
Education in Physics Revista Mexicana de Fı́sica E20010201 1–11 JANUARY–JUNE 2023

Solution of the coupledβ functions of the Standard
Model and its minimal supersymmetric extension

E. Tirado-F́elix and R. J. Herńandez-Pinto
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The Standard Model contains three coupling constantsα1, α2 and α3 associated to the intern symmetry groups. However, even such
constants are named like that, in fact they are not, they are energy dependent functions. The functional form of the evolution satisfies a set
of coupled differential equations the coupledβ functions. In general theseβ functions are highly coupled, from this arises the necessity of
using numerical methods for the solution of the problem, because it is not possible to obtain it analytically. In this work it is used the adaptive
Runge-Kutta method for a set of ordinary differential equations. The physical motivation of this work arise from the fact that the coupling
constantsα1, α2 andα3 are associated to the electromagnetic interaction, the weak interaction and the strong interaction, respectively. In the
Standard Model, the solutions forα1 andα2 intersect in a point, which can be interpreted as a unification of two fundamental interactions
exists. Nevertheless, using the minimal supersymmetric extension of the Standard Model, the three coupling constants intersect in a region,
reaching what is known as the Grand Unification.
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1. Introduction

Particles and its interactions are tested mainly in high-energy
collider machines. The highly precise observables mea-
sured in those machines supports strongly the so-called Stan-
dard Model (SM). The SM is a unitary gauged quantum
field theory of fermions and bosons. It was build over an
SU(3)c × SU(2)L × U(1)Y which is broken spontaneously
to anSU(3)c × U(1)Q theory. The unbrokenSU(3)c gauge
group is the responsible of the stability of the proton through
the prediction of confinement. On the other hand, the elec-
troweak theory is broken to a symmetry group where the elec-
tric chargeQ is the conserved quantity in the Noether theo-
rem; the path to this theory isSU(2)L × U(1)Y → U(1)Q.
The mechanism for breaking symmetries turns out to gener-
ate masses for all particles in the SM. Furthermore, it gives
rise to massless and massive gauge bosons which are respon-
sible of the fundamental interactions.

Symmetries and its implications in nature are then crucial
to understand the reactions taking place, for instance, at the
LHC. However, even if the SM can explain mostly all ob-
servables, it lacks an explanation of the cosmological prob-
lems and it starts to manifest some tensions with other highly
precise observables as the anomalous magnetic moment of
the muon. Many ideas come to play in order to solve those
problems such as the inclusion of extra particles and inter-
actions. However, the symmetry principle of the SM is un-
touched in almost all extensions of the SM. There is one pos-
sibility which solves the dark matter problem and maintains
the symmetry groups unharmed, supersymmetry. Besides,
supersymmetry is a natural extension of the SM since it only
enlarges the commutative space-time dimensions to include

anti-commutative variables. This brings a new phenomenol-
ogy in collider experiments and, as it shall be studied in this
document, in the mathematical aspects of the theory. One
of the most impressive features is the unification of the three
fundamental forces of the SM, the Grand Unification Theo-
ries (GUT). A distinctive signature of the GUT, is the proton
decay, the existence of mediating particles between the gauge
groups shall bring this phenomena in nature. However, the
price to pay is that supersymmetry duplicates the number of
particles. There are several experimental constraints to su-
persymmetric theories, however, there are no doubt that the
dark matter problem is still present and supersymmetry shed
light to the solution of these unsolved problems in the SM.

In this document, we present the study of the running
of the three gauge coupling of the SM and its minimal su-
persymmetric extension, the so-called Minimal Supersym-
metric Standard Model (MSSM). The behaviour of the cou-
pling constants over the energy scale is dictated by a set of
coupled ordinary differential equations, the so-calledβ func-
tions. Therefore, the solution cannot be obtained analytically
thus it is necessary to solve it numerically. In particular, in
this work, we solve the two-loopβ functions by implement-
ing the Dormand-Prince method. This document is organized
as follows: we start by presenting an overview of the funda-
mental interactions and the Standard Model; then, we ana-
lyze the mathematical properties of theβ functions at one-
loop accuracy and we exhibit the complexity of the two-loop
beta functions; then, we present the Dormand-Prince method
which belongs to a collection of methods known asadapta-
tive Runge-Kutta methods; finally, we present our results and
conclusions.
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2. Fundamental interactions

The Philosophiænaturalis principia mathematicaby Isaac
Newton [1] is the first publication where a rigorous explana-
tion of the movement of macroscopic bodies was presented.
In this work, three laws of motion are found which are based
on the idea that for changing the movement state of a body
are necessaryforces acting on it; the nature of these forces
are of different kinds such as, friction, viscosity, weight, etc.
Hence, the study of fundamental forces has been carried in
the forthcoming years, leading to the actual knowledge of
the four fundamental interactions:gravity , electromagnetic,
strong andweak.

Thegravitational interaction is the most known among
the fundamental interactions. It is present between all parti-
cles with non vanishingmass, it is uniquely attractive and it
has an apparently infinite range, therefore, it is responsible
of the movement and configuration of the massive objects at
large scale in the universe.i Nevertheless, the theoretical de-
scription of this interaction at the quantum level is one of the
most technically challenging. At this level, the isolation of
the gravitational force to all others demands new technology
in order to measure the interactions of the order of10−30 as in
the recent discovery of gravitational waves [2]. However, it is
imperative to understand gravity at the microscopic level be-
cause, even if its interaction strength is the lowest compared
with the other three interactions (see the Table I), according to
General Relativity, the gravitational interaction affects mass-
less particles such as the photon (the particle associated with
light). Although, since most experiments are not sensible yet
to the gravitational interaction at those scales, its role can
be neglected in nuclear processes and high energy collisions
without mayor inconveniences.

Theelectromagnetic interactionis manifested between
particles withelectric charge, it can be attractive or repul-
sive (unlike the gravitational) and it has also an apparently
infinite range of action. It conducts almost all phenomena of
our daily life (as friction, electricity, chemical reactions and
optic effects). This interaction is very well known but its con-
cept has been changed over the years. The interpretation of
the electric and magnetic phenomena independently has been
proven wrong in 1865 when James C. Maxwell was able to
unified both phenomena. Furthermore, its quantum impli-
cations give rise to the interaction described in the context
of quantum electrodynamics(QED), the interaction between
electrons and photons.

TABLE I. Relation between the strength of the four fundamen-
tal interactions.* (These calculations are made for two quarks at
3× 10−17 m) [3].

Interaction Ratio

Strong 60

Electromagnetic 1

Weak 10−4

Gravitational 10−41

The weak interaction is expressed between particles
with a property known asflavor (also called flavor charge); it
has a range less than10−15 m and is responsible for thefla-
vor changesof the elementary particles, it is also responsible
for the decay of nuclear particles into lighter particles, and it
is crucial to understand some radioactive processes (such as
the beta decay).

Finally, thestrong interaction is experienced between
particles with a property known ascolour (also called colour
charge); it is attractive and has an approximately range of
10−15 m, so this interaction is not perceptible at scales larger
than the atomic nucleus;ii it is the responsible for the stability
of the atomic nucleus and, thereby, of all known matter. The
discovery of this interaction came out from the unexpected
nature of the atomic nucleus. If the nucleus is formed by
protons and neutrons, it was expected the repulsive of the
charged particles in the nucleus rendering the nucleus un-
stable. Latter, it was shown that there is a strongest force
that keeps protons together, the strong force. This reali-
sation was understood in 1964 with the theory ofquantum
chromodynamics(QCD), proposed by M. Gell-Mann and G.
Zweig [4-6].

3. Standard Model

As previously mentioned, all forces that govern the phenom-
ena of the universe are the manifestation of the four funda-
mental interactions. However, what is the mathematical de-
scription of all these interactions at the fundamental level?
Furthermore, there is still a question about the composition
of the matter and how the fundamental building blocks inter-
act among each others. These questions are well explained in
the context of theStandard Model.

The Standard Model (SM) is the theory that describes the
strong, electromagnetic and weak interactions between ele-
mentary particles. It postulates the existence of two classes of
fundamental spin-1/2 particles that conform matter: quarks
and leptons. They can constitute, in the right proportions,
any atom and therefore any type of matter in the universe. It
also postulates the existence of another group of spin-1 ele-
mentary particles, the gauge bosons, that act as carriers of the
fundamentals interactions [7]. Additionally, the SM contains
a single spin-0 particle, theHiggs boson, which is responsible
for endowing the particles with mass [8,9].

Bosonsowe their name to the fact that they obey the
Bose-Einstein statisticsiii and, as it was mentioned before,
gauge bosons are the particles which mediates the funda-
mental interactions between particles. In nature, experiments
have measured the characteristics of four gauge bosons: pho-
tons, gluons,W± andZ0. Photon is the boson associated
to the electromagnetic interaction, thegluon is related to the
strong interaction and theW± andZ0 bosonsare associated
to the weak interaction. As it was stressed in the previous
section, up-to-date there is no experimental evidence of the
existence of the mediator of the gravitational interaction, the
graviton. Experiments dedicated to search for the graviton
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TABLE II. Standard Model Bosons.

Name Symbol Mass Electric

(GeV/c2) charge (e)

Photon γ 0 0

Gluon g 0 0

W± boson W± 80.425 ±1

Z0 boson Z0 91.187 0

Higgs boson H 125.5 0

are not built yet; however, the LHC is continuing on seeking
for new particles and interactions and the quantum particle of
gravity is one of most wanted. Recent LHC searches stands
that the graviton must have a mass lower than6×10−32 eV/c2

[10].
Regarding the SM, it contains the three stronger interac-

tions of all, neglecting the gravitational interaction in all cal-
culations. All known gauge bosons are presented in Table II.

The spin-1/2 particles are the main constituents of matter.
They are considered as structureless particles and they obey
the Fermi-Dirac statistics,iv for this reason, they are called
fermions. This feature allows for layered arrangements of
atoms and favouring more complex structures, from atoms to
galaxies. Besides, fermions can be classified inquarks and
leptons.

There are six known leptons: electron (e−), muon (µ−),
tau (τ−), electron neutrino (νe), muon neutrino (νµ) and tau
neutrino (ντ ); and six quarks: up (u), down (d), charm (c),
strange (s), bottom (b) and top (t), see Table III. Unlike lep-
tons, quarks have a property called colour and each one can
present three colours: red, green and blue.

Due to the strong interaction, quarks create larger struc-
tures known ashadrons: baryonswhen they are formed by
three quarks or three antiquarks, ormesonswhen they are

TABLE III. Standard Model Fermions.

Family Symbol Mass Electric

(MeV/c2) charge (e)

Leptons

e− 0.511 −1

νe < 3× 10−6 0

µ− 105.658 −1

νµ < 0.19 0

τ− 1.776.99 −1

ντ < 18.2 0

Quarks

u 1.5 +2/3

d 4.0 −1/3

c 1.275 +2/3

s 95 −1/3

t 173.210 +2/3

b 4.180 −1/3

formed as quark-antiquark pairs.v The best known hadrons
are protons and neutrons, because they formed the nucleus of
the atom. The internal structure of the proton is|uud〉, that is,
two u-quarks and oned-quark and, the internal quark com-
position of the neutron is|udd〉, it means that it is formed by
two d-quarks and oneu-quark [11].

Although the properties of quarks are well known, free
quarks have not been detected yet, that is, they are always
confined to hadrons. This explain why quarks can have frac-
tional electric charge and it is also the reason why the range
of strong interactions are not beyond the atomic nucleus.

Leptons are the other group of particles that compound
matter, the electron being the best understood. It is know that
leptons are particles susceptible to weak and electromagnetic
interaction, however, it has not been able to determined that
they are capable or not to interact with the strong interaction.
Another leptons that have been deeply investigated are neu-
trinos because they have a very small mass (in the beginning
it was thought that they were massless) and almost they do
not interact with matter. These particles can reveal the com-
plete image of universe from the moment it was formed (the
Big Bang), since theseremnants neutrinosare still found in
the farthest regions of the horizon of space.

As it was shown in the Table II and Table III, the mass of
the particles is expressed in units of energy overc2 (c is the
speed of light in vacuum). We can use these units by virtue
of the equation that Einstein derived in the Special Relativity
theory,E = mc2 vi [12]. This equation gives a relation be-
tween the rest mass and energy of a body, rearranging in such
a way thatm = E/c2. Electron-volts (eV) units are used in-
stead of Joules because the eV definition is more suited to
elementary particles scale than the Joules definition. 1 eV
is the energy acquired by an electron moving between two
points that are at an electrical-potential of 1 V; on the other
hand, 1 J is the work done by a constant force of 1 N moving
a body a distance of 1 m. The relation between both units is
1 eV = 1.602× 10−19 J.

4. Coupling constants, beta functions and
gauge couplings

So far, we have stated that the fundamental interactions have
different intensities, so it is useful to use parameters that show
a value that allow us to know and compare the magnitudes of
each interaction. Here is where the SM makes use of thecou-
pling constants.

The coupling constantsof the fundamental interactions
are dimensionless constants that tell us the strength of each
interaction. The approximate values of each coupling con-
stant are shown in Table IV. It should be clarified that, for
the purposes of this work, the notationα1, α2 andα3 will be
used for the coupling constants of the electromagnetic, weak
and strong interaction, respectively. Among these coupling
constants, the best known isα1, which is calledfine structure
constantand it is assigned the symbolα. This constant is
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TABLE IV. Aproximate values of the coupling constants of the fun-
damental interactions (at1 GeV).

Interaction Symbol Value

Strong α3 1

Electromagnetic α1 1/137

Weak α2 10−6

Gravitational αg 10−39

related to the electromagnetic interaction that appears in var-
ious physical processes and it was introduced in 1916 by
Arnold Sommerfeld while he was working in the atomic
model of Bohr. In his work, Sommerfeld usedα to quan-
tify the gap in the fine structure of the spectral lines of the
hydrogen atom [13].

As specified in Table IV, the values of a given coupling
constant is set at the energy of1 GeV. Why it is specified
this value if they are calledconstants? This value is set be-
cause these couplingconstantsare not really constant in en-
ergy. The coupling constants are dependent functions on the
energy scale at which one is performing a calculation, thus
at a bigger energy scale the given values are not the same.
To be able to know the behaviour of the coupling constants,
they are used a set of differential equations known as theβ
functions.

The β functions are differential functions that describe
the evolution of some parameterg, known asgauge cou-
pling, according to the energy scaleQ. Gauge couplings are
related to the SM gauge groups,SU(3)c×SU(2)L×U(1)Y ,
namely,g3, g2 andg1. The importance of these parameters
is that they are used to series expand expression in pertuba-
tive calculations.vii In this aim, the expressions obtained for
β functions are known as a series expansion in those param-
eters. As mentioned before, the gravitational interaction is
not considered in the Standard Model, therefore we will only
haveβ functions for the others three interactions.

At second order in perturbation theory, so calledtwo-
loops,viii gauge couplingsg1, g2 andg3 evolve according to
differential equations of the form,

dgl

dt
≡ βl(g) = −bl

g3
l

16π2
−

3∑

k=1

bkl
g2

kg3
l

(16π2)2
, (1)

wheret = log(Q/Q0) and l = 1, 2, 3. The Q0 term is
an arbitrary energy scale that is chosen to fix the experimen-
tal measurements. For the purpose of this work it is used
Q0 = 1 GeV. It is also important to mention that in Eq. (1)
is omitted a last term that represents Yukawa couplings con-
tributions [14]. This approximation can be used at this step
because its contribution is very small with respect to the con-
tributions presented in Eq. (1). Furthermore, if Yukawa terms
are added, one needs to add the evolution of them according
to the so-called anomalous dimensions at two-loops, which is
out of the reach of this work.

It is worth appreciating that Eq. (1) has the most general
two-loop contribution to theβ function. It can be used to de-
scribe the SM running of the gauge couplings, or the running
of gauge coupling in different models, as it shall be used in
the minimal supersymmetric extension of the SM.

In the SM, thebl coefficients are given by,

b1 = −4
3
ng − 1

10
, b2 =

22
3
− 4

3
ng − 1

6
,

b3 = 11− 4
3
ng, (2)

where ng is the number of generations or families. Ex-
perimental results indicate that the most consistent value is
ng = 3. In addition,bkl coefficients are given by the entries
of the matrix,

(bkl) =




0 0 0

0 136
3 0

0 0 102



− ng




19
15

1
5

11
30

3
5

49
3

3
2

44
15 4 76

3




−




9
50

3
10 0

9
10

13
3 0

0 0 0




. (3)

On the other hand, these gauge couplings are closely re-
lated to the coupling constants, which satisfy the following
equation,

αi =
g2

i

4π
, for i = 1, 2, 3. (4)

Therefore, once the evolution of the gauge couplings with re-
spect to energy is obtained, we will be able to know how the
coupling constants evolve with energy.

At first order in perturbation theory, the so-calledone-
loopcalculation,β functions only take into consideration the
term proportional tobl. This simplification makes the calcu-
lation more simple than solving it analytically. In this sce-
nario, the set of differential equations is given by,

dgl

dt
= −bl

g3
l

16π2
, for l = 1, 2, 3, (5)

where the coefficientsbl are the same as those in Eqs. (2).
This set has theβ functions decoupled, however, its solution
shall be less accurate than the two-loop calculation. Never-
theless, it is important to highlight its analytic behaviour. At
an arbitrary energy scaleQ = M and with initial conditions
gl(M), for l = 1, 2, 3, the solution of Eq (5) is found to be,

gl(Q) =
1√

[gl(M)]−2 +
(

bl

8π2

)
ln

(
Q
M

) ,

l = 1, 2, 3. (6)
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In this way, the coupling constants are:

αl(Q) =
1

4π
(
[gl(M)]−2 +

(
bl

8π2

)
ln

(
Q
M

)) ,

l = 1, 2, 3. (7)

5. Unification of fundamental interactions

Throughout history, we have learned that the study of differ-
ent phenomena converged to the analysis of the four funda-
mental interactions. It seems that, under a particular point of
view, all kind of forces can be understood as a manifestation
of one of these forces. This line of thinking gives rise to the
unificationconcept. The best example of unification was the
one happened between the electric and magnetic phenomena.
The unification of these two aspects into a single concept is
rigorously explained in Maxwell’s equations. Therefore, it
is natural to pursue the answer of the question: are the four
fundamental interactions really different or are they simply a
consequence of an unknown interaction?

The seek to the answer to this question take us back to
the period of 1960-1970, 100 years after the unification of
electromagnetism. The weak theory was observed primarily
by experiments and the main theoretical contributions were
made by Steven Weinberg [15], Abdus Salam [16] and Shel-
don Glashow [17], all of them working independently. The
agreement between theory and the experimental data needed,
from the theory side, the inclusion of the electromagnetic in-
teraction meaning that, this interaction necessarily must be
unified with the weak interaction in a single interaction, so
calledelectroweak interaction.

The path to unification implies that if weak and electro-
magnetic interactions are of the same order, then the mass
of theZ0 boson is negligible and ison equal footingwith the
photon [18]. Although, the problem is that it is known that the
mass of theZ0 boson is not insignificant and, in fact, it is the
third most massive particle in the SM; moreover, as seen in
Table IV, at the energy scale of 1 GeV the interactions do not
have the same intensity. The explanation to these facts can
be found in the unification of the electroweak theory through
theSU(2)×U(1)Y gauge groups. Once the electromagnetic
and weak interactions were unified, the next step on the list
would be try to unify the other interaction that is within the
SM: the strong interaction. This theoretical unification of the
three interactions is known as theGrand Unification . Un-
fortunately, in the context of the SM this unification does not
occur, but it is still possible to achieve within the framework
of supersymmetry.

Supersymmetry is a theory, unverified experimentally,
that describes a symmetry between bosons and fermions.
Both quantum states are related through a supersymmet-
ric transformation, which changes a bosonic state into a
fermionic state and vice versa. Besides, each particle is
associated to a supersymmetric partner that differs in spin
by a half-integer [19]. Within the supersymmetric theories,

there is one known asMinimal Supersymmetric Standard
Model (MSSM), which owes its name to the fact that it con-
tains the smallest number of new particle states and new inter-
actions consistent with phenomenology. Within the MSSM,
the Grand Unification is possible at energy scales of the order
of 1016 GeV. The estimated scale is given by the evolution of
theβ functions.

The functional form of the associatedβ functions ex-
pressed in Eq. (1) and Eq. (5) are the same for the MSSM,
with the only modification of the coefficientsbl and bkl of
Eq. (2) and Eq. (3). In general, the coefficients at one-loop
can be obtained by investigating the mathematical structure
of the gauge groups. Considering anySU(N) gauged QFT
or SUSY QFT, thebl coefficients are given by [14],

bl =
11
3

C2(G)− 4
3

κS2(F )− 1
6

η S2(S) , (8)

whereC2(G) is the quadric Casimir invariant acting over
gauge fields,S2(F ) andS2(S) are the Dynkin indices over
fermion and scalar field representations respectively,κ =
{ 1

2 , 1} for Dirac and Weyl fermions andη = 1, 2 for real
and complex scalar fields respectively. In the MSSM, the nu-
merical values of these coefficients are [20]:

b1 = −33
5

, b2 = −1, b3 = 3, (9)

and, the two-loop contributions are given by,

(bkl) = −




199
25

27
5

88
5

9
5 25 24
11
5 9 14


 . (10)

It is possible to appreciate that the differential equations
associated to theβ functions are functionally the same, but
with different coefficients, so it is of interest for this work to
find a way to solve them numerically, and to show the Grand
Unification is present in supersymmetric theories such as the
MSSM. In the next section, we present the method used in
this work to solve the coupled differential equations for a
large range of energy scales, the Dormand-Prince method.

6. The Dormand-Prince method

For the solution of the set of differential equations given
by Eq. (1), for the SM (coefficientes of Eqs. (2), (2.2),
(2.3) and (3)) and the MSSM (coefficients of Eqs. (9) and
(10)), we performed theDormand-Prince method, which is
part of a collection of methods to solve ordinary differential
equations with initial conditions, known asadaptive Runge-
Kutta methods. In the following, we recall the ideas behind
the method.

Let us start with an ordinary differential equation with
initial condition,

y′ = f(t, y), y(t0) = y0. (11)

Rev. Mex. Fis. E20010201
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The expression of the explicit Runge-Kutta method of or-
derp comprise a weighted average of values off(t, y) taken
at different points in the intervaltn ≤ t ≤ tn+1, given a
numbers of stages, is expressed by,

y(t + h) = y(t) +
s∑

l=1

dlkl, (12)

where the valuehix represents the spacing over the values of
t; and,

k1 = hf(t, y), (13)

ki = hf


t + cih, y + h

i∑

j=1

ai,jkj


 ,

i = 2, 3, ..., s . (14)

The coefficientsai,j , dl and ci vary according to the
method used, but in order for the method to be consistent
it must satisfy that

s∑

l=1

dl = 1 . (15)

In addition, to obtain a Runge-Kutta method of orderp
(hence, to obtain an overall truncation error ofO(hp)), the
relation,

i−1∑

j=1

ai,j = ci for i = 2, 3, ..., s , (16)

must be fulfilled [21].
This method is also useful for a system ofm first order

ordinary differential equations,

y′i = fi(t, y1, y2, ..., ym), yi(t0) = y0i, (17)

for i = 1, 2, ..., m. Hence, it is simpler to write the formalism
in vector form. Defining

y = (y1, y2, ..., ym), f = (y1, y2, ..., ym), k1 = hf ,

ki = hf


t + cih,y + h

i∑

j=1

ai,jkj


 ,

i = 2, 3, ..., s, (18)

therefore,

y(t + h) = y(t) +
s∑

l=1

dlkl. (19)

Adaptive Runge-Kutta methods estimate the truncation
error in each step of the solution and automatically adjust the
step size to keep the error within the limits specified by the
user. These techniques use two explicit Runge-Kutta meth-
ods: one of orderp and another of orderp + 1, in order to

estimate the truncation error used in both formulas and there-
fore, to make the appropriate adjustment ofh. Thecalibra-
tion of the step size is extremely important because it could
find solutions in faster computation time and, therefore, there
is no delay in finding the appropriate step size.

The Dormand-Prince method uses Runge-Kutta methods
of order 4 and 5 with a total of 7 stages, so the set of equations
is,

y4(t + h) = y(t) +
7∑

l=1

d4lkl,

y5(t + h) = y(t) +
s∑

l=1

d5lkl, (20)

with

k1 = hf(t,y),

ki = hf


t + cih,y + h

7∑

j=1

ai,jkj


 ,

i = 2, 3, ..., 7. (21)

The coefficients of the method are given in Table V and
the matrixa is,

a=




0 0 0 0 0 0

1
5 0 0 0 0 0

3
40

9
40 0 0 0 0

44
45 − 56

15
32
9 0 0 0

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0

9017
3168 − 355

33
46732
5247

49
176 − 5103

18656 0

35
384 0 500

1113
125
192 − 2187

6784
11
88




.

(22)

Thus, we have that the formula of order 4 is used to im-
plicitly estimate the truncation error, so that the truncation
error is given by:

E(h) = y5(t + h)− y4(t + h) =
7∑

l=1

(d5l − d4l)kl. (23)

Note that this error is a vector where each componentEi

corresponds to the truncation error of theyi variables, so we
have to choose a way to measure a value of the errore(h).
The choice employed is to usemean squared errorto con-
sider all the variables. Thus, in this work, we decide to use
the step size

e(h) =

√√√√1
3

3∑

i=1

E2
i . (24)
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TABLE V. Coefficients of the Dormand-Prince method.

l d4l d5l cl

1 5179
57600

35
384

-

2 0 0 1
5

3 7571
16695

500
1113

3
10

4 393
640

125
192

4
5

5 − 92097
339200

− 2187
6784

8
9

6 187
2100

11
84

1

7 1
40

0 1

Error control is obtained by adjusting the increment ofh
such that the errore(h) is approximately equal to a preset tol-
eranceε. Since the method of order 4 has a local truncation
error ofO(h5), we have that,

e(h1)
e(h2)

≈
(

h1

h2

)5

. (25)

In this way, once the steph1 and the errore(h1) are ob-
tained, the steph2 obtained with a specific toleranceε is:

h2 ≈ h1

[
ε

e(h1)

] 1
5

. (26)

If ε ≥ e(h1), the truncation error is good enough so the
calculation is accepted and the steph2 is taken for the next
point (here is where the step increases). On the other hand, if
ε < e(h1), the error is out of the accepted range, so this step
is repeated withh2, which leads to a reduction of the step in
order to obtain a better result [22].

In this work, we have that the initial conditions of the
gauge couplings are given at the energy of the top quark mass,
mt = 173.37 GeV [23],

g1(mt) =

(√
5
3

)
(0.3594),

g2(mt) = 0.64654, g3(mt) = 1.16666. (27)

Hence, with this initial conditions, the solutions of Eq. (5)
take the valuesM = mt andgl(mt). In the case of Eq. (1)
we have a system of three coupled differential equations,

g′1 = f1 (Q, g1, g2, g3) , g′2 = f2 (Q, g1, g2, g3) ,

g′3 = f3 (Q, g1, g2, g3) , (28)

and where the tolerance has a value ofε = 10−10. Finally, it
is important to make three clarifications about the code used
for the Dormand-Prince method,

i) The relation found between the stepsh1 andh2 is based
on an approximation, therefore, it is good to have a small
safety margin, so the relation used is,

h2 = 0.9 h1

(
ε

e(h1)

) 1
5

. (29)

ii) In adition, in order to avoid a very large step, it is im-
plemented the restriction,

0.1 ≤ h2

h1
≤ 10. (30)

iii) One of the advantages of the Dormand-Prince method
is that it is only necessary to compute directlyk1 once, since
it is satisfied that: if then−th computation of the step is ac-
cepted,

(k1)n+1 =
hn+1

hn
(k7)n ; (31)

and if then−th computation is not accepted,

(k1)n+1 =
hn+1

hn
(k1)n . (32)

iv) Finally, since this method chooses the step size it con-
siders optimal, the energies where the value of the coupling
constants are calculated will most likely to be different for
different models; for instance, for the SM and the MSSM.
This is why we use the functioninterp1dof the interpolation
modulescipy.interpolateof the librarySciPy, in order to per-
form the calculations of the coupling constants at common
energies between models.

7. Results

The numerical solutions of theβ functions of SM at one
(Eq. (5)) and two loops (Eq. (1)) using the Dormand-Prince
method are plotted in Fig. 1. Since coupling constants have
values between 0 and 1, it is common to present, for a bet-
ter visualization of the solutions, the inverse of each coupling
constant,α−1

i .

FIGURE 1. Evolution of the coupling constants in SM at two loops.
The values ofα−1

1 (blue),α−1
2 (orange) andα−1

3 (green) are those
corresponding to the electromagnetic, weak and strong interaction,
respectively. The continuous lines are those corresponding to the
two loops solution,α−1

i−2L, and the dashed ones to one loop solu-
tions,α−1

i−1L.
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From these results we have that the coupling constant
of the electromagnetic interaction increases and the coupling
constants of the weak and strong interaction decrease as we
increase the energy scale. Therefore, the intensity of these in-
teractions is affected differently as the energy varies. More-
over, it is obtained that the coupling constants reach in pairs
the same values at some energy scales, which leads us to con-
jecture that at such energy scale, where the intersection takes
place, a unification of the corresponding fundamental inter-
actions could occur.

Focusing on the solutions, it can be noticed an apparent
discrepancy of these with respect to the values presented in
Table IV, since at a low energy scales they do not seem to
coincide; although this is due to the fact that the differential
equations solved in this work, theβ functions, are a smaller
set of differential equations from the so calledRenormaliza-
tion Group Equations. This does not detract from the va-
lidity of the result, since the initial conditions are obtained
experimentally and the evolution of the coupling constants is
dictated by the differential equations employed in this work.
Furthermore, it is important to highlight that the solution of
the β functions can give a glimpse of the unification patern
of the fundamental forces.

We present in Fig. 1, the solution of theβ functions at
one- and two-loops,αi−1L and αi−2L respectively, where
i = 1, 2, 3 for the different gauge groups of the SM. It is
important to point out that both solutions present the same
behaviour with small differences. To quantify this difference
between solutions we obtain anerror calculated according to
equation,

∆αi =
∣∣∣∣
αi−2L − αi−1L

αi−2L

∣∣∣∣ , i = 1, 2, 3. (33)

In Fig. 2, we compute the variations of the two-loop com-
putation with respect to the one-loop scenario. We observe
that the differences are very small, and they are in the range

FIGURE 2. Comparison between coupling constants of SM at one
and two loops. The values of∆α1 (blue),∆α2 (orange) and∆α3

(green) are those corresponding to the electromagnetic, weak and
strong interaction, respectively.

FIGURE 3. Evolution of the coupling constants in MSSM at two
loops. The values ofα−1

1 (blue),α−1
2 (orange) andα−1

3 (green) are
those corresponding to the electromagnetic, weak and strong inter-
action, respectively. The continuous lines are those corresponding
to the two loops solution,α−1

i−2L, and the dashed ones to one loop
solutions,α−1

i−1L.

of 0 to 1 %. We remark the largest deviation are in the
strong coupling constant, it means that the in full calculation
large errors can be expected from this interaction at energies
around107 GeV. Let us remark that even if the differences
could be small, they are not negligible at large energies, since
small contributions could represent a considerable change in
the value of thetotal cross sectionx, σ, which theoretically
can be represented as a series expansion on the parameters
αi. It is well known that in QCD, large contributions could
emerge when the perturbative expansion of the theory is con-
sidered. In particular, following the perturbation theory in
QCD, the total cross section takes the form,

σ = σ0 + αSσ1 + α2
Sσ2 + · · · =

∞∑
n=0

αn
Sσn, (34)

where theσn terms are the calculations of the cross section
at a fixed order andαS ≡ α3. Therefore, it means that small
changes in the coupling constants can be compensated as the
number of loops are increased in the cross section at higher
orders.

We turn our attention to the MSSM scenario. The solu-
tion of theβ functions of MSSM at one- and two-loops are
plotted in Fig. 3. In this case we have that the intensity of
the electromagnetic and strong interaction follow the same
behaviour as in the SM scheme as the energy scale increases;
they only change the slope of the straight lines. A different
behaviour is observed in the corresponding coupling to the
SU(2) gauge group increases as the energy scale increases.
It can be also realized that, thanks to the supersymmetric ex-
tension of the SM, the interactions show a unification at an
energy scale of about1016 GeV. In fact, it is important to
notice that this unification is not exactly at one point but the
three coupling constants are contained in a compact enough
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FIGURE 4. Running ofβ functions at two-loops near the unifica-
tion point.

region to be considered valid. This fact can be noticed in
Fig. 4, where we have taken experimental errors atMZ into
consideration. This allow us, in the case of the existence
of supersymmetric theories, to understand the path to Grand
Unification and, therefore, to understand that the electromag-
netic, weak and strong interactions could be a manifestation
of a single fundamental interaction.

Despite the theoretical achievement of the Grand Unifica-
tion, it is important to mention that, at the date of publication
of this work, experimental evidence of supersymmetry has
not been found. Regardless of the absence of experimental
evidence, the Large Hadron Collider (LHC) is continuously
seeking to solve the puzzles of nature, such as dark matter
or the dynamical generation of electroweak symmetry break-
ing, among other, and the existence of MSSM could explain
some of these issues in the SM. Then, unceasing efforts from
the experimental and theoretical analysis maintain supersym-
metry on the market to be proven in future colliders at higher
energies.

Similarly to the SM, the MSSM values for the coupling
constants differ slightly between the values at one- and two-
loops. From this deviation it was calculated an error asso-
ciated to each constant given by Eq. (33) and the results of
this error are shown in Fig. 5. In this case, the errors be-
tween coupling constants at one- and two-loops are in the
range of 0 to 4 %. They represent still very small deviations
but not negligible. These errors follow a similar behaviour to
the SM solutions, in particular, regarding to the fact that the
interaction that expresses large contributions at two-loops is
the strong interaction, while the electromagnetic interaction
is the least affected.

Finally, it can be seen in Figs. 1 and 3 that while in the
SM the fundamental interactions appear to have unifications
only by pairs and at different energy scales, in the MSSM is
presented the unification of all of them at a similar energy
scale. In order to appreciate how large the coupling constants
differ from one to another model, we calculate the relative

FIGURE 5. Comparison between coupling constants of MSSM at
one and two loops. The values of∆α1 (blue),∆α2 (orange) and
∆α3 (green) are those corresponding to the electromagnetic, weak
and strong interaction, respectively.

FIGURE 6. Comparison between coupling constants of the SM and
MSSM at two loops. The values ofδ1 (blue), δ2 (orange) andδ3

(green) are those corresponding to the electromagnetic, weak and
strong interaction, respectively.

error to the coupling constantαi at two loops, taking the SM
values as a reference. Thus, these errors are given by,

δi =
∣∣∣∣
αi−SM − αi−MSSM

αi−SM

∣∣∣∣ , i = 1, 2, 3. (35)

Deviations of the MSSM and SMβ functions are plotted in
Fig. 6. From this figure we found that the deviations between
models are in the range of 0 to 100 %. As it is expected from
Figs. 1 and 3, theα2 presents the largest numerical differ-
ence due to the fact that the slope changes from positive to
negative; this behavior is not present inα1 andα3. Note-
worthy, α3 is not the most different among the three cou-
pling constant, however, the behaviour of it at large energies
is very distinct from the SM behavior, of the order of 10%
at 103 GeV and 40% at around105 GeV. These differences
between models are indeed quite large although they describe
the same behaviour as the comparison of Figs. 2 and 5, which
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can be interpreted as the QCD theory is the most sensible to
bring light to supersymmetry at the LHC energies or in the
FCC [24–27].

8. Conclusions

Numerical methods are a fundamental piece in scientific
progress, thanks to them we can solve problems that can not
be solvable analytically but we can find an approximate solu-
tion. In this work, we have used numerical methods to anal-
yse the coupledβ functions at two-loops for the SM and the
MSSM. Analitically, we have computed the solution of the
one-loopβ functions since in this scenario the solution can
be solved exactly. However, at two-loops the set of differ-
ential equations corresponds to a set of coupled differential
equations whose terms are not linear. In this work, we have
implemented the Dormand-Prince method since the range in
which we want to solve the problem is very large, making
it practically impossible to solve it with an explicit Runge-
Kutta method causing, for instance, that the problem would
require a lot of computation time and would consume consid-
erably RAM memory.

The numerical calculations of the solutions of theβ func-
tions with loop corrections bring us closer, by means of the
perturbation theory, to the real solution of the coupling con-
stants and therefore, to an accurate prediction of the cross
section. In addition, since future colliders are planned to
reach the precision frontier, it is imperative to known nu-
merical methods to compute our theoretical predictions. In
addition, theβ functions solved in this work represent a set
of differential equations that must be solved in order to have
a better understanding of physics at scales that we have not
reached yet. The renormalization group equations at two-
loops in the SM and the MSSM would represent the next step
in order to test the capabilities of the code developed in this
work. Since the main purpose of this study is the conceptual
challenge of the Grand Unification of fundamental forces, we
have neglected Yukawa terms in the differential equations.

The numerical calculations allow us to test the results
such as the Grand Unification scenario and the discrepan-
cies among both models. In particular, we find that in the
SM, the maximum deviations for the coupling constants are
about0.7% for α1, 0.625% for α2 and1.25% for α3 between
one and two loop calculation. On the other hand, the MSSM
has maximum deviations between one and two loop of the
order of1% for α1, 3.25% for α2 and3.95% for α3. In addi-
tion, the numerical solution of the coupledβ-functions shows
that a Grand Unification scenario can be reached only in the
MSSM framework.

Therefore, with the realization of this work we have
shown that supersymmetry can be one way towards the Grand
Unification of the three fundamental interactions that are part
of the SM. The Grand Unification theories allow us to em-
bed these three interactions and to understand them as a more
fundamental interaction, opening the paradigm of theTheory
of Everything, in which the gravitational interaction would
also be unified. Lastly, althought the SM has be proven with
the largest precision, it has unanswered questions that keep
supersymmetry as a candidate to solve experimental and the-
oretical problems of the SM.

The code used in this work can be found in the following
link:
https://github.com/EduardoTF/Solution-Of
-Coupled-beta-Functions-in-Python .
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i. The study of the movement of the astronomical bodies was
done many years ago by scientific figures as Kepler, Coperni-
cus, Galileo and Newton.

ii. As a reference, the atomic nucleus has a size of the order of
10−14 m.

iii. Statistics applied to big groups of elementary particles, which
are capable to coexist in the same quantum state with the same
quantum numbers.

iv. They respect the Pauli exclusion principle, which implies that
two fermions cannot be in the same quantum state at the same
time.

v. The antiparticle is a particle with the same mass as its corre-
sponding particle but having the opposite charge.

vi. This equation is a particular case of the equationE2 = (pc)2 +
(mc2)2, applied to particles at rest.

vii. Perturbation theory is a collection of approximate schemes to
describe complex quantum systems in terms of simpler ones.

viii. The perturbation theory is based in the use of a power series
solution and the contributions of this series are given by the
number of loops. At greater number of loops the series approx-
imate more to the real solution.

ix. h is also often calledsize stepor simplystep.

x. The cross section is a measure of the probability that a specific
process takes place at high energetic collisions.
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