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Local time in Lagrangian mechanics
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We show that under the replacement of the time by a local time in the Lagrange equations, the form of the equations is maintained if the
Lagrangian does not depend explicitly on the time. We also study the corresponding modifications in the Hamilton equations and in the
Hamilton—Jacobi equation.
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1. Introduction The idea of a local time arises in a natural manner in
the study of the so-called Liouville systems (seqy, Refs.

In the standard approach followed in classical dynamics, th&2—]) @nd, in the case of a &itkel system, it is convenient
equations of motion of a mechanical system form a set of orto introduce a different local time for each coordinate (see,
dinary differential equations that determine the configuratiorf-9- RefS. [4,6]). These two classes of systems are charac-

of the system as a function of time. However, in some casel$/1Z€d by time-independent Lagrangians of certain specific

it is useful to make use of another parameter, sometimes 48'™M$, Which appear in connection with the separability of
an intermediate step. A well-known and very important eX_the Hamilton—Jacobi equation. The results established here

ample is the Kepler problem, where, using polar coordinate&r® a@pplicable to any system with a Lagrangian that does not
(r,0) in the plane of the orbit, it is considerably simpler to depend explicitly on the time, without any further restriction.

find the expression for in terms off than in terms of the !N the path integral approach to quantum dynamics, it is use-

time. ful to introduce a local time accompanying a change of coor-
The ad f replaci iables by oth dinates (seeg.g, Ref. [7] and the references cited therein).

e advantages of replacing some variables by others are |, gac 2 \we show that in the case of a Lagrangian that

profusely exploited in mathematics and theorgtical phySiCSdoes not depend explicitly on the time, the replacement of the
Probably, the most common method employed in the CaICUIar'eal time by a local time maintains the form of the Lagrange

t;:)n'of mteg.rals IS Fh&t of subfstltutlon; an adequat:a. changg 0(—gquations if the Lagrangian is suitably modified, and we give
the integration variable trans ormsagiven |r_1tegra _mto asSiMyy g examples. In Sec. 3 we analyze the implications of these
pler one. Very often, when dealing with ordinary differential

replacements on the Hamilton equations and the Hamilton—

equations, py suitably trfansf_orming the vqriables, an appalyycopj equation. Finally, the possibility of using a local time
ently complicated equation is converted into another equag, e Schidinger equation is considered

tion whose solutions are already known. In the context of the

complex variable theory, the conformal transformations are

employed to relate different boundary value problems relate@. The Lagrange equations with a local time
to the Laplace equation.

In this article we investigate the modifications required
in the Lagrange equations if the timg,is replaced by an-
other parameterr. Usually, such a replacement is called _
global if 7 is some function oft [+ = F(t)] or local if dt = f(g:)dr, (1)
the relation betweedr anddt may depend on the config- wheref is some function that may depend on the coordinates
uration, that is,dt = f(gq;)dr, where f is some function only. We begin by writing down the Lagrange equations for
of the coordinates (hence, the relation betweemdr de-  an arbitrary Lagrangiaf(g;, ¢;, t) in the form
pends on the path followed in the configuration space). The

In this section we shall study the effect on the Lagrange equa-
tions of the substitution of the time, by a local time,r,
assuming that

case of global transformations is relatively simple: If one — doL OL

changest by 7 = F(t), the Lagrange equations maintain dt 9¢;  Oq;

their form with the Lagrangiary,, replaced by d¢/dr (see, d [10(fL) 10(fL) L of

e.g, Ref.[1], Sec. 2.4). In this paper, we show that if the time T [f 94, } N T g (2

is replaced by a local time, the Lagrange equations maintain
their form if the Lagrangian does not depend explicitly on the  With the introduction of the local time we have new ve-
time. locities, ¢; = dg;/dr, which, according to Eq/1j and the
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chain rule, are related to the usual generalized velocijies, with sum over repeated indices and where we have indicated
by means of with subscripts the coordinates kept fixed during the differen-
tiation (as is commonly indicated in thermodynamics). This
4 = fd, (3) last expression must coincide with
and it is necessary to distinguish the partial derivatives calcu-

lated using the set of variablég;, ¢;) from those calculated dF — <8F> dg; + (3F> dg;.
using the set of variableg;, ¢;). Making use of the formula i) g i) g4
for the total differential of a function of several variables and

Eqg. (3) we find that, for an arbitrary functiof(g;, ¢.), Hence,

OF oF
dF(a ) dqz—+(a,> dg; OF OF _(oF\ of
4/ q.q 4/ q.q = +qi | 57 . 4
a9 : _ J 7 .
OF OF of 9qi 4.4 0q; a.q 8(]j ot 0¢;
~(50) an+(5)  (faa+igian)
b/ q.q G/ g9 4 and
8F> OF
- =f (> . (5)
<8qi a4 94; ) 44

oF . [ OF of
9q; T aq; 9q; da:
v/ q,q i) gq 1
o (Equationsi4) and 6) can also be obtained making use of the

+f (a}j) dg;, chain rule.)
9q; a9’ Multiplying Eq. (2) by f, with the aid of Egs.5), (4) and
| (1) we find

_d oDy | (oL . (9(fL) of of _d (o(fL)\ _ (0(fL)
O_fdt< aq; >(1»(1/ |:( aqi )q’q/—"—q]( aq; >q,q’ aqi +Laqi _d7—< aq; >(1»(1/ ( aqi >q,q’

g (O(/L)\ of  .of _d (o(/L)\ _ [(oUL)\ _|. (0L .| Of
f ( 8q] )q,q 8qi +L8qi o dT( 8q; >q,q/ ( 8%’ >q’q/ [qj <8qj>q7q L] aQi
d

L L
_d (8(f/)> _(8(f >> o ©
T\ 04 ), . 04 ) g 0¢;
where oL I
77 q,4
As is well known, if L does not depend explicitly on J= f%lw —(L+E)f
the time,J is a conserved quantity (frequently it coincides f i
with the total energy). Thus, if we restrict ourselves to La- _ . OL B B
grangians that do not depend explicitly ardenoting byE =f b 5a L-E)=(J-E)f=0,

theconstantvalue ofJ (determined by the initial conditions), ) N _
from Egs. ) it follows that the Lagrange equatiori)@re  Since we imposed the conditioi = E in order to get

equivalent to Egs. 8).
4 (AL+E)]] _(AL+ B =0, (8 2.1. Example. The Morse potential
dr 0q; 0 0g; o ’

simple example of the use of a local time is provided by

which also have the form of the Lagrange equations. Thus, i he Morse potential

OL/0t = 0, the Lagrange equations are form-invariant under
changes of parametet)( with the Lagrangiard. replaced by

Lg=(L+E)f. ()] . .
whereV,, and« are positive constants. In order to eliminate
Since L does not depend explicitly on the time, the La- the exponential function appearing in this potential one intro-
grangianL g does not depend explicitly onand, therefore, duces the new coordinate
J = ¢/(0Lp/0q]) — L is also conservedt. (7)]. Making
use of Egs.3), (5), (9) and [7) we see that r=e 02

Vig) = Vo(1 — e )2,
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in terms of which the Lagrangiah = (1/2)mg¢> — V(q)  Infact, L is the sum of a function ofr,+’) and a function
takes the form of (6,¢,¢")

I = m <2> P2 Vo(l _ l‘2)2. (10) iE:% (:’)2+(E_V(r))r2+% [(9/)24—81112 9(¢/)2} )

2 \azx

As we have shown, under the substitution of the time byryrthermore, the Jacobi integré) which has to be equal to
a local timer defined by Eq.1), L has to be replaced by the zero, is the sum of two separately conserved quantities:
LagrangianLy = (L + E)f which in this case is given by
[see B)] m (')

) 2 2
~ m [ 2

—(E—=V(r)r? (12)

o f and [seel3)]

n [(0')% +sin® 0 (¢')?] = % (r10? + 1% sin® 0 $?).

m [ 2 1 2

= [2 <M>2 F(x/)Q ~Vo(1—-2*)*+E

whereF is a possible value of the Jacobi integralThe first ; _

term of this Lagrangian acquires the usual form of a kinetic{!n fact, we know that in a central force field, each Carte-

energy,(1/2)m(z’)2, if we take f = (2/az)?. Thus sian component oL is conserved, not only its magnitude.)
’ ’ ' Then, equating2) to —|L|?/2m we obtain the well-known

f,

This last expression can be recognized g /2m, where
L is the angular momentum of the particle about the origin.

- m, .o AE-Vy) 8Vy 4Vyz? equation for the orbit
2 a?z? a? a? dr
It may be noticed that, i? < V4, this Lagrangian has the +dr = 2 L 2V(r) :
form of the radial Lagrangian of a two-dimensional isotropic P\ = ey —
harmonic oscillator. The only equation of motion obtainable memer m
from L is equivalent toJ = 0, which in this case reads Hence, in this example, the local timés the angle swept by
9 ) the position vector of the particleneasured in the plane of
m (dx) _ME-W) 8V AVorT 0 the orbit multiplied by the constant facten,/|L|.
2 \dr a?x? a2 a? '

With the aid of the change of variable= z2, from thislast 3. The Hamiltonian version

equation one readily finds that,Af < Vj (which corresponds . ] o
to a bounded motion), The Lagrangiarl x is regular if and only ifL is regular and,

following the usual definitions, the HamiltoniaH,z, corre-

/ sponding tal g, is
=1+ E cos | 2 8—% T1. P g L
Vo mao?

Then, making use of this expression one can find the relation
betweent andr. with [see Eq. §)]

Hp = piq, — L,

2.2. Example. Particle in a central force field Di = Ly = LO[(L+E)f] _ OL

¢ f o4 0d

bi,

Another illustrative example is given by the problem of a_ ] ] . . ]
particle in a central field of force. In spherical coordinates,-€- the canonical momenta determined by(g;, ¢;) coin-

(r,0, ¢), the standard Lagrangian is given by cide with those determined by(q;, ¢;). Hence [see Eq3}]
L= %(TQ + 7202 + r? sin? 9&52) —V(r), (11) HE:pi(fqi)f(L+E)f:(piq'ifoE)f:(H7 E)f,

and the coordinates and momenta, in terms,0ére deter-

h isth ial. Maki fE h X . .
whereV (r) is the potential. Making use of EB)(we have mined by the Hamilton equations

. rZm [(r')? . - 5
Lp=(L+E)f =" ) (0)2 + sin? 0 (¢/)2 dgi  Ofw  dp,  OHg

72 = =
dr op; ’ dr 0q;

(13)

+(E-V(r)f. ) .
It may be pointed out that even though we are only interested
By inspection, one finds that a convenient choic¢ is 2. in the hypersurface wherB;z = 0 (which corresponds to
In this manner, the equation of motion (in termsrfor the  J = 0), the vanishing of this function does not mean that the
radial coordinate does not involve the angles, and vice versgartial derivatives off; are equal to zero.
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Equations|13) are a special case of the results presentedn fact, we obtain

in Sec. 4.3 of Ref. [1], where, by considering directly the Vi
Hamilton equations, it is shown that, in the case where the W = / \/Qm(E —V(r)) — = dr
Hamiltonian does not depend explicitly on the time, the time "
can be replaced by a local time in such a way tfvagnd 12

dr are related by an arbitrary non-vanishing function of co- +/ VM= gy d0+ e,

ordmates_ and mom_enta. In the appr_oach fol_lowed th_er%vhereM is another separation constant. The partial deriva-
the Hamilton equations are tr_eate_d directly without 90INGyives of W with respect taM/ and! are now equated to two
through the Lagrangian formalism first. constants (interpreted as the new coordinates after perform-
ing the canonical transformation generatediy,
3.1. The Hamilton—Jacobi equation OW / 146
ol sin” #

V M — sirll22 6

+ ¢ = const.

Following the standard steps, once we have a Hamiltonian
we can write down the corresponding Hamilton—Jacobi equayhq
tion. In its usual form (that is, for the generating function of ow dr
a canonical transformation depending on the old coordinates — = 7/

and the new momenta), the Hamilton—Jacobi equation corre- oM 2r2 \/2m(E -V(r) -4
sponding toH  (¢;, p) is

dé
—|—/7 = const.
Hp (q %ZV) + %—If =0. (14) 2/ M ~ 5z

These last two equations are equivalent to

By virtue of Egs. 4), we do not have to specify the set of 1de
coordinates being used, sintE is a function ofg; and . 5 z d¢
only. sin® 0/ M — 55
Using the fact tha]flE = (H — E)f and that the only and
value of interest folH ; is zero, Eq./14) reduces to dr B dé
H ((1- 3W> =E (15) 22\ f2m(E V() — 20— g
" Bg; ’ respectively. Hence, combining these equations we obtain
which is just the “time-independent” Hamilton—-Jacobi equa- mdr _ mdf :mSin2 fd¢ (16)
tion for the Hamilton characteristic functiofiy. As is well r2\/2m(E—V(r))—% \/M_snllzz ; l

known, Eq. L5) follows from the Hamilton—Jacobi equation,
and now wentroducethe parameter by equating these ex-

oS oS pressions tar. In this way, we obtain three differential equa-
H (q“ 0%) + ot 0 tions that determine, # and¢ as functions of- and one can
verify that these equations apeeciselythose given by the
if first half of Egs.[13). We can see directly that this parame-
S =W(q)— Et. ter indeed coincides with the one introduced in Sec. 2.2. The

partial derivative of the principal functioi$,, with respect to
Thus, we recover the standard formulas, dilliteference to  E also has to be a constant
the local time has disappearad Eq. (15), in spite of the 9SS oW mdr
fact that we started witlh  and  z, whose definitions arose 55 — 35 —t= / v; —1 = const,,
from the introduction of the local time. However, we can \/Qm(E - V(T» T orZ
haver back into play. For instance, for the Lagrangidd)(  which is equivalent to
Eq. (15) takes the form

da mdr

1 [(ow)® 1 fow? Vem(E V() - M
2m or + r2 < 00 > and, comparing with Eq16) we verify thatdt = r2dr.
) It may be remarked that we have the liberty of multiply-

. 1 (8W> YV =E ing all fractions appearing iLl6) by anyfunction of (r, 9, ¢)

r2sin?@ \ 0¢ and, then, define the resulting expressiondasThis free-

dom is related to the fact that any functigrtontained inl z
and this equation admits separable solutions of the forndisappears when we arrive at the Hamilton—Jacobi equation
W = A(r) + B(0) + l¢, wherel is a separation constant. and, conversely, any functiohcan be recovered in this way.

Rev. Mex. Fis. E19020209
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3.2. Local time in the Schibdinger equation seene.g, in Ref. [7]. In fact, in order to simplify the com-
) o o putations required in the path integral method, it is highly
A natural, and seemingly nontrivial, question is related to the;onyenient, and natural, to use a local time transformation in

possibility of using a local time in the Sdtdinger equation, conjunction with a coordinate transformation.
taking into account that, in classical mechanics, the relation

between the real time and a local time depends on the path )
followed by the particle or system of particles, and that in4- €oncluding remarks

quantum mechanics we cannot speak of the path of a pamI:he results presented above are applicable when the La-

cle. (However, as we know, in the path integral formulation ; . .
X . rangian does not depend explicitly on the time, even though,
of the quantum dynamics one makes use of classical pathg : : oo e
See below.) of course, the_lntroductlon o_f a Iocgl time is always possible;
v . the conservation of makes it possible to express the equa-
If the Hamiltonian operatorHd, does not depend explic- .. : ; o
. . o ) . : tions of motion parameterized by a local time in the form of
itly on the time, the Sclirdinger equation admits solutions of .
the Lagrange equations.
the form . .
b = bgi) exp(—iEt/h) As we have shown in Sec. 3.1, among the properties of
= P\d) exp R the underrated Hamilton—-Jacobi equation is its flexibility to
where ¢ is a solution of the time-independent Sgtlinger  use it in conjunction with local times.
equation,H¢ = E¢, which is the analog of Eq1E) and, as A natural question is if, as in the case of global trans-
the latter, does not contain any reference to the real or anformations, we can associate conserved quantities with lo-
local time. That this trivial approach is the appropriate onecal transformations depending on a continuous parameter that
is justified by applying the path integral approach, as can bé&ave invariant the form of the Lagrangian.
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