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Ground state energy of the hydrogen atom inside
penetrable spherical cavities; variational approach
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In this work we calculate the ground state energy of the hydrogen atom confined in a sphere of penetrable walls of radiusRc. Inside the sphere
the system is subject to a Coulomb potential, whereas outside of it the potential is a finite constantV0. The energy is obtained as a function
of Rc andV0 by means of the Rayleigh-Ritz variational method, in which, the trial function is proposed as a free particle wave function
within a finite square well potential but including an exponential factor that takes into account the electron-nucleus Coulomb attraction. For
an impenetrable sphere,V0 = ∞, the energy grows fast asRc approaches zero. On the other hand, when the height of the barrierV0 is finite,
the energy increases slowly asRc goes to zero. We also compute the Fermi contact term, nuclear magnetic screening, polarizability, pressure
and tunneling as a function ofRc andV0. As expected, these physical quantities approach the corresponding values of the free hydrogen
atom asRc grows. We also discuss the pressure-induced ionization of the hydrogen atom. The present results are found in good agreement
with those previously published in the literature.
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1. Introduction

There are few examples in quantum mechanics for which the
Schr̈odinger equation has exact solutions. Otherwise, one
ought to resort to approximate methods. Of these, one of the
most widely used is the Rayleigh-Ritz variational method, of-
ten simply referred to as the variational method. This method
is mainly used in problems that do not have analytical so-
lutions or when they are very laborious and difficult to ob-
tain, or in cases where approximate values of the energy and
wave functions are only required. The variational method
has been utilized since the early days of quantum mechan-
ics and it has successfully been applied to the study of free
systems and those subject to any form of spatial constraint
(confined). The quantum confined systems are of much in-
terest due to its wide variety of applications for modeling
physical phenomena such as potential wells, wires and quan-
tum dots, electronic structure of atoms and molecules subject
to external high pressures, specific heats of crystalline solids
under high pressures, atoms trapped in cavities, nanopores
and into fullerenes, among others [1-25]. Recent progress on
the field of confined atoms and molecules can be reviewed in
Ref. [24]. As for example, much emphasis has been placed in
the study of Shannon entropies [19-22], as well as the study
of spectroscopy of confined atomic systems [18] and the use
of various methods for solving these problems. A large list of
applications can be found in reviews and books on the subject
[1-8,24]. Only few articles have been published with a ped-
agogical point of view, addressing the study of the confined
harmonic oscillator (CHO) and the confined hydrogen atom
(CHA) [26-32].

Over 80 years ago, Michelset al. [10] proposed the CHA
model in which a nucleus of positive charge is clamped at the
center of an impenetrable sphere of radiusRc with an elec-
tron moving inside. The impenetrable walls were proposed to
simulate, in first approximation, the potential exerted by other
charges surrounding the hydrogen atom. Michelset al. [10]
were chiefly interested in studying how the polarizability of
the hydrogen atom changes when subjected to high pressures.
However, it is known that this type of confinement overesti-
mates the observable effects, and therefore, it has been sug-
gested that a soft confinement (a cavity with penetrable walls)
would be a model with a more realistic physical meaning.

In the late 70’s, Ley-Koo and Rubinstein [11] used the
model of a hydrogen atom confined in a spherical box with
penetrable walls to explain the experimentally obtained re-
sult for the hyperfine splitting of atomic hydrogen inα-quarz.
Although they found analytic solutions for the corresponding
Schr̈odinger equation, the energy values were obtained nu-
merically by solving a transcendental equation. They also
computed the nuclear magnetic screening, the Fermi contact
term, polarizability and pressure as a function ofRc andV0.
Montgomery and Sen [12] improved the theoretical develop-
ment of Rubinstein and Ley-Koo [11], whereas other authors
used the variational method with a different trial wave func-
tion to solve this problem [25,26].

The pedagogically oriented articles addressing studies on
the confined hydrogen atom are rather scarce in the litera-
ture, as we mentioned above, and furthermore, in most of
them, the physical system is assumed to be confined within
an impenetrable cavity [26-30]. The purpose of present work
is to study the confined hydrogen atom inside a soft spheri-
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cal box by using the Rayleigh-Ritz variational method, where
the trial function consists of a modified free-particle-in-a-box
solution. We calculate some physical properties such as the
hyperfine splitting, nuclear magnetic screening, polarizabil-
ity, pressure and tunneling through the barrier as a function
of the position and the potential height.

This work is organized as follows: in Sec. 2 we pro-
vide some details on the calculation of the confined hydrogen
atom ground state energy and some physical properties as a
function ofRc andV0 by using the Rayleigh-Ritz variational
method. In Sec. 3 results are shown and compared with those
reported in the literature. Finally, in Sec. 4 we give our con-
clusions.

2. Methodology

The confined hydrogen atom Hamiltonian in atomic units is
given by

H = −1
2
∇2 + Vc. (1)

The potential energy associated with the soft spherically
confined hydrogen atom is given by a Coulomb term inside
the box (0 < r ≤ Rc, whereRc is the confinement radius),
and a barrier of constant heightV0 outside the box(r > Rc).

Vc =

{ − 1
r , 0 ≤ r ≤ Rc

V0, r > Rc

(2)

For the ground state of the system we use the following
trial function,

Ri (r) = Ae−αrj0

(
γπr

Rc

)
, 0 ≤ r ≤ Rc, (3)

and

Re (r) = B
e−βr

r
, r > Rc, (4)

whereA andB are normalization constants andα, β andγ
are variational parameters.j0 refers to the zeroth order spher-
ical Bessel function [33].

Factor e−αr takes into account the nucleus-electron
Coulomb interaction. Ifα = 0, Eqs. (3) and (4) correspond
to the wave function for a free particle in a finite spherical
well [35,36].

The radial wave function and its first derivative are con-
tinuous in all space, in particular atr = Rc. By requiring
continuity of the radial wave functions through the boundary
Rc, one has

Ri (Rc) = Re (Rc) , (5)

which leads to a relation betweenA andB

B = A Rcj0 (γπ) e(β−α)Rc . (6)

Continuity of the first derivative of the wave function can
be written in terms of the logarithmic derivative atRc, for the
inner wave function,

R
′
i(Rc)

Ri(Rc)
= −γπ

Rc

j1(γπ)
j0(γπ)

− α, (7)

and the outer wave function,

R
′
e(Rc)

Re(Rc)
= −β − 1

Rc
. (8)

Continuity of both logarithmic derivatives throughRc,
leads to

β = α +
γπj1 (γπ)
Rcj0 (γπ)

− 1
Rc

. (9)

Therefore, only two independent variational parameters
are needed. On the other hand, one should bear in mind that
for any physically acceptable wave function,β must be> 0.

The energy functional in the variational method is given
by:

E(α, γ) =
〈R|T |R〉+ 〈R|Vc|R〉

〈R|R|〉 , (10)

in which, the overlap integral is

〈R|R〉 =

Rc∫

0

R∗i Rir
2dr +

∞∫

Rc

R∗eRer
2dr. (11)

The kinetic energy integral is given by:

〈R|T |R〉 =

Rc∫

0

R∗i

(
−1

2
1
r2

d

dr

(
r2 d

dr
Ri

))
r2dr

+

∞∫

Rc

R∗e

(
−1

2
1
r2

d

dr

(
r2 d

dr
Re

))
r2dr, (12)

and the potential energy integral by:

〈R|Vc|R〉 =

Rc∫

0

R∗i

(
−1

r

)
Rir

2dr

+

∞∫

Rc

R∗eV0Rer
2dr. (13)

The optimal energy is obtained by minimizing the energy
functional with respect to variational parametersα and γ.
The optimization was carried out by using the command
FindMinimum of Mathematica 11.
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Physical properties

Once obtained the optimal ground state energy and the corre-
sponding variational parametersα, β andγ, we can calculate
some physical properties. Those we have chosen to calculate
in this report are:

1. The hyperfine splittingA, given by the Fermi contact
term [11,25]

A = (2/3) gBgnBn|R (0)|2. (14)

2. The nuclear magnetic screening [11, 25], given by the
diamagnetic screening constant

σ =
e2

3µc2

〈
r−1

〉
. (15)

3. The polarizability in the Buckingham’s approxima-
tion [37]

αd =
2
3

[
6
〈
r2

〉3 + 3
〈
r3

〉2 − 8 〈r〉 〈r2
〉 〈

r3
〉

9 〈r2〉 − 8〈r〉2
]

. (16)

4. The pressure computed by

P = − 1
4πR2

c

dE

dRc
. (17)

5. The tunneling probability of the electron given by the
right hand integral in Eq. (11)

p (r > Rc) =

∞∫

Rc

R∗eRer
2dr. (18)

3. Results

In Table I are shown the optimal values for the variational
parametersα andγ, and the ground state energy eigenval-
uesE of the system, for different radiiRc and barrier heights
V0 = 0, 2 and5 Hartrees. These eigenvalues are compared
with those reported by Marı́n and Cruz [25], who also utilized
the variational method but with a different trial function. We
also compare our values with those of Ley-Koo and Rubin-
stein [11], whose results can be considered exact up to the
reported numerical accuracy. As can be seen, there exists
a good agreement between the eigenvalues obtained by the
Rayleigh-Ritz variational method by using the here proposed
trial function and the results previously reported by other au-
thors [11,25].

TABLE I. Ground state energyE of the confined hydrogen atom inside a penetrable spherical box of radiusRc and barrier heightV0.
Distances are given in Bohrs and energies in Hartrees. Energies obtained in this work in comparison with those reported by Marı́n and
Cruz [25] and Ley-Koo and Rubinstein [11].

Rc α γ E Ref. [25] Ref. [11]

V0= 0

0.83155 0.9207 0.3504 −0.0312 −0.0313 −0.0313

1.00000 0.9027 0.4001 −0.1249 −0.1250 −0.1250

2.04918 0.8946 0.4967 −0.4362 −0.4366 −0.4367

4.08889 0.9714 0.3749 −0.4978 −0.4979 −0.4980

5.77827 0.9959 0.1884 −0.4999 −0.4999 −0.4999

V0= 2

0.50746 0.8700 0.4306 1.9606 1.9607 1.9606

0.59179 0.8388 0.4891 1.7149 1.7149 1.7147

1.00791 0.7635 0.6382 0.5014 0.5003 0.5000

4.90402 0.9296 0.6550 −0.4966 −0.4973 −0.4980

5.75669 0.9641 0.5410 −0.4989 −0.4992 −0.4995

V0= 5

0.42945 0.8202 0.5068 4.5915 4.5927 4.5914

0.50502 0.7859 0.5638 3.8585 3.8593 3.8580

1.55982 0.6858 0.8006 −0.0195 −0.0247 −0.0247

5.06334 0.9089 0.7534 −0.4959 −0.4971 −0.4980

5.49360 0.9307 0.7077 −0.4975 −0.4983 −0.4990
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The energy eigenvaluesE(Rc) grow as the box radius
decreases; however, in order for the electron to remain in an
atomic bound state the energy must beE < V0. At the same
time, this gives rise to the fact that, for a fixed valueV0, the
electron remains in a bound state only for boxes whose ra-
diusRc > Rcrit , whereRcrit is the critical radius at which
E = V0. ForV0 = ∞ the energy grows, apparently without
limit, asRc → 0.

FIGURE 1. Hyperfine splitting constantA (in units 12.690565 mT)
as function ofRc (Bohrs) forV0 = 0, 1, 5, ∞, Hartrees.

FIGURE 2. Magnetic screening constant (in unitse2/
(
3µa0c

2
)
) as

a function ofRc (Bohrs) forV0 = 0, 1, 5, ∞, Hartrees.

For boxes of certain particular radii the energy eigenval-
ues are higher for higher values ofV0, that is, for less pene-
trable walls. AsRc increases, the energy eigenvalues asymp-
totically approach those of the free hydrogen atom.

For most of the confinement radii and barrier heights, the
calculated energies with the trial function used in this work
are equal or they are slightly higher than those obtained by
Maŕın and Cruz [25]. Just for small radii and very high bar-
riers we obtain lower energies.

In Figs. 1 to 4 we show the behavior of the hyperfine
splitting A, nuclear magnetic screeningσ, polarizability α,
pressureP and tunneling probability as a function ofRc, re-
spectively, for different values ofV0.

For a fixed value ofV0 and large confinement radii,A
andσ tend asymptotically to the free hydrogen atom values
(A = 50.762 mT andσ = e2/3µa0c

2). As the confinement
radius decreases, these quantities grow monotonically up to
a maximum value, and then this quantity decreases fast as
Rc approaches to the critical radiusRcrit. For a fixed confine-
ment radius these quantities become larger for higher values
of V 0. ForV0 = ∞, A andσ grow apparently without limit,
asRc → 0. The corresponding behavior is shown in Figs. 1
and 2.

In the calculations of the polarizability we used Bucking-
ham approximation [37] because it gives better results than
the Kirkwood approximation [12], even for large values of
Rc. As the confinement radius increases both approximations
tend to the same value.

For a finite V0 and large radii the polarizability tends
asymptotically to the corresponding value of the free hydro-
gen atom,αd = 0.5927× 10−24 cm3. For a decreasing con-
finement radius the polarizability attains a minimum value
and then grows fast up to radiusRc reaches the critical con-

FIGURE 3. Polarizabityαd (in units10−24 cm3) as a function of
Rc (Bohrs) forV0 = 0, 1, 5, ∞, Hartrees.
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finement radiusRcrit. On the other hand, for an impenetrable box, the polarizability tends to zero asRc correspondingly
approaches zero. Opposite to what happens with the Fermi contact term and the diamagnetic screening constant, for less
penetrable walls, the polarizability diminishes. ForV0 = ∞, the polarizability approaches to zero asRc → 0. In Fig. 3 we
show the behaviour of the polarizability as a function ofRc for few values ofV0.

In previous papers [11,25], the pressure was computed via the virial theorem

P =
1

4πR3
c

(2E − 〈V 〉) . (19)

This formula is correct for the confinement in an impenetrable sphere. Fernández and Castro pointed out [34] that virial
theorem for systems with sectionally defined potentials, like that of the Eq. (2), must be reformulated. In any case, the correct
way to compute the pressure is given by Eq. (17).

The derivative involved in Eq. (17) is difficult to obtain in an analytic way because we decided to compute that numerically.
The differentiation was performed using the five term centered difference formula [38],

dE

dRc

∣∣∣∣
r=Rc

=
−E (Rc + 2h) + 8E (Rc + h)− 8E (Rc − h) + E (Rc − 2h)

12h
, (20)

with a step sizeh = 0.01.

Figure 4 we show the behaviour of the pressure as a func-
tion of Rc for few values of V0. For a finite value of V0

the pressure grows asRc diminishes, it reaches its maximum
value and then diminishes. For an impenetrable box, the pres-
sure shows a different behaviour because this grows without
limit asRc →∞.

Figure 5 we show the behavior of the energy as a function
of the pressure forV0 = 5 au. At low pressure the energy in-
creases slowly but it grows fast as the pressure approaches to
the critical pressurePcrit, which corresponds to the pressure
on the system at the critical radiusRcrit. When the exter-
nal pressure reaches the critical pressurePcrit, the system is
ionized. This critical pressurePcrit is different for different
values ofV0.

FIGURE 4. PressureP (106 atm) as a function ofRc (Bohrs) for
V0 = 0, 1, 5, ∞, Hartrees.

FIGURE 5. Ground state energy of the confined hydrogen atom for
V0 = 5 Hartrees as a function of the pressureP .

The Eq. (18) gives the probability to find the electron in
the classically forbidden region, and a measure of the tunnel-
ing into that region [31]. In Fig. 6 we show the tunneling
probability of the electron as function of barrier height, and
confinement radius. For a finite value ofV0, as the system
is more confined, smallRc, the tunneling probability grows
approaching to 1, and decreases fast as the confining radius
increases.

4. Conclusions

The present results, as well as those obtained by Marı́n
and Cruz [25], show the usefulness of the direct variational
method when studying confined quantum systems, judging
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FIGURE 6. Tunneling probability as function ofRc (Bohrs) for
V0 = 0, 1, 5, 10, Hartrees.

by the here obtained energy eigenvalues, which are fairly
good and the utilized method is easy to handle, unlike, for
instance, the one employed by Ley-Koo and Rubinstein,
through which, even if exact results could be obtained, it is
computationally more difficult to use by comparison.

The behavior of the physical properties of the hydrogen
atom confined by penetrable and impenetrable walls is differ-
ent, this is more evident for small values ofV0, as it is shown
in Figs. 1-4 and 6.

Quantum systems inside soft boxes are more realistic and
flexible to analyze than those based on impenetrable con-
finement models, since they allow the description of van der
Waals attraction forces produced by neighboring molecules,
which may be accomplished by making a proper choice of
the barrier heightV0.

The wave function proposed in this work is very similar
to that of a free particle in a spherical box [35, 36], where an
exponential term is added to account for the nucleus-electron
Coulomb interaction in the inner region, so that, the here ob-
tained energies show, expectedly, an improvement for small
confinement radii and large barrier heights.

All calculations in this work were performed with Math-
ematica 11.0, exhibiting no convergence problems, as long as
we considerβ values> 0.

Montgomeyet al. [31] point out that when the electronic
energy reaches the height of the barrier, pressure-induced
ionization occurs. This effect can occur in the atmosphere
of gas giant planets [39] and stars [40], where the matter is
subject to extreme pressures. The majority of the matter in
these systems is hydrogen from the dissociation of molecular
hydrogen. The pressure-induced ionization occurs when the
individual identities of hydrogen atoms or molecules disap-
pear due to the overlap of the wave functions and a metallic
phase is formed. For the formation of the metallic hydrogen
are necessary pressures of orders of several hundreds of GPa.
In this paper we explained in a pedagogical way the pressure-
induced ionization.
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