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The entropy is studied from the perspective of several formalisms. The origin of the concept in the classical thermodynamics is reviewed. It
also is developed a step-by-step-clearly demonstration about it. After that, this formula is connected with the entropy of Shannon. Elementary
concepts of the quantum mechanics are explained to demonstrate the von Neumann entropy formula. From the perspective of the informatiol
theory, the entropy of an optimal code in communications is the same that the expectation value of bits needed to transmit a message throug
a channel. In this way, systems and languages can be studied using the same concept of entropy. It is proposed the entropy concept as
measure of the variability of the states inside a system given a set of rules that operate inside it for a while. It is stressed the importance of
the teaching of the entropy because this is a useful tool in the development of new technologies, for example the quantum communications.
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1. Introduction guantum information theory and quantum computing. As en-
tropy is related with all previous examples, this cannot be
The entropy is a very interesting and useful concept in scireduced to a formula without context. Teachers may explain
ences. In physic, entropy has been used to quantify the availo students all about of its history and development for help-
able energy that can be transformed into work [1]. Infor-ing them to build a complete understanding of the entropy in
mation theory defines the entropy as the optimal coding tahe new sciences [11].
compress or to transmit data [2]. Also, in Relativistic Quan-  |n this work, the history about origins of the concept is re-
tum Information (QRI) the loss of entanglement in multipar- counted in Secs. 2 and 3. After that, it is derived an analytical
tite quantum systems is quantified by the entropy [3,4]. Thexxpression of the entropy in Sec. 4. Then, an operative for-
concept reveals us the sharpness of the thinkers of nineteenthyla to compute entropy in computer sciences is explained
century that didn’t give up before the big mystery of the pis-in Sec. 5. In Sec. 7 is explained in a friendly way the el-
ton that moving without apparent reason when they stop t@mentary concepts of quantum mechanics in order to bring
supply heat on it. One of them, Boltzmann taken ideas ofrom the thermodynamic entropy formula in physics to the
macroscopic world to the microscopic world and then makg,on Neumann entropy in quantum information theory. Later,
use of the calculus theory to infer the right distribution thatin Sec. 8 is talked about the entanglement and how it can be
were compatible with macroscopic measures [5,6]. Someneasured by entropy of von Neumann [12]. Finally, at the

time later, Shannon developed the entropy concept as a megnd of this work a definition of entropy is proposed and some
sure of the uncertainty of a source of information [7], becom-gpservations are made.

ing this concept in the cornerstone of the computer science.

However, in despite the importance of this concept, there
exist misunderstandings. From the perspective of thermody2.  Origins of entropy in thermodynamics
namics; entropy is related with the transformation of energy
into work; from the perspective of statistical physic is a prob-In the historical framework of the development of the Indus-
ability distribution of microstates given at thermodynamicaltrial Revolution and the development of the steam engines,
equilibrium; in the educational strategy to teaching entropyjt was investigated how to optimize the output work by ma-
it consists in a measure of disorder; from the perspective o¢hines. Nicolas Leonard Sadi Carnot developed a thought
information theory is the mean of bits needed to transmit oexperiment that involved a piston moved by the expansion
storing a message [8,9]. Besides, entropy also has interpretand contraction of an ideal gas inside it [13].
tions in cosmology, mathematical physics, economics, com- The Carnot machine is a hermetically closed system with
plexity theory, evolutionary biology, psychology, and sociol- an ideal gas inside it. When piston at positién(see Fig. 1),
ogy. It has been considered as if it were almighty over evthe ideal gas is in thermodynamic equilibrium. Then, the
erything related with randomness, evolution and as an arrowdeal gas is heated with a quanti®,,, which cause this ex-
of time. This approach is about thermal randomness, whergands its volume as the piston upward up to the posifion
it must be considered the equilibrium of physical laws andAfter that, the ideal gas is stopped to heating. But, the piston
probability distribution over systems [10]. In this way, the continues get upward for a while up to reach the posifign
entropy concept is useful to understand important ideas ithen, it is said the system has reached the thermodynamic
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_ _ ) _ FIGURE 2. Phase diagram of a Carnot cycld’s and T are
FIGURE 1. Hermet|Ca”y Sealed p|St0n. Picture adapted from f|gure isothermal curves that cross through the Staew2 and C4, CS
5in chapter 3 of the Ref. [13]. of the ideal gas system, respectively. Picture adapted from figure 5

L o ) in chapter 3 of Ref. [13].
equilibrium. Later, it is extracted the quantity of he@gy:

of the ideal gas putting this one in contact with a cold sourcethat all internal forces inside de ideal gas reached the equilib-
As before, the extraction of heat is stopped at posifipisee  rium among them, these evidences suggested the existence of
Fig. 1), but again, the ideal gas continues contracting until the variable inside the system that depends only on the internal
piston down warding to the positiafi; and it is said that the ~ configurations of the ideal gas [13]. This variable was called
ideal gas has reached the thermodynamic equilibrium. as “entropy” ) sincerpomy means “turn” in Greek. In this

From Carnot’s times, this experiment was observed as aork, it is proposed that the meaning that the nineteenth cen-
system where pressure, volume and temperature change tiiry scientists gave it to the entropy was to refer to an internal
such a way that each possible state fulfil that energy of theransformation, as if something were moving and rotating in-
system {) is constant. For better to study this one, phaseside the system. Operationally, this entropy is computed by
diagrams like Fig. 2 were proposed:

Where the curve that joinf; to Cy corresponds to the AS = %’ (1)
isothermall’4 and the curve that joint’, to C3 corresponds T

to the isothermall’s. Displacement of the piston is a net pecause the change of the hypothetical internal configura-

conversion ofQ;,, into work. The ideal gas system changestions in the ideal gas may be associated to the supplied heat
of (Pl, ‘/17 Tl) State tO(PQ, ‘/27 TQ) state. On the other Slde, a|ong an isothermal curve.

curvesCs, to C3 andCy to C, are adiabatic curves. These

curves show the behaviour of a system that does not exchane%e .. ) )
heat with the environment. This time, displacement of the°: Statistical point of view of the entropy

piston must be paid by the intemal energy of the ideal ga%oon, it was necessary a better understanding of the entropy

system. concept after both microscopic and statistical new ideas in
The mystery in this thought experiment is that after stops hvsi : ; ; ;
: . . ysics arrived in the twentieth century. Ludwig Boltzmann
heating the ideal gas, the volume must stop to increases fr)w

L kProposed the thought experiment in which there are N en-
the context where the cause of expansion it supposed to & : L . .
closed molecules of an ideal gas inside a rigid and hermeti-

the heating of the ideal gas. But instead, counterintuitively . = )
the ideal oas even expands and push the biston a little morga"y sealed container where it is taken a snapshot in such a
: 9a; P P P Way that is captured all the dynamic of the system in just a
During the isothermal curves);,, and Qo are converted o .
. . . . ._scene [14]. Later, it is counted the molecules with energy
into work. But, unlike the isothermal process, while the adia- . : .
. : T ) molecules with energys and so on, in such a manner that it
batic process occurs, something happens inside the ideal gas

. I id th rtain ti
that causes the expansion of volume&into C3 and the con- S'said that at certain time

traction inCy to C,. Namely,Q;, changes the state of the There aren; molecules with energy;
ideal gas from(P;, V;,T}) to (P, Vs, Ty), and later, still There aren, molecules with energy,
under the effects o€);,,, the system changes internally in :

such a way that after a time the ideal gas reaches the state There arer; molecules with energy;

(P3,V3,T3). In the same wayQou Yields the change of
states from(Ps, V3, T3) to (P4, V4, Ty), and then, internally : _
to (Py, Vi, T1). Asthe thermodynamic equilibrium means There arey;, molecules with energyy,
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The aim was to take the macroscopic concepts of worldvhere, Q2 is a number that is function only of a givef,
to the microscopic world. It is going to think that every set while {}* refers to all possible distributions of the energy
of molecules; with energye; is enclosed in a rigid and her- FE over the molecules of the ideal gas. It is necessary to stop
metically sealed cell of volumeév. In this way, each set of; here and see that the concepts here consider a system in ther-
molecules is called a microstate. Then, for a certain constamhodynamic equilibrium, in such a way that, there must be
energyE corresponds an overwhelmingly greater distribution compatible with the
(P,V,T) state given the energy. This idea is expressed in

M , (2)  the following equation.

Wingy =

=0

i

QE,P,V,T) = t(n), (8)

of microstates. There afemicrostates for a given enerdy

; o where, it is defined(n) as a function of the distributions of
that must fulfill the restrictions that

the energyE, becauser = n ({s;}). Boltzmann solves the

k problem using tools of calculus of university, he looks for
> ni =N, critical points overt(n) [14], by doing
i=1
® Vi(n) =0, ©

whereas, in the thermodynamic equilibrium the system does

k
Z egin; = FE.
=1
. . . not change the number of particles and energy, thus
These conditions must be consistent with the values of pres- 9 P 9

sure (P), volume (/) and temperaturel() of the macroscopic VYN =0
system. ’ (10)

The total number of microstates given a certain endrgy VE =0,
is called a macrostate. Some examples are given for illustra-
tive purposes. after that, in order to find the critical points according to

SupposeV = 3 molecules, thedV = 6!, whetherE has  the undetermined coefficients method of Joseph-Louis La-
a spectrum ofe, } possible energies, then grange, [15]

W= @ Vi(n) = aVN + BVU. (11)
3! ’

At this point, there is a system offirst-degree differential

whether E' were {¢1,e2}, then energy distributes over the - .
gquations, one for each setiof molecules with energy;.

3 molecules in an indistinguishable way as the ensembl

{(n1 = 2,¢1), (n2 = 1,e2)} and the number of microstates ot (n)
is < - — 6{51) dn; = 0. (12)
ani
W, — g 5)
27 om ( To solve Eq. 12) it is worked with the logarithm of (n)

In the next casé has the spectrurfes, 2, 25}, then en- manipulating it till we achieve a relation that can help us.

ergy distributes over the 3 molecules as the ensef{lle =
L,e1),(na = 1,e2),(ng = 1,e3)} and the number of mi- log (#(n)) = log N!
crostates this time is []n:!

= log(N!) —log <H nﬂ)
Now, the question Boltzmann and contemporaries wanted i
to answer is what happens with ener§ywhether it can _ N 0
distribute in any possible way over th& molecules? = log(V) zi:log(m.)
namely, this distribution could béE/N,E/N,... ,E/N}
or {E/N,8E/N,E/N} or anything. Due that, many =N log(N)—- N — Z (nZ log(n;) — nz) ,
macrostates are compatible witfy though not compatible i

3!
TR

(6)

W3

with the restrictions Eq.3). The total number of microstates _ _ _
compatible with energy¥ is log (#(n)) = N log(N) — an log(n:), (13)
QE) = Z Winiys () where, it has been used two times the Stirling approximation
{e} of log(N!) and some logarithms laws. Later, it is derived
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number of microstates in thermodynamic equilibrium of the

with respect to some arbitrary;, ideal gas. In symbols

Dlogt(m) _ 0. (N o)~ Y log(m) | s— 1@, (19

8TL]' - 877,]'

now, for to infer an analytical expression, from perspective of

d t . . .
7(1og(t))a (”_) = _i an log(n;) | , thermodynamlcs, it may be a(_jded two ther_modynamlc sys-
dt on; on; 3 tems with macroscopic entropiés and.S,, which sums to
1 ot(n) o ‘ S=258+5, (20)
W) on, ; on, (ni log(n))
On the other hand, because of multiplicative nature of the
_ Z (51_]_ log(n;) + ml%) 7 combinatoria_l properties dR, the sum over th€); and(,
; n; macrostates is
a;ff) = —t(n) (log(n;) — 1), (14) =00, (21)
. ]. . . therefore, applying’ over(2
then, this result is replaced in EA.2) to obtain
Q) = f(Q Q 22
—t(n;) (log(n;) — 1) — a — Bej = 0, f(2) = f() + (), (22)
a 3 (15)  where, it is derived with respe€t; for getting
log(n;) = ——— — —¢,; + 1,
t(ng)  t(ny) 0
where,n; is an extremal ot(n) under the restrictions im- (@) = df(th) + df(% (23)
o, o, AN

posed by Eq./3). This reasoning is what claims the second
law of the thermodynamics about the thermodynamic equithen, it is used the chain rule OVE(Q)=F(2,y).

librium relating to a maximum of the entropy function at a

given internal energy [16]. Remember thgtis one of the df () d(§1Q2) df(Q)Q _df() (24)
distributions inside the domain of possible distributions given dQ) aQ;,  dQ 2 dQ, -’

E. For thatn; is the distribution of energies in the ensemble

{(nj,e;)} such that, it does compatible with thé, V,T")

after that, it is multiplied side by side ky,

state given the constraints in Eq®).(Then, ag(n;) is the df (Q) df (Q1)
number of microstates in the ideal gas, it can be absorbed into Q a0 O} s, (25)
thea andg constants, namely
where, it was usefd = Q;Q,. Moreover, note that
log(n;) = —a — fe;, (16) 1
— (1 ==
where, it can be obtained directly d (log(z)) x’
d
ni=Ae o, (17) d (log(x)) = (26)
where, it has been changgdby i, andA = € ~%. The dis- 1 _ T
tribution n; is called as the Maxwell-Boltzmann distribution d (log(z))  da’

[17]. In this way, . . o N
so that, as long as there is a variable over its differential, it

Qny) N! (18) can be replaced by the reciprocal of the differential of its log-
I arithm. Using this one,
' 1 1
where, () is a function of the ensemblg(n;,¢;)}. As the mdf(m = mdf(fh)- (27)

optimization only outputs one critical distributian, it may
be asserted that does not exist more than one ensemble coiifien, it is derived again, this time with respectisg.
patible with the( P, V, T') state given the energy, when the

thermodynamic equilibrium has been reached. LN (df(Q)) __4 (df(Ql)> -0, (28)
dd2 \d(log(2)) /  dQ2 \ d(log({21))

4. Analytical expression of the entropy e,

At this moment yet, a complete understanding of entropy was w =k, (29)

unknown, but it was supposed that it was related with the d(log(2))
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wherek is a constant. This equation can be integrated imme- In this order of ideas, observe that, an expectation value
diately. of expressior! leads to equation

Q) = k log() + Qo, 30 .
L = los(E2) . BI) = p@)I(n:) = =Y _p(i)log (), (36)
finally, using the symmetry of the problem, it is compared @ i
with Eq. 22) and concluded thd2, = 0.
where,p, = n;/N is the probability of an event l.e. it is
f() = f(u Q) asked about a mean value of information in a long sample. A
— & log(Q192) + Qo clearly example is to guess the second letter of any random
(31)  Wword in spanish language. Where the variability at first is
=k log(Q1) + k log(Q2) + Qo

:f(Ql)+f(QQ)+QO, Hy = 7pa10g2pa7pb10g2pb*---
where it is observed tha, must be zero to be agree with — Pz logy p. = 4.04 bits, (37)
Eqg. 20). Then, the analytical expression for the entropy
stands but, if a hint is that the first letter of such word will be a zeta,
then the second letter of a spanish word is constrained to be
S =k log (). (32) g, “0” or “u”(since words with “ze” and “zi” at first are very
unlikely).

What was achieved with this exploration was to know that
entropy is proportional to the logarithm of the number of mi-
crostates of a systems when this have reached the thermody- Hy = —palogy pa — pology po

namic equilibrium. — py logy p, = 0.91 bits, (38)

5. Entropy in the information theory afterwards,

Information in the science of the information has the mean-
ing of the astonishment of get a particular message from a I = —(Hy — Hy) = 3.13 bits, (39)
set of possible messages. Namely, it is said that whether a

highly unlikely event occurs, then it has been gained morg o re it is said that it is the information gained after using
information than when occurs an ordinary event []. An OPEl4 o hint. because how. it is more likely to guess the word.
ative expression of this idea is ’ ’

P Because of the entropy stands a degree of the variability

I =—1log, (p(z)) . (33)  of the microstates of a system, the information may be de-
fined as
For example, let's suppose a tombola with 2 red balls
inside it, then whether it is chosen a ball from inside the I=—(Hs— Hy), (40)

tombola, the information gained is

I— 1o 2redballs\ logy(1) = 0 (34) where, H, and H; correspond to the entropy of a system in
%2\ Jtotalballs) B2 T two different states. Namely, it may be known the variability

o ) ) ) of the states of a system, but not the exact configuration of
that is, it hasn’'t been gained new information from the ex-thjs [19].

periment because the color of the next ball was known in ad- E thi i ¢ f the inf i
vance. Even more, there isn't exist a way to use this systerp m][nSh IS persg%czl\lle,hen trr?py 0 i _(tafln orn|1a 1on or en-
to contrast data, therefore it cannot be made a code. ropy of Shannon [20,21] has the explicit formula

Now suppose there is both a red and a blue ball inside the

tombola. This time, when it is chosen a ball from inside the H=— Zp(x) log, (p(x)) ) (41)
tombola, z
I = —log, _Lredball =1. (35)  which, can be derived from Eq32) as it will be demon-
2 total balls strated.

What this result means is that, this time it has been gained In order to make a more comprehensive explanation, sup-
1 bit of information. Information that can be useful to know pose a language, where the words can be encoded with just
the color of the next ball inside the tombola prior to drawn. bits and exhibits the probability distributigriz) of Table I.

Rev. Mex. Fis. E20010211



6 J. L. MANRIQUEZ-ZEPEDA, J. RUEDA-PAZ, P. D. FILIO-AGUILAR, AND L. OPEZ-GARGA

where the general form of this summation is the expectation
TABLE |. Coding of a source of information. Data obtained from value

example 1.1.2 in Ref. [20].
P [20] Elbitg = Zp )log (p(x)) , (45)
word codeword p(x)
mi 000 1/2 wherez is the length of bits in codewords. Surprisingly, it
ma 001 1/4 can be obtained a similar expression by expandin@lttesm
me 010 1/8 of the entropy formulas' using the macrostate of the distri-
mo 011 1/16 bution (n;, ;) of molecules compatible with a system in its
mu 100 1/64 thermodynamic equilibrium state (see E@8)),
pi 101 1/64 N
pa 110 1/64 S =k log(Q) =k log —
po 111 1/64 [Ini!

i

= _kz (nl log(n;) — n; 10g(N))

TABLE Il. Optimal coding of a source of information.

word codeword p(x) (”z )
=—k n; lo il BN 46
mi 0 1/2 Z SN (46)
ma 10 1/4 . L .
wherek = 1/N fulfil a normalization constraint over the en-
me 110 1/8 .
semble(n;, €;), which leads to the Shannon entropy formula
mo 1110 1/16 Eq. @1)
mu 111100 1/64 ’
pi 111101 1/64 S=>"plx;) log (p(x:)). (47)
pa 111110 1/64 i
po 111111 1/64 Therefore, entropy in the information theory is the ex-

pectation value of bits needed to code in an optimal way a
But, it is required to transmit encoded messages with théanguage.
most optimal dictionary through a channel of communication
in order to saving costs and resources. It is possible to create H(n;) = Ellog(p:)]- (48)

the next code to fulfil the goal (see Table II). This result is formally established in the noiseless coding the-

Where, the shortest elementvill be related to the most  orem stated by Claude Shannon which is a cornerstone in the
used word ini” because this helps to compact the messagessomputer and information sciences [21,22)].

Other words of the language are optimized in the same way
to build this optimal code. The expectation value of bits re-

quired to transmit messages with this code is 6. Whatis entropy then?

1 1 To answer this question, it can be asked about the relation
(1 bit) + 1(2 bits) + §(3 bits) among entropy of Boltzmanf and entropy of ShannoH.

4 Both seem to be the expectation value of the logarithm of a
(4 bits) + — (6 bits) = 2 bits (42)  probability density. Instead; is the expectation value of the

4 ensembldn;, ¢;).

2), 2 = log,(4) and so on with others, S(Q) = E[(ni, )] (49)

Elbits] =

— ®‘>—l I\J\H

Note thatl = log,
i.e

1 when a thermodynamic system has reached the equilibrium
—log,(8) of forces inside it. In some references associate this scenario
8 to the Heat Death of systems, when all interactions are in
+ 1 log,(16) + 4 log,(64) = 2 bits, (43) equilibrium and thus the §tate of the system does_ not.change

anymore [23]. Entropy raises toward a maximum in this con-
figuration because a high homogeneity among its microstates
grows over time. It cannot be used this system to make a

. 1 1 1 1 1 1 code because of this is a very plain source of information,
Elbits| = — log, <2) — 7108 (4> — glogs (8) and a code needs contrast among its states. By other hand,
a language system has its own rules that tends to yield a dif-

_1 <1> _4 ( 1 > — ferent distribution of its elements, hence, it is a different en-

log, log 2 bits, (44) , '
16 16/ 64 64 tropy than in the thermodynamic systems afiddoes not

. 1 1
Ebits] = 5 logy(2) + 7 log,(4) +

that is the same that

Rev. Mex. Fis. E20010211
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raise to maximum [24,25]. This entropy is a measure of the
variability of elements in a language that is available to code
data [26].

Other topic associated to the entropy is related to the mea-
sure of disorder. Let's see a friendly example to understand
it: Think in your work office. When the cleaning man goes -
to tidy up your office, he puts all thing in the proper places. 10
For instance, he saves the pens in the drawer of the desk and
the notebook in the shelf. The cleaning man tells you that thé-IGURE 4. Scheme of maching where it is filled boxes with 27
office is ready. Then, when you go to work, you always leavemarbles. Picture adapted from example 3.1.1 in Ref. [27].
the notebook and pens over the desk, next the computer. If
someone asks the cleaning man, where is it the notebook? He
would say that is over the shelf. But, the actual situation is 0 @_> 12
that the notebook and pens are over the desk, next the com-
puter. Whatever the reason that changes a system, new rules
tend to set a new order. Then, entropy can be used to contrast
the degree of variability of the states in any system, where the -

order inside the system is a concept that depends of the rules. .
From the perspective of the cleaning man, entropy is equal
0 stands the office is tidy, while entropy equafmeans the EGURE 5. Scheme of machind where it was allowed that the

office is messy. But, in Co_ntrast, for.you, the e,”_”ﬁ’py i.s €quaiyarbles pass through the pipes. Picture adapted from example 3.1.3
0 when you know where is every thing, even if it implies the j, pe. [27].

office is messy.

As areconciling concept it is proposed that the entropy is It may be filled M with 27 marbles as in Fig. 4. This
a measure of the variability of the states or the element of @onfiguration is called; .

system given the rules that operate over it. Then, it is allowed the marbles go through pipes4
changes to the configuration calléd (see Fig. 5).
7. The von Neumann entropy Namely M turns the configuratio; into Cs.
The entropy for quantum systems is known as the von Neu- 6 0
mann entropy and its expression is ? 102
s |- (51)
H = ~Tr (5 og (7)) (50) ; X
10 9

wherep stands for the density matrix of a quantum system.
In order to explain this formula, some concepts in quantum

mechanics are introduced. It is possible to describing the machind by the matrix

7.1. Quantum systems A B CDEF
Think in a marble machine (see figure Fig. 3) with six A 0 00 0O0O
boxes inside it. The boxes are connected by pipes. The ar- B 00000 O
rows indicate the direction that marbles take whether let them
pass through the pipes . .
' Mij=D | 000 100
A B b——-{ E 0 01 00O
F 1 000 10
this is accomplished by puttinglain the entry(s, j) of M; ;
provided a box is connected by a pipe with a bg»or with
D E F itself. For example, entry3, 1) has al because bo¥ has a
—| ;
connection toward’.

FIGURE 3. Scheme of maching1. Arrows represent direction that After that, is possible to retriew€; doing

marbles will take whether let them pass through the pipes. Picture
adapted from example 3.1.1 in Ref. [27]. M; ;Cy = Cy, (52)

Rev. Mex. Fis. E20010211
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or, in matrix form, where it is encoded and | as1 and —1 respectively. This

00000 0 6 0 measures are called the eigenvalues of the opefatdfhe
eigenvalueg )\;} are related with the eigenstatgs);)} b

SO N (S T genvalues\;} genstatgls)} by
01 0 0 0 1 1 12 N
cooo1o0o0lls!=ls] ©3 Alpi) = N [9i) (56)
001 00O 3 1
1 0 0 0 1 0 10 9 where, this formula is a symmetry of quantum systems that

allows a remarkable simplification to solve most of the quan-
Above, it is showed how to describe a discrete system byym mechanics problems [28].

mean of the matrix formalism. Quantum systems also can be The eigenstates are the possible configurations that can

described in the same fashion. Where,_the behaviour of thfake a quantum system, to better understand this, remember
guantum systems are modeled by matrices called operatorg

for inst it is defined th tér That ¢ ¢ oth theC; and C; column vectors in the marble machine
or instance, 111S defined the operatar That operator acts - - o eigenstate is an abstract representation of the state
over a column vector called state vector (for instahtg),

. . of all the system, for this reason, an eigenstate and an eigen-
which turns.the state V?thi> into a new state vectdt);) value are related, but they are not the safm, thinking in
[27]. Thus, it can be written as

the marble machin@, what are you measuring?.

Algy) = ;) (54) In order to solve the eigenstates of an observahléhe
characteristic equation must be solved. Eorthe eigenval-

where A transforms the configuration;) into the configu-  ues arg{1, —1} and its eigenstates are
ration|;) in the same way thal/; ; transforms’; into Cs.

1 0
7.2. Eigenvalues and eigenstates 10) = <0) = (1> ; (57)

For a simple explanation of all the context In quantum me-, e the pirac notation is used in the left side of equations
chanics the quantum p_rqperty known as spin can be takgn 45 short the notation, which is common in quantum mechan-
an example, although it is worth mentioning that there exist
many more. The spin is an angular momentum property OT‘C
electrons with two possible configurations, spimnd spin
1. It can be viewed in a Stern-Gerlach experiment when
a beam of electrons passing through a non-homogeneon
electromagnetic field is deflected into two directions. (See
scheme of Fig. 6). Quantum systems are fragile, with only watch them they are
The measurements of a quantum system can be used &fer them. How can be measure something that it cannot be
build an operator that represents this property, by puttindgooked? To solve this big problem, in quantum mechanics the
these along the diagonal of a matrix. So, in this manner, thigaradigm is that always it is measured a quantum system, is
operator is called observable. For instance, with the discretBossible to get any measurement the system may take. Let's
outputs] and | in the Stern-Gerlach experiment, the observ-100k how it works with a funny example: imagine a Christ-

3. The state vector

able operator is mas swapping of gifts, where people agreed the possible gifts
will be scarves, gloves and cups. You received your gift in-
5 (1 0 side a present box. What is the present into the box? From the
Z = ) (55) . - -
0 -1 perspective of the quantum theory, the gift is a probabilistic

superposition of the three gifts (see Fig. 7).
Then, when you look inside the present box, it is said that

W the probabilistic wave function collapses and the gift rebuilds

itself taking the form of actual gift. That is only one manner

T to model nondeterministic problems in quantum mechanics,

Beam of electrons / Gatherer nobody has told that physically your gift undergoes a matter
— transmutation.

\ screen
‘ h 2
&)=0|R)+fle)+V|®)
FIGURE 6. Scheme about the experiment of Stern-Gerlach. Picture

adapted from similar in section 14 of Armando Magz Tellez’s FIGURE 7. Pictorial representation of the superposition of quantum
blog: la-mecanica-cuantica.blogspot.com states|a|?, |8)* and||? are the probabilities of get every gift.
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38 TR LA
Y 'r" '4‘., "l‘j‘

v IR R 57 FRS 0, o

FIGURE 8. Projected spectrum over gatherer screen in the Stern-Gerlach experiment. a) picture shows no dispersion of beam when nor
electromagnetic field is present. b) picture shows the effect of activate the non-homogeneous electromagnetic field over the beam of electron:
It can be viewed two symmetrical populations on the vertical axe. Picture obtained from section 14 of ArmarideaViatiez’s blog: la-
mecanica-cuantica.blogspot.com.

The superposition of possible states a system can take ihere the state vectdi)z) is multiplied by its conjugate
called the state vector of a quantum system. For example, fdransposéz|. In matrix form,p is
one electron in the beam of the Stern-Gerlach experiment, the

spin-electron quantum system may be 11
2 2
[tho) = |0) the spin-electron i$ , pz = L (60)
|t1) = |1) the spin-electroni$ , 3 3
1 1 . . . . .
[the) = 7 |0) + 7 |1) either it can be one or other It can be viewed that, over the diagonal @f, it reads the
2 2 values:(1/2,1/2). These are the values of probabiliyz)
1 2 ) o associated to gat and—1 in the Stern-Gerlach experiment
[¢3) = 3 10) + 3 1) likely the spinis| , (Look at the Fig. 8) [29]. Which means the population

of electrons with spinf and electrons with spiy are 50-
|¢4>:\/I|0> +\/§|1> almost sure the spinis  (58) 50% pgr_cen@ re_spe_ctively. This last is t_he_evidence that_ the
b 3 probability distributionp(z) of electrons inside the beam is
where, all the above are examples of state vectors, wherg(1) = 1/2,p(|) = 1/2).
weighting factors left to eigenstates in E(G8) ensure the

normalization of the probabilistic function. 7.5. The von Neumann entropy formula

7.4. The density matrix As it was demonstrated, the eigenvalues of an operator are

We now are interested in finding out the probability distribu-the measurements of an experiment, in this way, it is natural

tion p(x) of the spectrum of possible eigenvalues a quantun{0 say that the probability distributigi(z) is the diagonal of

system can take. This distribution is found in the density ma—fhz .t Z[\lefverthel_ess, dlt must bet mteddtlh% IS not the sa:ne
trix p. That is a generalization @f z) in the classical world. atz, formeris a density matrix and latter is an operator.

Returning to the spin-electron quantum system example, it In order to get the von Neumanq entropy. From the Shan-
can be built one of the possible density matriggsby tak- non formula of the entropy (Eg40)) it expands the summa-

ing one of its state vectors (for instance E&8)¢|v2)) and tion
multiplying in this wa
pying Y H=—p1 logy(p1)—p2logy(p2)— -+ — pnlogy(ps), (61)
o 01 = (LY (0L 01
V2 V2 where each entry gf(z) is an eigenvalug ;. Hence
0) (0] +10) (1] 4 11) (O] + |1) (1
- e B |2| e H==1logy(A)—Aslogy(Az) - = logy (M), (62)
=Pz, (59)  where using the trace it can be simplified as
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=1 logy (A1) coherent
=Xz logy(A2) terms
H=Tr .
coherent .
i terms —Anlogs (M)
[ =X\ logy (A1)
—/\2 1Og2(/\2)
=Tr
i -\ log,(An)
)\1 /\1
)\2 )\2
=-Tr . log, . ) (63)
An An

where it must be noted that the matrix is a density matrix
hence I
. . 8.1. The mixed state
H = ~Tr ( 1ogy(p)) (64)
: In other hand, if a quantum system was a mix of two type of
that is th N t f la [30]. .
atis the von Neumann entropy formuila [30] pure states (for instance EG8) -|¢) and Eq. 68) -|1)s)),
then this system must be described by the sum of the density

8. Applications of the von Neumann entropy  matrix of each individual systen.e., if gy = |) (14| and

in quantum computing P2 = |19) (o], @ weighting sum of these density matrices is

The von Neumann entropy has important applications in 1710 +1 % %

guantum information theory, particularly in the develop- P=35\0 o 2\s5 3

ment of both the Holevo-Schumacher-Westmoreland theorem 3/4 1/4 1

(HSW) and the Loyd-Shor-Devetak (LSD) formula which are p= (1/4 1/4) LA = - (\/5 + 2) ,

milestones in quantum communications [31]. Here it is ex- / / 4

posed some simple cases where the von Neumann entropy is Ny — 1 59— 3 67

used to measure the variability of the density matrix. 271 ( N ) ’ (67)

For example, a state vectpp), = |0) with density ma- . .

trix where, it has been calculated the eigenvalueg tf stress
) 1 1 0 that this time, the eigenvalues do not correspond to the possi-
po = 10) (0] = 0 (1 0) “\lo o ble measurement of the system, simply because they are two

has entropy mixed systems. But now,
H = —(1)log,(1) — (0)logy(0) =0, (65) o ,i (V2+2) log, (i (Va+ 2)>

where it is said that none information will be gained if

measuring this system. Namely, since it was previously 1 (2 ~_V9) 1 1(2 _ V5

known the state of the quantum system, it is not surpris- 4 \[> %82\ % \[)

ing that entropy is zero. Other case is state veptor, =

(1/4/2) 10) + (1/4/2) |1), where the eigenvalues @f; are = 0600876 bits, (68)
{A1 =1,z = 0}. In this scenario where the weighting factors left to matrix densities is the
H = —(1)logy(1) — (0)log,(0) = 0, (66) probability of finding these states in the ensemble. In this

S _ . . case, the entropy is used to determine that the system is not a
where again, it will not be gained new information at measurpyre state.

ing the system. This is because, from the perspective of the

quantum mechanics, the superposition of two states is a puge2.  The entanglement

state of the system in their own right, therefore there must not

be a surprise that a measurement of this system willdig] . Other example of von Neumann entropy is evaluating the de-
That is to say, in quantum mechanics is natural to talk abougree of entanglement in multipartite quantum systems in non-
undetermined states. inertial frames [32]. Entanglement is a quantum property that
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does not have analogous in the classic world. The quantum®®} Entropy
world exhibits new physical rules that cannot be perceived in |
the classical due to a statistical vanish. =2 p
When the spins of two electrons interact, they flip its spin 4
to fulfil with the angular momentum conservation law to sum 1s- P3
zero [33]. In this way, two electroreg ande, form a bipartite
pure state called a singlet staté{)). 10 P>
In general, a singlet statgs) can consider 4 possible 7
configurations: sl P1
e [0),, ®]0),,,e1isspinT, eq is spint [ /
e [0), ®]1), ,e1isspinT, ez isspin| 00 02 04 . o8
“ e o acceleration
* 1), ®10),, e isspinl, ey is spin] FIGURE 9. Comparison of entropy of von Neumann as ope)(
; ; ; ; two (p2), three ps) and all (p4) observers are non-inertial. The ac-
1 1)_,e1Isspin], es IS Spin S .
| Jor @1 >‘32 cuisspinl, ez 1s spin| celeration is parameterized by an angle [0, 7/4] ascosr; =
So, a state vectdt)s) should be (1 + e~2mwic/ai)=1/2 ‘wherew = \/k2 +m? anda; is the ac-

celeration of the qubits. Picture adapted from figure 6 in R&f. [
[s) = co,0|0),, ®10),, + o1 (0),, ® 1),
+cio |1>e1 ® |0>e2 +cin |1>e1 ® meg ) (69) acceleration increase, which translates into the loss of entan-

where coefficients; ; are weightings that ensutes) there glement of the tetrapartite systems.

be normal. Nevertheless, because of the conservation la 53 The ch | it
only the antiparallel configurations are allowed duid) ac- " € channel capacity

tually is of the form Other relevant example it can be shown about issues of en-

tropy is the channel capacity of a bipartite quantum system.
W) =01 [0)e, @ e, +er0lL)e, ® 100, (70) ngwtum channel capapcity é the mgximurr?rate of inf)(/)rma-
Then, take attention in noting that, whether it is measured thgon it can be transmitted with no error using a quantum sys-
spin state of the electran and getg (|0)), it can be asserted tem [36]. One analytical expression for quantum channel ca-
that the spin state of the electrepis | (]1)), without actu-  pacity is
ally measuring this. It is proposed the follow definition of

entanglement:; Cp =log, D+ H(py) — H(pav), (71)
The entanglement is a phenomenon in quantum world wherghereH is the von Neumann entropy aifitlis the dimension
the physic conservation rules constraint several of density operatop,. This expression is useful for calculat-
configurations in the state vector and increase ing the channel capacity of a bipartite system, but there also
overwhelmingly the probability to detect certain quantum exist proposals to calculate quantum channel capacity in mul-
states in a bipartite systems. tipartite quantum systems greater than two [37].

The entanglement is used in almost all quantum informa-
tion task, as: quantum cryptography, data compression, qualy  Remarks and conclusions
tum communications and teleportation [34], due that, there is
so much interest on it. Moreover, as the relativistic effectsThe entropy concept born with the mystery inside a Carnot
of infinite accelerations affect the entanglement, there existiachine. When the methodology relate causes with effects
interest in investigating the entanglement of quantum statefils, and an ideal gas continues expanding despite the sup-
in non-inertial frames. The entropy of von Neumann can beply of heat has been removed of system. Thinkers of the
used to measure the loss of entanglement in a multipartitaineteenth century suspect about an internal transformation
guantum systems because the density matrix tends to mix &g ideal gas. The transformation was related with the ther-
become more non-inertial [35]. For example, in a tetrapartitenodynamic equilibrium and the time needed to reach it. The
guantum system of a GHZ state in a non-inertial frame thdormalism of the state functions leads to propose a new state
loss of entanglement when one, two, three and all partiefunction called entropy. Further on, the statistical formalism
are non-inertial can be described as function of a parameteaf thermodynamic helps to derive a distribution of molecules
r € [0, infty] associated to the acceleration (see Fig. 9). inside the ideal gas, where the state function results out to be

This plot shows the cases of the density matrix whenthe expectation value of the logarithm of the microstates asso-
one non-inertial observerp(), two non-inertial observers ciated to the distribution of the molecules. From the formal-
(p2), three non-inertial observergs)) and all non-inertial ob-  ism of the information theory the entropy was used to char-
servers f4). Entropy functions of the systems increase asacterize the variability of the elements in a language, in this
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way, the difference among the entropy of Boltzmah@and come in a drawn. But it is needed to contrast the elements
the entropy of ShannoH is that the variability of elements of a system, in order to create a code. So, be careful with
in a thermodynamic systems tends to an homogeneous dithis, whether the system is nondeterministic, then the natural
tribution when rules inside the systems reach its maximumelements of the system are inherently a superposition of its
while the distribution of a language depends on the optimapossibilities. Order and arrow of time are applications of the
code to transmit or store the data. concept of entropy because rules over the system impose a
The core of the entropy concept rely on: to define a sysecertain distribution of the elements further on the time. Many
tem and the rules that act inside it, to wait up until the in-uses of the entropy were reviewed to stress the importance of
teractions among elements of the system spread out over tliee concept for instance, the entropy concept has been very
system and at the end ask about the distribution of elementaseful to measure the entanglement and channel capacity on
High entropy means high variability of elements in a distri- quantum states. Where both are relevant in the development

bution, then it is said that is very uncertain an specific out-of new quantum technologies.

. Zemansky, Heat and Thermodynamics. (McGraw-Hill, 1957). 17

. M. Hayashi, Quantum Information, an Introduction. (Springer,

1957).

. L. Boltzmann, On the Relationship between the Second Funda-
mental Theorem of the Mechanical Theory of Heat and Proba-
bility Calculations Regarding the Conditions for Thermal Equi-
librium (1877), Sharp, Kim, and Franz Matschinsky. 2015.

3. F. Tamburini and I. Licata, Relativistic Quantum Information Translation of Ludwig Boltzmann’s Paper.
(Mdpi AG, 2020). 18. L. Brillouin, Science and Information Theory (Academic Press,

4. W. C. Qianget al., Entanglement property of the Werner state 1960), EUA.
in accelerated frameQuantum Information Processing8 19. D. Welsh, Codes and Cryptography (Clarendon Press, Oxford,
(2019) 1 England, 1988).

5. L. Garda-Coln, Y sin embargo se mueven... Teocireticade  20. T. Cover and J. Thomas, Elements of Information Theory
la materia. (Fondo de Cultura Edamica, 1955). (Wiley-Interscience, 2006), EUA.

6. W. M. Saslow, A History of Thermodynamics: The Miss- 21. C. E. Shannon, A Mat_hematical Theory of Communication,
ing Manual, Entropy 22 (2019), hitps://doi.org/10. The Bell System Technical Jourrg (1948) 379.
3390/e22010077 22. M. M. Wilde, Quantum Information Theory (Cambridge Uni-

E. T. Jaynes, Information Theory and Statistical Mechanics,
Phys. Rev106(1957) 620https://doi.org/10.1103/
PhysRev.106.620

J. Haglund, F. Jeppsson, and H.&@tdahl, Different Senses
of Entropy-Implications for Education, Entropy 12 (2010) 490,
https://doi.org/10.3390/e12030490

A. Ben-Naim, Entropy and Information Theory: Uses and Mis-
usesEntropy21(2019), 10.3390/e21121170

24. Q. A. Wang,

25.

versity Press, 2017), United Kingdom.

23. G. Kutrovatz, Heat Death in Ancient and Modern Thermody-

namics,Open Systems Information Dynamia8 (2001) 349,
https://doi.org/10.1023/a:1013901920999 |

Probability distribution and entropy as
a measure of uncertainty (2008),https://hal.
archives-ouvertes.fr/hal-00117452 , 11 pages.
To be published in J. Physics A : Math. Theor. (2008).

E. Kharitonovet al., Entropy Minimization In Emergent Lan-

10. M. M. Kostic, The Second Law and Entropy Misconceptions ~ guages (2019)https://doi.org/10.48550/ARXIV.
Demystified, Entropy 22 (2020), https://doi.org/10. 1905.13687 |
3390/e22060643 26. O. Gandrillonet al., Entropy as a measure of variability and
11. R. Gaudenzi, Entropy? Exercices de St@atropy21 (2019), stemne_ss in single-cell transcrllptomlmrrentOplnlon In Sys-
https://doi.org/10.3390/e21080742 tem?:;)(')gﬂ%;(gggl) 1{ntips://doi.org/10.1016/
J.coisb. .05.
12. C. H. Bennet, Notes on the history of reversible computation,27 N. Yanofsky and M. Manucci, Quantum Computing For Com-
IBM Journal of Research and Developm@it(1988) 16. puter Scientist (University Press, 2008), pp. 133-136, EUA.
13. L. Garda-Coln, De la Maquina de Vapor al Cero Absoluto 93 R. Lemus and A. O. Hemdez-Castillo, Symmetry projection,
(Fondo de Cultura Ecdmica, 2011), xico. geometry and choice of the basRev. Mex. Fis. B51 (2015)
14. L. Garda-Coin, Introduccon a la Fsica Estattica (El colegio 113.
Nacional, 2011), Mxico. 29. T. A. Martinez, La Meénica Cuantica: El experi-
15. C. M. Bishop, Pattern Recognition and Machine Learning mz?r?eciaﬁég-cc;jg:t? Qa b?on(;g]p?ott;lgi /2((2)88?) , URILD:
(Springer, 2006), Singapur. 08/e|-experimento-stern-gérlach.html,
16. E. T. Jaynes, Gibbs vs Boltzmann Entropi&sjerican Journal Http://la-mecanica-cuantica.blogspot.com/

Of Physics33 (1964) 391.

2009/08/elexperimento-stern-gerlach.html

Rev. Mex. Fis. E20010211


https://doi.org/10.3390/e22010077�
https://doi.org/10.3390/e22010077�
https://doi.org/10.1103/PhysRev.106.620�
https://doi.org/10.1103/PhysRev.106.620�
https://doi.org/10.3390/e12030490�
https://doi.org/10.3390/e22060648�
https://doi.org/10.3390/e22060648�
https://doi.org/10.3390/e21080742�
https://doi.org/10.1023/a:1013901920999�
https://hal. archives-ouvertes.fr/hal-00117452�
https://hal. archives-ouvertes.fr/hal-00117452�
https://doi.org/10.48550/ARXIV.1905.13687�
https://doi.org/10.48550/ARXIV.1905.13687�
https://doi.org/10.1016/j.coisb.2021.05.009�
https://doi.org/10.1016/j.coisb.2021.05.009�
http://la-mecanica-cuantica.blogspot.com/ 2009/08/el-experimento-stern-gerlach.html, Http://la-mecanica-cuantica.blogspot.com/ 2009/08/elexperimento- stern-gerlach.html�
http://la-mecanica-cuantica.blogspot.com/ 2009/08/el-experimento-stern-gerlach.html, Http://la-mecanica-cuantica.blogspot.com/ 2009/08/elexperimento- stern-gerlach.html�
http://la-mecanica-cuantica.blogspot.com/ 2009/08/el-experimento-stern-gerlach.html, Http://la-mecanica-cuantica.blogspot.com/ 2009/08/elexperimento- stern-gerlach.html�
http://la-mecanica-cuantica.blogspot.com/ 2009/08/el-experimento-stern-gerlach.html, Http://la-mecanica-cuantica.blogspot.com/ 2009/08/elexperimento- stern-gerlach.html�
http://la-mecanica-cuantica.blogspot.com/ 2009/08/el-experimento-stern-gerlach.html, Http://la-mecanica-cuantica.blogspot.com/ 2009/08/elexperimento- stern-gerlach.html�

30.

31.

32.

33.

34.

THE ENTROPY OF SYSTEMS 13

M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, 2010),
United Kingdom. 35

M. Hsieh and M. M. Wilde, Entanglement-Assisted on Infor-
mation Theory Communication of Classical and Quantum In-
formation,|IEEE Transaction£6 (2010) 4682.

Q. Donget al, Tetrapartite entanglement measures of GHZ
state with uniform acceleratiof®hysica Scripte94 (2019) 1,
https://doi.org/10.1088/1402-4896/ab2111 | 37

J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics
(Addison-Wesley (Jim Smith), 201), pp. 199-245, EUA.

U. Pereg, C. Deppe, and H. Boche, Quantum broadcast charss.

nels with cooperating decoders: An information-theoretic per-

J.

36.

spective on quantum repeatetls, Math. Physic$4 (2021),
https://doi.org/10.1063/5.0038083

A. J. Torres-Arenast al., Tetrapartite entanglement measures
of W-class in noninertial frame&hinese Physics B8 (2019)
1.

C. H. Benettet al, Entanglement-assisted classical capacity
of noisy quantum channelBhysical Review Lettei®3 (1999)
3081.

. A. Sagheer and H. Hamdoun, Some Properties of Multi-Qubit

States In Non-Inertial Frames, In IEEE Symposium on Swarm
Intelligence (SIS) (2013) pp. 141-146.

D. McMahon, Quantum Computing Explained (Wiley- Inter-
science A John Wiley and Sons, 2008), EUA.

Rev. Mex. Fis. E20010211


https://doi.org/10.1088/1402-4896/ab2111�
https://doi.org/10.1063/5. 0038083�

