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Local time in Lagrangian mechanics
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We show that under the replacement of the time by a local time in the Lagrange equations, the form of the equations is maintained if the
Lagrangian does not depend explicitly on the time. We also study the corresponding modifications in the Hamilton equations and in the
Hamilton–Jacobi equation.
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1. Introduction

In the standard approach followed in classical dynamics, the
equations of motion of a mechanical system form a set of or-
dinary differential equations that determine the configuration
of the system as a function of time. However, in some cases
it is useful to make use of another parameter, sometimes as
an intermediate step. A well-known and very important ex-
ample is the Kepler problem, where, using polar coordinates
(r, θ) in the plane of the orbit, it is considerably simpler to
find the expression forr in terms ofθ than in terms of the
time.

The advantages of replacing some variables by others are
profusely exploited in mathematics and theoretical physics.
Probably, the most common method employed in the calcula-
tion of integrals is that of substitution; an adequate change of
the integration variable transforms a given integral into a sim-
pler one. Very often, when dealing with ordinary differential
equations, by suitably transforming the variables, an appar-
ently complicated equation is converted into another equa-
tion whose solutions are already known. In the context of the
complex variable theory, the conformal transformations are
employed to relate different boundary value problems related
to the Laplace equation.

In this article we investigate the modifications required
in the Lagrange equations if the time,t, is replaced by an-
other parameter,τ . Usually, such a replacement is called
global if τ is some function oft [τ = F (t)] or local if
the relation betweendτ anddt may depend on the config-
uration, that is,dt = f(qi)dτ , wheref is some function
of the coordinates (hence, the relation betweent andτ de-
pends on the path followed in the configuration space). The
case of global transformations is relatively simple: If one
changest by τ = F (t), the Lagrange equations maintain
their form with the Lagrangian,L, replaced byL dt/dτ (see,
e.g., Ref. [1], Sec. 2.4). In this paper, we show that if the time
is replaced by a local time, the Lagrange equations maintain
their form if the Lagrangian does not depend explicitly on the
time.

The idea of a local time arises in a natural manner in
the study of the so-called Liouville systems (see,e.g., Refs.
[2–5]) and, in the case of a Stäckel system, it is convenient
to introduce a different local time for each coordinate (see,
e.g., Refs. [4, 6]). These two classes of systems are charac-
terized by time-independent Lagrangians of certain specific
forms, which appear in connection with the separability of
the Hamilton–Jacobi equation. The results established here
are applicable to any system with a Lagrangian that does not
depend explicitly on the time, without any further restriction.
In the path integral approach to quantum dynamics, it is use-
ful to introduce a local time accompanying a change of coor-
dinates (see,e.g., Ref. [7] and the references cited therein).

In Sec. 2 we show that in the case of a Lagrangian that
does not depend explicitly on the time, the replacement of the
real time by a local time maintains the form of the Lagrange
equations if the Lagrangian is suitably modified, and we give
two examples. In Sec. 3 we analyze the implications of these
replacements on the Hamilton equations and the Hamilton–
Jacobi equation. Finally, the possibility of using a local time
in the Schr̈odinger equation is considered.

2. The Lagrange equations with a local time

In this section we shall study the effect on the Lagrange equa-
tions of the substitution of the time,t, by a local time,τ ,
assuming that

dt = f(qi)dτ, (1)

wheref is some function that may depend on the coordinates
only. We begin by writing down the Lagrange equations for
an arbitrary LagrangianL(qi, q̇i, t) in the form

0 =
d
dt

∂L

∂q̇i
− ∂L

∂qi

=
d
dt

[
1
f

∂(fL)
∂q̇i

]
− 1

f

∂(fL)
∂qi

+
L

f

∂f

∂qi
. (2)

With the introduction of the local timeτ we have new ve-
locities, q′i ≡ dqi/dτ , which, according to Eq. (1) and the
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chain rule, are related to the usual generalized velocities,q̇i,
by means of

q′i = f q̇i, (3)

and it is necessary to distinguish the partial derivatives calcu-
lated using the set of variables(qi, q̇i) from those calculated
using the set of variables(qi, q

′
i). Making use of the formula

for the total differential of a function of several variables and
Eq. (3) we find that, for an arbitrary functionF (qi, q

′
i),

dF =
(

∂F

∂qi

)

q,q′
dqi +

(
∂F

∂q′i

)

q,q′
dq′i

=
(

∂F

∂qi

)

q,q′
dqi +

(
∂F

∂q′i

)

q,q′

(
fdq̇i + q̇i

∂f

∂qj
dqj

)

=




(
∂F

∂qi

)

q,q′
+ q̇j

(
∂F

∂q′j

)

q,q′

∂f

∂qi


 dqi

+ f

(
∂F

∂q′i

)

q,q′
dq̇i,

with sum over repeated indices and where we have indicated
with subscripts the coordinates kept fixed during the differen-
tiation (as is commonly indicated in thermodynamics). This
last expression must coincide with

dF =
(

∂F

∂qi

)

q,q̇

dqi +
(

∂F

∂q̇i

)

q,q̇

dq̇i.

Hence,

(
∂F

∂qi

)

q,q̇

=
(

∂F

∂qi

)

q,q′
+ q̇j

(
∂F

∂q′j

)

q,q′

∂f

∂qi
, (4)

and (
∂F

∂q̇i

)

q,q̇

= f

(
∂F

∂q′i

)

q,q′
. (5)

(Equations (4) and (5) can also be obtained making use of the
chain rule.)

Multiplying Eq. (2) by f , with the aid of Eqs. (5), (4) and
(1) we find

0 = f
d
dt

(
∂(fL)
∂q′i

)

q,q′
−




(
∂(fL)
∂qi

)

q,q′
+ q̇j

(
∂(fL)
∂q′j

)

q,q′

∂f

∂qi


 + L

∂f

∂qi
=

d
dτ

(
∂(fL)
∂q′i

)

q,q′
−

(
∂(fL)
∂qi

)

q,q′

− q̇j

f

(
∂(fL)
∂q̇j

)

q,q̇

∂f

∂qi
+ L

∂f

∂qi
=

d
dτ

(
∂(fL)
∂q′i

)

q,q′
−

(
∂(fL)
∂qi

)

q,q′
−

[
q̇j

(
∂L

∂q̇j

)

q,q̇

− L

]
∂f

∂qi

=
d
dτ

(
∂(fL)
∂q′i

)

q,q′
−

(
∂(fL)
∂qi

)

q,q′
− J

∂f

∂qi
, (6)

where

J ≡ q̇j

(
∂L

∂q̇j

)

q,q̇

− L. (7)

As is well known, if L does not depend explicitly on
the time,J is a conserved quantity (frequently it coincides
with the total energy). Thus, if we restrict ourselves to La-
grangians that do not depend explicitly ont, denoting byE
theconstantvalue ofJ (determined by the initial conditions),
from Eqs. (6) it follows that the Lagrange equations (2) are
equivalent to

d
dτ

(
∂[(L + E)f ]

∂q′i

)

q,q′
−

(
∂[(L + E)f ]

∂qi

)

q,q′
= 0, (8)

which also have the form of the Lagrange equations. Thus, if
∂L/∂t = 0, the Lagrange equations are form-invariant under
changes of parameter (1), with the LagrangianL replaced by

L̃E ≡ (L + E)f. (9)

SinceL does not depend explicitly on the time, the La-
grangianL̃E does not depend explicitly onτ and, therefore,
J̃ ≡ q′i

(
∂L̃E/∂q′i

) − L̃E is also conserved [cf. (7)]. Making
use of Eqs. (3), (5), (9) and (7) we see that

J̃ = f q̇i
1
f

∂[(L + E)f ]
∂q̇i

− (L + E)f

= f

(
q̇i

∂L

∂q̇i
− L− E

)
= (J − E)f = 0,

since we imposed the conditionJ = E in order to get
Eqs. (8).

2.1. Example. The Morse potential

A simple example of the use of a local time is provided by
the Morse potential

V (q) = V0(1− e−αq)2,

whereV0 andα are positive constants. In order to eliminate
the exponential function appearing in this potential one intro-
duces the new coordinate

x = e−αq/2,
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in terms of which the LagrangianL = (1/2)mq̇2 − V (q)
takes the form

L =
m

2

(
2

αx

)2

ẋ2 − V0(1− x2)2. (10)

As we have shown, under the substitution of the time by
a local timeτ defined by Eq. (1), L has to be replaced by the
LagrangianL̃E = (L + E)f which in this case is given by
[see (3)]

L̃E =

[
m

2

(
2

αx

)2

ẋ2 − V0(1− x2)2 + E

]
f

=

[
m

2

(
2

αx

)2 1
f2

(x′)2 − V0(1− x2)2 + E

]
f,

whereE is a possible value of the Jacobi integralJ . The first
term of this Lagrangian acquires the usual form of a kinetic
energy,(1/2)m(x′)2, if we takef = (2/αx)2. Thus,

L̃E =
m

2
(x′)2 +

4(E − V0)
α2x2

+
8V0

α2
− 4V0x

2

α2
.

It may be noticed that, ifE < V0, this Lagrangian has the
form of the radial Lagrangian of a two-dimensional isotropic
harmonic oscillator. The only equation of motion obtainable
from L̃E is equivalent toJ̃ = 0, which in this case reads

m

2

(
dx

dτ

)2

− 4(E − V0)
α2x2

− 8V0

α2
+

4V0x
2

α2
= 0.

With the aid of the change of variableu = x2, from this last
equation one readily finds that, ifE < V0 (which corresponds
to a bounded motion),

x2 = 1 +
√

E

V0
cos

(
2

√
8V0

mα2
τ

)
.

Then, making use of this expression one can find the relation
betweent andτ .

2.2. Example. Particle in a central force field

Another illustrative example is given by the problem of a
particle in a central field of force. In spherical coordinates,
(r, θ, φ), the standard Lagrangian is given by

L =
m

2
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)− V (r), (11)

whereV (r) is the potential. Making use of Eq. (3) we have

L̃E = (L + E)f =
r2

f

m

2

[
(r′)2

r2
+ (θ′)2 + sin2 θ (φ′)2

]

+
(
E − V (r)

)
f.

By inspection, one finds that a convenient choice isf = r2.
In this manner, the equation of motion (in terms ofτ ) for the
radial coordinate does not involve the angles, and vice versa.

In fact, L̃E is the sum of a function of(r, r′) and a function
of (θ, θ′, φ′)

L̃E=
m

2
(r′)2

r2
+

(
E−V (r)

)
r2+

m

2
[
(θ′)2+sin2 θ(φ′)2

]
.

Furthermore, the Jacobi integralJ̃ , which has to be equal to
zero, is the sum of two separately conserved quantities:

m

2
(r′)2

r2
− (

E − V (r)
)
r2, (12)

and [see (3)]

m

2
[
(θ′)2 + sin2 θ (φ′)2

]
=

m

2
(
r4θ̇2 + r4 sin2 θ φ̇2

)
.

This last expression can be recognized as|L|2/2m, where
L is the angular momentum of the particle about the origin.
(In fact, we know that in a central force field, each Carte-
sian component ofL is conserved, not only its magnitude.)
Then, equating (12) to−|L|2/2m we obtain the well-known
equation for the orbit

±dτ =
dr

r2

√
2E

m
− |L|2

m2r2
− 2V (r)

m

.

Hence, in this example, the local timeτ is the angle swept by
the position vector of the particle,measured in the plane of
the orbit, multiplied by the constant factorm/|L|.

3. The Hamiltonian version

The LagrangiañLE is regular if and only ifL is regular and,
following the usual definitions, the Hamiltonian,̃HE , corre-
sponding toL̃E , is

H̃E = p̃iq
′
i − L̃E ,

with [see Eq. (5)]

p̃i ≡ ∂L̃E

∂q′i
=

1
f

∂[(L + E)f ]
∂q̇i

=
∂L

∂q̇i
= pi,

i.e., the canonical momenta determined byL̃E(qi, q
′
i) coin-

cide with those determined byL(qi, q̇i). Hence [see Eq. (3)]

H̃E=pi(f q̇i)−(L+E)f=(piq̇i−L−E)f=(H − E)f,

and the coordinates and momenta, in terms ofτ , are deter-
mined by the Hamilton equations

dqi

dτ
=

∂H̃E

∂pi
,

dpi

dτ
= −∂H̃E

∂qi
. (13)

It may be pointed out that even though we are only interested
in the hypersurface wherẽHE = 0 (which corresponds to
J̃ = 0), the vanishing of this function does not mean that the
partial derivatives of̃HE are equal to zero.
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Equations (13) are a special case of the results presented
in Sec. 4.3 of Ref. [1], where, by considering directly the
Hamilton equations, it is shown that, in the case where the
Hamiltonian does not depend explicitly on the time, the time
can be replaced by a local time in such a way thatdt and
dτ are related by an arbitrary non-vanishing function of co-
ordinates and momenta. In the approach followed there,
the Hamilton equations are treated directly without going
through the Lagrangian formalism first.

3.1. The Hamilton–Jacobi equation

Following the standard steps, once we have a Hamiltonian
we can write down the corresponding Hamilton–Jacobi equa-
tion. In its usual form (that is, for the generating function of
a canonical transformation depending on the old coordinates
and the new momenta), the Hamilton–Jacobi equation corre-
sponding toH̃E(qi, p

′
i) is

H̃E

(
qi,

∂W

∂qi

)
+

∂W

∂τ
= 0. (14)

By virtue of Eqs. (4), we do not have to specify the set of
coordinates being used, sinceW is a function ofqi and τ
only.

Using the fact thatH̃E = (H − E)f and that the only
value of interest forH̃E is zero, Eq. (14) reduces to

H

(
qi,

∂W

∂qi

)
= E, (15)

which is just the “time-independent” Hamilton–Jacobi equa-
tion for the Hamilton characteristic function,W . As is well
known, Eq. (15) follows from the Hamilton–Jacobi equation,

H

(
qi,

∂S

∂qi

)
+

∂S

∂t
= 0

if

S = W (qi)− Et.

Thus, we recover the standard formulas, butall reference to
the local time has disappearedin Eq. (15), in spite of the
fact that we started with̃LE andH̃E , whose definitions arose
from the introduction of the local timeτ . However, we can
haveτ back into play. For instance, for the Lagrangian (11),
Eq. (15) takes the form

1
2m

[(
∂W

∂r

)2

+
1
r2

(
∂W

∂θ

)2

+
1

r2 sin2 θ

(
∂W

∂φ

)2
]

+ V (r) = E

and this equation admits separable solutions of the form
W = A(r) + B(θ) + lφ, wherel is a separation constant.

In fact, we obtain

W =
∫ √

2m
(
E − V (r)

)− M

r2
dr

+
∫ √

M − l2

sin2 θ
dθ + lφ,

whereM is another separation constant. The partial deriva-
tives ofW with respect toM andl are now equated to two
constants (interpreted as the new coordinates after perform-
ing the canonical transformation generated byW ),

∂W

∂l
= −

∫
l dθ

sin2 θ
√

M − l2

sin2 θ

+ φ = const.

and
∂W

∂M
= −

∫
dr

2r2

√
2m

(
E − V (r)

)− M
r2

+
∫

dθ

2
√

M − l2

sin2 θ

= const.

These last two equations are equivalent to

l dθ

sin2 θ
√

M − l2

sin2 θ

= dφ

and
dr

2r2

√
2m

(
E − V (r)

)− M
r2

=
dθ

2
√

M − l2

sin2 θ

,

respectively. Hence, combining these equations we obtain

mdr

r2

√
2m

(
E−V (r)

)−M
r2

=
mdθ√

M− l2

sin2 θ

=
m sin2 θdφ

l
, (16)

and now weintroducethe parameterτ by equating these ex-
pressions todτ . In this way, we obtain three differential equa-
tions that determiner, θ andφ as functions ofτ and one can
verify that these equations arepreciselythose given by the
first half of Eqs. (13). We can see directly that this parame-
ter indeed coincides with the one introduced in Sec. 2.2. The
partial derivative of the principal function,S, with respect to
E also has to be a constant
∂S

∂E
=

∂W

∂E
− t =

∫
mdr√

2m
(
E − V (r)

)− M
r2

− t = const.,

which is equivalent to

dt =
mdr√

2m
(
E − V (r)

)− M
r2

and, comparing with Eq. (16) we verify thatdt = r2dτ .
It may be remarked that we have the liberty of multiply-

ing all fractions appearing in (16) by anyfunction of(r, θ, φ)
and, then, define the resulting expressions asdτ . This free-
dom is related to the fact that any functionf contained iñLE

disappears when we arrive at the Hamilton–Jacobi equation
and, conversely, any functionf can be recovered in this way.
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3.2. Local time in the Schr̈odinger equation

A natural, and seemingly nontrivial, question is related to the
possibility of using a local time in the Schrödinger equation,
taking into account that, in classical mechanics, the relation
between the real time and a local time depends on the path
followed by the particle or system of particles, and that in
quantum mechanics we cannot speak of the path of a parti-
cle. (However, as we know, in the path integral formulation
of the quantum dynamics one makes use of classical paths.
See below.)

If the Hamiltonian operator,H, does not depend explic-
itly on the time, the Schr̈odinger equation admits solutions of
the form

ψ = φ(qi) exp(−iEt/~),

whereφ is a solution of the time-independent Schrödinger
equation,Hφ = Eφ, which is the analog of Eq. (15) and, as
the latter, does not contain any reference to the real or any
local time. That this trivial approach is the appropriate one
is justified by applying the path integral approach, as can be

seen,e.g., in Ref. [7]. In fact, in order to simplify the com-
putations required in the path integral method, it is highly
convenient, and natural, to use a local time transformation in
conjunction with a coordinate transformation.

4. Concluding remarks

The results presented above are applicable when the La-
grangian does not depend explicitly on the time, even though,
of course, the introduction of a local time is always possible;
the conservation ofJ makes it possible to express the equa-
tions of motion parameterized by a local time in the form of
the Lagrange equations.

As we have shown in Sec. 3.1, among the properties of
the underrated Hamilton–Jacobi equation is its flexibility to
use it in conjunction with local times.

A natural question is if, as in the case of global trans-
formations, we can associate conserved quantities with lo-
cal transformations depending on a continuous parameter that
leave invariant the form of the Lagrangian.
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