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In this work we calculate the ground state energy of the hydrogen atom confined in a sphere of penetrable wallsif.rhdiigke the sphere

the system is subject to a Coulomb potential, whereas outside of it the potential is a finite cbhsEm energy is obtained as a function

of R. andV,, by means of the Rayleigh-Ritz variational method, in which, the trial function is proposed as a free particle wave function
within a finite square well potential but including an exponential factor that takes into account the electron-nucleus Coulomb attraction. For
an impenetrable spherg; = oo, the energy grows fast d&. approaches zero. On the other hand, when the height of the birifinite,

the energy increases slowly & goes to zero. We also compute the Fermi contact term, nuclear magnetic screening, polarizability, pressure
and tunneling as a function @t. andV,. As expected, these physical quantities approach the corresponding values of the free hydrogen
atom asR. grows. We also discuss the pressure-induced ionization of the hydrogen atom. The present results are found in good agreemen
with those previously published in the literature.

Keywords: Confined hydrogen atom; penetrable confinement; polarizability; nuclear magnetic screening; pressure-induced ionization;
tunneling.
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1. Introduction Over 80 years ago, Miche&t al.[10] proposed the CHA
model in which a nucleus of positive charge is clamped at the
There are few examples in quantum mechanics for which theenter of an impenetrable sphere of radiyswith an elec-
Schidinger equation has exact solutions. Otherwise, on&on moving inside. The impenetrable walls were proposed to
ought to resort to approximate methods. Of these, one of theimulate, in first approximation, the potential exerted by other
most widely used is the Rayleigh-Ritz variational method, of-charges surrounding the hydrogen atom. Micletlal. [10]
ten simply referred to as the variational method. This methodvere chiefly interested in studying how the polarizability of
is mainly used in problems that do not have analytical sothe hydrogen atom changes when subjected to high pressures.
lutions or when they are very laborious and difficult to ob- However, it is known that this type of confinement overesti-
tain, or in cases where approximate values of the energy ariates the observable effects, and therefore, it has been sug-
wave functions are only required. The variational methodgested that a soft confinement (a cavity with penetrable walls)
has been utilized since the early days of quantum mechanwould be a model with a more realistic physical meaning.
ics and it has successfully been applied to the study of free In the late 70’s, Ley-Koo and Rubinstein [11] used the
systems and those subject to any form of spatial constrairfhodel of a hydrogen atom confined in a spherical box with
(confined). The quantum confined systems are of much inpenetrable walls to explain the experimentally obtained re-
terest due to its wide variety of applications for modelingsult for the hyperfine splitting of atomic hydrogendrquarz.
physical phenomena such as potential wells, wires and quarthough they found analytic solutions for the corresponding
tum dots, electronic structure of atoms and molecules subje&chibdinger equation, the energy values were obtained nu-
to external high pressures, specific heats of crystalline solidgerically by solving a transcendental equation. They also
under high pressures, atoms trapped in cavities, nanoporesmputed the nuclear magnetic screening, the Fermi contact
and into fullerenes, among others [1-25]. Recent progress oie¢rm, polarizability and pressure as a functionffand V.
the field of confined atoms and molecules can be reviewed iMontgomery and Sen [12] improved the theoretical develop-
Ref. [24]. As for example, much emphasis has been placed iment of Rubinstein and Ley-Koo [11], whereas other authors
the study of Shannon entropies [19-22], as well as the studysed the variational method with a different trial wave func-
of spectroscopy of confined atomic systems [18] and the us#on to solve this problem [25, 26].
of various methods for solving these problems. A large listof  The pedagogically oriented articles addressing studies on
applications can be found in reviews and books on the subje¢he confined hydrogen atom are rather scarce in the litera-
[1-8,24]. Only few articles have been published with a ped4ure, as we mentioned above, and furthermore, in most of
agogical point of view, addressing the study of the confinedhem, the physical system is assumed to be confined within
harmonic oscillator (CHO) and the confined hydrogen atormen impenetrable cavity [26-30]. The purpose of present work
(CHA) [26-32]. is to study the confined hydrogen atom inside a soft spheri-
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cal box by using the Rayleigh-Ritz variational method, where  Continuity of the first derivative of the wave function can
the trial function consists of a modified free-particle-in-a-boxbe written in terms of the logarithmic derivative/dt, for the
solution. We calculate some physical properties such as th@ner wave function,

hyperfine splitting, nuclear magnetic screening, polarizabil-

ity, pressure and tunneling through the barrier as a function R;(Rc) v j1(ym)

of the position and the potential height. Ri(R.)  Rejo(ym) - 7
This work is organized as follows: in Sec. 2 we pro-
vide some details on the calculation of the confined hydrogeand the outer wave function,
atom ground state energy and some physical properties as a )
function of R, andVj by using the Rayleigh-Ritz variational R.(R:) - 1 ®)
method. In Sec. 3 results are shown and compared with those R.(R.) R,
reported in the literature. Finally, in Sec. 4 we give our con-
clusions. Continuity of both logarithmic derivatives througR..,
leads to
2. Methodology gy (ym) 1
B=a+t s . ©
Rcjo (777) c

The confined hydrogen atom Hamiltonian in atomic units is

given by Therefore, only two independent variational parameters

1, are needed. On the other hand, one should bear in mind that
H = _§V + Ve @D for any physically acceptable wave functighmust be> 0.

) ] ) ) The energy functional in the variational method is given
The potential energy associated with the soft spherically,,).

confined hydrogen atom is given by a Coulomb term inside

the box 0 < r < R, whereR, is the confinement radius), (R|T|R) + (R|V,|R)
and a barrier of constant heighi§ outside the boxr > R..). E(a,7) = (RIR]) ; (10)
1
V. — —m 0Sr< R ) in which, the overlap integral is
Vo, 7> Re
R oo
For the ground state of the system we use the following (R|R) = /R;‘Rﬂ?dr + /R:Rer2dr. (11)
trial function,
0 R.
—Qr ’Yﬂ'r . . . . -
R; (r) = Ae”""jo < R ) , 0<r<R, ) The kinetic energy integral is given by:
and Re
B y 11d(,d, 9
e*ﬁ"' <R|T‘R> = /R,L (_27’2d7’ (T d’rRl>) redr
R.(r)=1B T > R,, (4) 0
where A and B are normalization constants and 3 andy n /R: (_11261 (r2dR8)> Pdr. (12)
are variational parameterg, refers to the zeroth order spher- 2 2r2dr dr

ical Bessel function [33].
Factor.e“” tgkes into account the nucleus-electron ;4 the potential energy integral by:
Coulomb interaction. It = 0, Egs. B) and @) correspond
to the wave function for a free particle in a finite spherical R,
1
well [35,36]_. _ o o (R|VL|R) = /RZ‘ <—> Rir?dr
The radial wave function and its first derivative are con- T
tinuous in all space, in particular at= R.. By requiring 0

continuity of the radial wave functions through the boundary I
R., one has +/R:V0Rer2dr. (13)
R,
R; (Rc) =R, (Rc) ) (5)
The optimal energy is obtained by minimizing the energy
which leads to a relation betweehand B functional with respect to variational parametersand .
_ (B—o)R The optimization was carried out by using the command
B = ARcjo(ym)e (6)  FindMinimum of Mathematica 11.
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Physical properties _ 1 dE

Y Prop P= 4TR2 dR, (17)
Once obtained the optimal ground state energy and the corre-
sponding variational parameters and~, we can calculate 5. The tunneling probability of the electron given by the
some physical properties. Those we have chosen to calculate  right hand integral in Eq1(1)

in this report are:

1. The hyperfine splittingd, given by the Fermi contact I )
term [11, 25] p(r>R.) = / Ry Rer=dr. (18)
Re
A= (2/3) gBgnBa| R (0)[". (14)
3. Results

2. The nuclear magnetic screening [11, 25], given by the
diamagnetic screening constant In Table | are shown the optimal values for the variational
parametersy and-~y, and the ground state energy eigenval-

5 uesE of the system, for different radi. and barrier heights

__° - <r—1>. (15) Vo = 0, 2 and5 Hartrees. These eigenvalues are compared
3pe with those reported by Mam and Cruz [25], who also utilized
the variational method but with a different trial function. We

3. The polarizability in the Buckingham’s approxima- k |
tion [37] also compare our values with those of Ley-Koo and Rubin-

stein [11], whose results can be considered exact up to the
reported numerical accuracy. As can be seen, there exists
a good agreement between the eigenvalues obtained by the
Rayleigh-Ritz variational method by using the here proposed
trial function and the results previously reported by other au-
thors [11, 25].

ag=2 6(r2)” +3(r%)" = 8.(r) (r®) (*)

16
3 9 (r2) — 8(r)* (16)

4. The pressure computed by

TABLE |. Ground state energy of the confined hydrogen atom inside a penetrable spherical box of réiwnd barrier heigh?j.
Distances are given in Bohrs and energies in Hartrees. Energies obtained in this work in comparison with those reportedamnd Mar
Cruz [25] and Ley-Koo and Rubinstein [11].

R. a v E Ref. [25] Ref. [11]
Vo=10
0.83155 0.9207 0.3504 —0.0312 —0.0313 —0.0313
1.00000 0.9027 0.4001 —0.1249 —0.1250 —0.1250
2.04918 0.8946 0.4967 —0.4362 —0.4366 —0.4367
4.08889 0.9714 0.3749 —0.4978 —0.4979 —0.4980
5.77827 0.9959 0.1884 —0.4999 —0.4999 —0.4999
Vo=2
0.50746 0.8700 0.4306 1.9606 1.9607 1.9606
0.59179 0.8388 0.4891 1.7149 1.7149 1.7147
1.00791 0.7635 0.6382 0.5014 0.5003 0.5000
4.90402 0.9296 0.6550 —0.4966 —0.4973 —0.4980
5.75669 0.9641 0.5410 —0.4989 —0.4992 —0.4995
Vo=5
0.42945 0.8202 0.5068 45915 45927 4.5914
0.50502 0.7859 0.5638 3.8585 3.8593 3.8580
1.55982 0.6858 0.8006 —0.0195 —0.0247 —0.0247
5.06334 0.9089 0.7534 —0.4959 —0.4971 —0.4980
5.49360 0.9307 0.7077 —0.4975 —0.4983 —0.4990
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The energy eigenvalueB(R.) grow as the box radius For boxes of certain particular radii the energy eigenval-
decreases; however, in order for the electron to remain in anes are higher for higher values &, that is, for less pene-
atomic bound state the energy mustie< V. Atthe same trable walls. AsR. increases, the energy eigenvalues asymp-
time, this gives rise to the fact that, for a fixed valdg the  totically approach those of the free hydrogen atom.
electron remains in a bound state only for boxes whose ra- For most of the confinement radii and barrier heights, the
diusR. > R..i; , WhereR,,.;; is the critical radius at which calculated energies with the trial function used in this work
E =V,. ForVy = oo the energy grows, apparently without are equal or they are slightly higher than those obtained by
limit, as R. — 0. Marin and Cruz [25]. Just for small radii and very high bar-

riers we obtain lower energies.
Hyperfine splitting constant _Ip Figs. 1 to 4 we shov_v the behavior of .the .h_yperfine
i , splitting A, nuclear magnetic screening polarizability «,
: pressure” and tunneling probability as a function &, re-
;{ spectively, for different values df;.

500

=

For a fixed value ofl; and large confinement radii
ando tend asymptotically to the free hydrogen atom values
T (A = 50.762 mT ando = e?/3uapc?). As the confinement

i radius decreases, these quantities grow monotonically up to

T

400

-

‘\ =V =1 . . .
- - a maximum value, and then this quantity decreases fast as

'-,‘ szl net R, approaches to the critical radilig,;. For a fixed confine-

o

300

AT

i

: ment radius these quantities become larger for higher values

of V. ForVy = oo, A ando grow apparently without limit,
200

\ asR. — 0. The corresponding behavior is shown in Figs. 1
B and 2.
g In the calculations of the polarizability we used Bucking-
ham approximation [37] because it gives better results than
the Kirkwood approximation [12], even for large values of
R.. As the confinement radius increases both approximations
0 1 2 3 4 5 tend to the same value.

R (au) For a finite V5 and large radii the polarizability tends

& asymptotically to the corresponding value of the free hydro-

FIGURE 1. Hyperfine splitting constant (in units 12.690565mT) ~ gen atomgy, = 0.5927 x 10~2* cm?. For a decreasing con-
as function ofR.. (Bohrs) forVp = 0, 1, 5, co, Hartrees. finement radius the polarizability attains a minimum value
and then grows fast up to radis reaches the critical con-
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FIGURE 2. Magnetic screening constant (in unif§/ (3paoc?)) as FIGURE 3. Polarizabitycg (in units 10724 cm?®) as a function of
a function of R. (Bohrs) forV, = 0, 1, 5, co, Hartrees. R. (Bohrs) forVp =0, 1, 5, co, Hartrees.
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finement radiusRci;. On the other hand, for an impenetrable box, the polarizability tends to zefy esrrespondingly
approaches zero. Opposite to what happens with the Fermi contact term and the diamagnetic screening constant, for les
penetrable walls, the polarizability diminishes. R@r= oo, the polarizability approaches to zero Bs — 0. In Fig. 3 we
show the behaviour of the polarizability as a functiontffor few values of V.

In previous papers [11, 25], the pressure was computed via the virial theorem

1

P=——
47 R3

2E—-(V)). (19)

This formula is correct for the confinement in an impenetrable sphereaf@era and Castro pointed out [34] that virial
theorem for systems with sectionally defined potentials, like that of theZggm(ist be reformulated. In any case, the correct
way to compute the pressure is given by E)(

The derivative involved in Eq1(7) is difficult to obtain in an analytic way because we decided to compute that numerically.
The differentiation was performed using the five term centered difference formula [38],

dE _ —E(R.+2h)+8E(R.+h)—8E(R. —h)+ E (R. — 2h) (20)
dR.|,_p 12h ’
with a step sizér = 0.01.
Figure 4 we show the behaviour of the pressure as a func-
tion of R, for few values of V. For a finite value of V
the pressure grows dg. diminishes, it reaches its maximum 5 .
value and then diminishes. For an impenetrable box, the pres:
. . . . V =5 Hartrees
sure shows a different behaviour because this grows without 0
limit as R, — oo. ‘
Figure 5 we show the behavior of the energy as a function —e—E_
of the pressure fovy = 5 au. Atlow pressure the energy in- '@ 3 -
creases slowly but it grows fast as the pressure approachest @
the critical pressuré®;;, which corresponds to the pressure [ = /
on the system at the critical radidg,;. When the exter- = /
nal pressure reaches the critical pressiyg, the system is m‘m‘
ionized This critical pressurd®,; is different for different 3 /
values ofl. /
a
Pressure
S B—'—'—S""'-a./
E % 4
- :}‘X — 01 1 | 1Ru 100 1000
%X o ol ] P(10" atm)
00 s 0N = VT ]
: %ﬁ\ s eV =5 FIGURE 5. Ground state energy of the confined hydrogen atom for
. ﬁ;{%\\‘\ sepal = inf Vo = 5 Hartrees as a function of the pressiite
& 1 f \Q‘\;‘q\ : The Eq. [[8) gives the probability to find the electron in
= R A, the classically forbidden region, and a measure of the tunnel-
= B, E . . . . .
o o4 \\";i:--‘.w ] ing mtq _that region [31]. In Fig. 6_we show_the tqnnellng
™~ "‘g:'-:“;&‘ probability of the electron as function of barrier height, and
— \\‘\QZ:;L.\ ] confinement radius. For a finite value &, as the system
™ "“hg is more confined, smalk,, the tunneling probability grows
0.001 \\ approaching to 1, and decreases fast as the confining radius
h increases.
oooo1 Lo v v b0
0 1 2 3 4 5

4. Conclusions
RC (au)

The present results, as well as those obtained byirMar
FIGURE 4. PressureP(10° atm) as a function oR. (Bohrs) for  and Cruz [25], show the usefulness of the direct variational

Vo =0, 1, 5, oo, Hartrees. method when studying confined quantum systems, judging
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Tunneling probability
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FIGURE 6. Tunneling probability as function aR. (Bohrs) for
Vo =0, 1, 5, 10, Hartrees.

Quantum systems inside soft boxes are more realistic and
flexible to analyze than those based on impenetrable con-
finement models, since they allow the description of van der
Waals attraction forces produced by neighboring molecules,
which may be accomplished by making a proper choice of
the barrier heighty.

The wave function proposed in this work is very similar
to that of a free patrticle in a spherical box [35, 36], where an
exponential term is added to account for the nucleus-electron
Coulomb interaction in the inner region, so that, the here ob-
tained energies show, expectedly, an improvement for small
confinement radii and large barrier heights.

All calculations in this work were performed with Math-
ematica 11.0, exhibiting no convergence problems, as long as
we considels values> 0.

Montgomeyet al. [31] point out that when the electronic
energy reaches the height of the barrier, pressure-induced
ionization occurs. This effect can occur in the atmosphere
of gas giant planets [39] and stars [40], where the matter is
subject to extreme pressures. The majority of the matter in
these systems is hydrogen from the dissociation of molecular
hydrogen. The pressure-induced ionization occurs when the
individual identities of hydrogen atoms or molecules disap-
pear due to the overlap of the wave functions and a metallic

by the here obtained energy eigenvalues, which are fairlphase is formed. For the formation of the metallic hydrogen
good and the utilized method is easy to handle, unlike, folare necessary pressures of orders of several hundreds of GPa.

instance, the one employed by Ley-Koo and Rubinsteinin this paper we explained in a pedagogical way the pressure-
through which, even if exact results could be obtained, it iSnduced ionization.

computationally more difficult to use by comparison.

The behavior of the physical properties of the hydrogenacknowledgments
atom confined by penetrable and impenetrable walls is differ-

ent, this is more evident for small valuesigf, as it is shown
in Figs. 1-4 and 6.

We thank A. Flores-Riveros and H. E. Montgomery Jr. for
their useful comments.

1. F. M. Ferrandez and E. A. Castr@ratamiento hipervirial de
sistemas mecano-énticos acotadgKinam4 (1982) 193-223.

2. P. O. FBbman, S. Yngve, N. J. Bman,The energy levels and

the corresponding normalized wave functions for a model of a

compressed atond. Math. Phys28(1987) 1813.

3. S. J. Yngve The energy levels and the corresponding normal-

ized wave functions for a model of a compressed afoath.
Phys.29(1988) 931 .

4. W. Jasklski, Confined many-electron systerfhys. Rep271
(1996) 1.

5. A. L. BuchachenkoCompressed atomd. Phys. Chem105
(2001) 5839.

6. J. P. Connerade, V. H. Dolmatov and P. A. Lakshfiie filling
of shells in compressed atoydks Phys. B: At. Mol. Opt. Phys.
33(2000) 251.

7. J. R. Sabin, E. Bindas and S. A. Cruz, Editoré&dvances
in Quantum Chemistryol. 58 (Academic Press, Amsterdam
2009).

8. K. D. Sen, Editor,Electronic Structure of Quantum Confined
Atoms and MoleculeSpringer, New York 2014).

9. L. Banyai and S. W. KochSemiconductor Quantum Dots
(World Scientific, Singapore 1993)

A. Michels, J. de Boer and A. BijRemarks concerning molec-
ular interaction and their influence on the polarizabiliffhys-
ica4 (1937) 981-994.

E. Ley-Koo and S. RubinsteinThe hydrogen atom within
spherical boxes with penetrable walld. Chem. Phys71
(1979) 351.

H. E. Montgomery Jr. and K. D. Sebjpole polarizabilities for
a hydrogen atom confined in a penetrable sphBigys. Lett. A
376(2012) 1992-1996.

A.L. Frapiccini and D.M. Mitnik,Study of hydrogen confined
in onion shellsEur. Phys. J. '5(2021) 41 https://doi.
0rg/10.1140/epjd/s10053-021-00060-4

N. Aquino, V. Granados and H. Yee-Madeir@he Einstein
model and the heat capacity of solids under high pressure

10.

11.

12.

13.

14.

Rev. Mex. Fis. E20010205


https://doi.org/10.1140/epjd/s10053-021-00060-4�
https://doi.org/10.1140/epjd/s10053-021-00060-4�

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

GROUND STATE ENERGY OF THE HYDROGEN ATOM INSIDE PENETRABLE SPHERICAL CAVITIES; VARIATIONAL APPROACH 7

Rev. Méx. Hs. 55 (2009) 125-129 ; H. de Oliveira Batael, 26.

E. D. Filho, J. Chahine and J. F. da SilMafects of quan-
tum confinement on thermodynamic propertiEsir. Phys. J.
D 75 (2021) 52.|https://doi.org/10.1140/epjd/
S10053-021-0005/-z

R. Jha, S. Giri and P.K. Chattar&)oes confinement alter the
ionization energy and electron affinity of atomd=ur. Phys.
J. D75(2021) 88|https://doi.org/10.1140/epjd/
S10053-021-00106-/

E. P. Wigner and H. B. HuntingtorQn the possibility of a
metallic modification of hydroged. Chem. Phys (1935) 764.

K.D. Sen, V.I. Pupyshev, and H.E. MontgomeAgdvances in
Quantum Chemistng7, (Academic Press, Amsterdam 2009).
p. 25-77

A. N. Sil, S. Canuto, and P.K. MukherjeAdvances in Quan-
tum Chemistryp8, (Academic Press, Amsterdam 2009) p. 115-
175.

K. D. Sen,Characteristic features of Shannon information en-
tropy of confined atomg. Chem. Phys123(2005) 074110.

N. Aquino, A. Flores-Riveros and J. F. Rivas-Siighannon
and Fisher entropies for a hydrogen atom under soft spherical33
confinementPhys. Lett. A377(2013) 2062-2068.

M. Rodriguez-Bautista, R. Vargas, N. Aquino and J. Garza,
Electron-density delocalization in many-electron atoms con-
fined by penetrable walls: A Hartree-Fock study, Int. J.
Quantum Chem. (2017) e2557Hittps://doi.org/10.

1002/qua.25571 | 35

C. R. Est&bn, N. Aquino, D. Puertas-Centeno and J. S De-
hesa, Two—dimensional confined hydrogen: An entropy and
complexity approachint. J. Quantum Chem. (2020) e26192.
https://doi.org/10.1002/qua.26192

M. A. Martinez-Sinchez, N. Aquino, R. Vargas and J. Garza, 37-

Exact solution for the hydrogen atom confined by a dielec-
tric continuum and the correct basis set to study many elec-
tron atoms under similar confinementhem. Phys. Lett90
(2017) 14.

E. Ley-Koo,Recent progress in confined atoms and molecules:
Super integrability and symmetry breakingkev. Mex. ks. 64
(2018) 326-363.

J. L. Maiin and S. A. CruzUse of the direct variational method

for the study of one and two—electron atomic systems confinedo.

by spherical penetrable boxed Phys. B: At. Mol. Opt. Phys.
25(1992) 4365-4371.

27.

29.

31.

32.

36.

38.

39. G. Chabrier,

J. L. Maiin and S. A. CruzEnclosed quantum systems: use of
direc variational methodAm. J. Phys59(1991) 931-935.

J. L. Maiin, R. Rosas and A. Uribénalysis of asymmetric con-
fined quantum systems by the direct variational metidad. J.
Phys.63(1995) 460-463.

. F. M. Ferrandez Variational treatment of the confined hydro-

gen with a moving nucleu&ur. J. Phys31(2010) 611.

Djajaputra and R. B. Coopekydrogen atom in a spherical
well: linear approximatiorEur. J. Phys21 (2000) 261-267.

30. N. Aquino and R. A. RojasThe confined hydrogen atom: a

linear variational approachEur. J. Phys37 (2016) 015401.

J. Hunt, J. Martin, V. Rosing, J. Winner and H. E. Montgomery
Jr., Pressure-induced ionization of hydrogen: A computational
project Chem. Educatot9 (2014) 384.

W. S. Nascimento, F. V. Prudent8pbre un studo da entrap
da Shannon no contexto da nae@ca cuantica: uma aplica-
cao ao oscilador harmonico libre e confingdQuim. Nova39
(2016) 757-764.

. NIST Digital Library of Mathematical Functiondttp://

dimf.nist.gob/10

34. F. M. Ferrandez and E. A. Castr@he virial theorem for sys-

tems subjected to sectionally defined potentihl€hem. Phys.
75(1981) 2908.

. A. S. Davydov,Quantum MechanicgPergamon Press, New

York, 1965), Chapter VI.

B. H. Bransden and C. J. Joacha@uantum mechanic®™¢
edition (Pearson Prentice Hall, England, 2000), pp. 347-349.

R. A. BuckinghamThe quantum theory of atomic polarization
| -Polarization by a uniform fieldProc. Roy. Soc. A160(1937)
94.

S. C. Chapra and R. P. CanaMumerical methods for engi-
neers fifth edition (McGraw Hill, 2006), Chapter 23.

D. Saumon, W. B. Hubbard and J.The
molecular-metallic transition of hydrogen and the structure of
Jupiter and SaturpLunine, Astrophys. J391(1992) 817.

F. Palla, E. E. Salpeter and S. W. StahRrimordial star for-
mation: the role of molecular hydrogeithe Astrophysical J.
271(1983) 632.

Rev. Mex. Fis. E20010205


https://doi.org/10.1140/epjd/s10053-021-00057-z�
https://doi.org/10.1140/epjd/s10053-021-00057-z�
https://doi.org/10.1140/epjd/s10053-021-00106-7�
https://doi.org/10.1140/epjd/s10053-021-00106-7�
https://doi.org/10.1002/qua.25571�
https://doi.org/10.1002/qua.25571�
https://doi.org/10.1002/qua.26192�
http://dlmf.nist.gob/10�
http://dlmf.nist.gob/10�

