectively. The continuous lines are those corresponding to the
) (29) two loops solutiona;_lQL, and the dashed ones to one loop solu-

€
ha =09 (8 tions,a; !
QG-

e(h1)
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From these results we have that the coupling constant 9]
of the electromagnetic interaction increases and the coupling
constants of the weak and strong interaction decrease as W sg |
increase the energy scale. Therefore, the intensity of these in
teractions is affected differently as the energy varies. More-
over, it is obtained that the coupling constants reach in pairs
the same values at some energy scales, which leads us to cor 7,
jecture that at such energy scale, where the intersection take 301
place, a unification of the corresponding fundamental inter-
actions could occur. 201

Focusing on the solutions, it can be noticed an apparent
discrepancy of these with respect to the values presented ir
Table 1V, since at a low energy scales they do not seem to
coincide; although this is due to the fact that the differential 100 10° 107 10° 1M 108 10% 1007
equations solved in this work, th&functions, are a smaller Q(GeV)

S_et of differential gquations from the so calleénormaliza- FIGURE 3. Evolution of the coupling constants in MSSM at two
tion Group Equations This does not detract from the va- |oops. The values af; ! (blue),a; ! (orange) and:; * (green) are
lidity of the result, since the initial conditions are obtained those corresponding to the electromagnetic, weak and strong inter-
experimentally and the evolution of the coupling constants isaction, respectively. The continuous lines are those corresponding
dictated by the differential equations employed in this work.to the two loops solutiony; ', , , and the dashed ones to one loop
Furthermore, it is important to highlight that the solution of solutionsa; ", ; .

the 3 functions can give a glimpse of the unification patern

of the fundamental forces. of 0 to 1 %. We remark the largest deviation are in the

We present in Fig. 1, the solution of thiefunctions at ~ strong coupling constant, it means that the in full calculation
one- and two-loops;_1 and «;_o;, respectively, where large errors can be expected from this interaction at energies
i = 1,2,3 for the different gauge groups of the SM. It is around10? GeV. Let us remark that even if the differences
important to point out that both solutions present the saméould be small, they are not negligible at large energies, since
behaviour with small differences. To quantify this difference small contributions could represent a considerable change in

between solutions we obtain amror calculated according to  the value of thetotal cross sectioh, o, which theoretically
equation, can be represented as a series expansion on the parameters

«;. Itis well known that in QCD, large contributions could
. emerge when the perturbative expansion of the theory is con-
; i=1,2,3. (33) ) ) ; : .
sidered. In particular, following the perturbation theory in
QCD, the total cross section takes the form,

Q21 — OG—1L

AOéi =

Q2L

In Fig. 2, we compute the variations of the two-loop com-
putation with respect to the one-loop scenario. We observe oo
that the differences are very small, and they are in the range 0 =00+aso; +aioy+ = Z ago,, (34)

n=0

where theos,, terms are the calculations of the cross section
at a fixed order ands = «3. Therefore, it means that small
changes in the coupling constants can be compensated as the
number of loops are increased in the cross section at higher
orders.

We turn our attention to the MSSM scenario. The solu-
tion of the 3 functions of MSSM at one- and two-loops are
plotted in Fig. 3. In this case we have that the intensity of
the electromagnetic and strong interaction follow the same
behaviour as in the SM scheme as the energy scale increases;

0.010 +

0.008 4

0.006

iteq

0.004 4

0.002 4
—_— Al

Aay they only change the slope of the straight lines. A different
0.000 i behaviour is observed in the corresponding coupling to the
6% WS dn? is?  doll 46 ig  aad SU(2) gauge group increases as the energy scale increases.
0 (GeV) It can be also realized that, thanks to the supersymmetric ex-

FIGURE 2. Comparison between coupling constants of SM at one tension of the SM, the interactions show a unification at an

and two loops. The values @ (blue), Aas (orange) andva;  €Nergy scale of about0'® GeV. In fact, it is important to
(green) are those corresponding to the electromagnetic, weak antiotice that this unification is not exactly at one point but the
strong interaction, respectively. three coupling constants are contained in a compact enough
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25.0

0.040
24.5 0:035-7

0.030 A

24.0 1 0.025 4

0.020 4

Da;

0.015 4

0.010 -
23.09

0.005 A

0.000 A

1016 2%10%  3x10% 4x10%  6x10%6 1017

T T T T T T T T
0 (GeV) 10° 10° 107 107 101t 108 10¥  10Y

Q (GeV)

FIGURE 4. Running of3 functions at two-loops near the unifica- FIGURE 5. Comparison between coupling constants of MSSM at
tion point. one and two loops. The values &f; (blue), Aas (orange) and
Aas (green) are those corresponding to the electromagnetic, weak

region to be considered valid. This fact can be noticed inanOI strong interaction, respectively.

Fig. 4, where we have taken experimental errord/at into
consideration. This allow us, in the case of the existence o,/ — %
of supersymmetric theories, to understand the path to Granc
Unification and, therefore, to understand that the electromag-
netic, weak and strong interactions could be a manifestation
of a single fundamental interaction.

0.8

0.6
Despite the theoretical achievement of the Grand Unifica- s

tion, it is important to mention that, at the date of publication
of this work, experimental evidence of supersymmetry has
not been found. Regardless of the absence of experimenta
evidence, the Large Hadron Collider (LHC) is continuously 927
seeking to solve the puzzles of nature, such as dark matte|

or the dynamical generation of electroweak symmetry break- 0.0
ing, among other, and the existence of MSSM could explain 5. 98¢ dgh  Gor  Goh. G0 dpE iz
some of these issues in the SM. Then, unceasing efforts fromn 0 (GeV)

the experimental and theoretical analysis maintain SUpersymg: gygre 6. Comparison between coupling constants of the SM and
metry on the market to be proven in future colliders at highenssm at two loops. The values 6§ (blue), 5> (orange) ands
energies. (green) are those corresponding to the electromagnetic, weak and

Similarly to the SM, the MSSM values for the coupling Strong interaction, respectively.
constants differ slightly between the values at one- and two- . .
loops. From this deviation it was calculated an error assoc o to the coupling constant; at two loops, taklpg the SM
ciated to each constant given by E§3(and the results of values as a reference. Thus, these errors are given by,
this error are shown in Fig. 5. In this case, the errors be- 5 = |Yi=SM T Qi-MSSM i—1.2.3 (35)
tween coupling constants at one- and two-loops are in the * s ’ B
range of 0 to 4 %. They represent still very small deviationspeyiations of the MSSM and SM functions are plotted in
but not negligible. These errors follow a similar behaviour to,:ig_ 6. From this figure we found that the deviations between
the SM solutions, in particular, regarding to the fact that they,ggels are in the range of 0 to 100 %. As it is expected from
interaction that expresses large contributions at two-loops iﬁigs. 1 and 3, thew, presents the largest numerical differ-
the strong interaction, while the electromagnetic interactionsnce due to the fact that the slope changes from positive to

is the least affected. negative; this behavior is not presentdn andas. Note-
Finally, it can be seen in Figs. 1 and 3 that while in theworthy, «3 is not the most different among the three cou-
SM the fundamental interactions appear to have unificationpling constant, however, the behaviour of it at large energies
only by pairs and at different energy scales, in the MSSM iss very distinct from the SM behavior, of the order of 10%
presented the unification of all of them at a similar energyat 16 GeV and 40% at arount® GeV. These differences
scale. In order to appreciate how large the coupling constantsetween models are indeed quite large although they describe
differ from one to another model, we calculate the relativethe same behaviour as the comparison of Figs. 2 and 5, which

0.4 4
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10 E. TIRADO-FELIX AND R. J. HERNANDEZ-PINTO

can be interpreted as the QCD theory is the most sensible to The numerical calculations allow us to test the results
bring light to supersymmetry at the LHC energies or in thesuch as the Grand Unification scenario and the discrepan-
FCC [24-2T7]. cies among both models. In particular, we find that in the
SM, the maximum deviations for the coupling constants are
about0.7% for a1, 0.625% for aey and1.25% for a3 between
one and two loop calculation. On the other hand, the MSSM
Numerical methods are a fundamental piece in scientifi®l@s maximum deviations between one and two loop of the
progress, thanks to them we can solve problems that can netder of1% for ay, 3.25% for .y and3.95% for ;. In addi-
be solvable analytically but we can find an approximate solution, the numerical solution of the couplgefunctions shows
tion. In this work, we have used numerical methods to analthat a Grand Unification scenario can be reached only in the
yse the coupled functions at two-loops for the SM and the MSSM framework.
MSSM. Analitically, we have computed the solution of the  Therefore, with the realization of this work we have
one-loops functions since in this scenario the solution canshown that supersymmetry can be one way towards the Grand
be solved exactly. However, at two-loops the set of differ-Unification of the three fundamental interactions that are part
ential equations corresponds to a set of coupled differentiadf the SM. The Grand Unification theories allow us to em-
equations whose terms are not linear. In this work, we havéed these three interactions and to understand them as a more
implemented the Dormand-Prince method since the range ifundamental interaction, opening the paradigm offtheory
which we want to solve the problem is very large, makingof Everything in which the gravitational interaction would
it practically impossible to solve it with an explicit Runge- also be unified. Lastly, althought the SM has be proven with
Kutta method causing, for instance, that the problem wouldhe largest precision, it has unanswered questions that keep
require a lot of computation time and would consume considsupersymmetry as a candidate to solve experimental and the-
erably RAM memory. oretical problems of the SM.

The numerical calculations of the solutions of th&inc- The code used in this work can be found in the following
tions with loop corrections bring us closer, by means of thdink:
perturbation theory, to the real solution of the coupling conhttps://github.com/EduardoTF/Solution-Of
stants and therefore, to an accurate prediction of the cro$€oupled-beta-Functions-in-Python
section. In addition, since future colliders are planned to
reach the precision frontier, it is imperative to known nu-
merical methods to compute our theoretical predictions. IPAcknowledgments
addition, thes functions solved in this work represent a set
of differential equations that must be solved in order to havel'his research was supported in part by COST Action
a better understanding of physics at scales that we have n6¥A16201 (PARTICLEFACE), MCIN/AEI/10.13039/5011000
reached yet. The renormalization group equations at twol1033 Grant No. PID2020-114473GB-100, PROFAPI 2022
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8. Conclusions

i. The study of the movement of the astronomical bodies wasvi. This equation is a particular case of the equafiin= (pc)? +
done many years ago by scientific figures as Kepler, Coperni-  (mc?)?, applied to particles at rest.

cus, Galileo and Newton. vii. Perturbation theory is a collection of approximate schemes to

7i. As a reference, the atomic nucleus has a size of the order of describe complex quantum systems in terms of simpler ones.

—14
107 m. viii. The perturbation theory is based in the use of a power series

.

Statistics applied to big groups of elementary particles, which
are capable to coexist in the same quantum state with the same
gquantum numbers.

They respect the Pauli exclusion principle, which implies thatiz.
two fermions cannot be in the same quantum state at the same,
time. ’

The antiparticle is a particle with the same mass as its corre-

1.
sponding particle but having the opposite charge.

solution and the contributions of this series are given by the
number of loops. At greater number of loops the series approx-
imate more to the real solution.

h is also often calledize stepr simplystep

. The cross section is a measure of the probability that a specific

process takes place at high energetic collisions.

. Newton, Philosophieenaturalis principia mathematica
(Streater, J., & Royal Society, Great Britain, 1687)
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