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We show that the orthochronous proper Lorentz transformations that leave one of the Cartesian coordinates fixed can be represented by2×2

unitary matrices with determinant equal to 1, whose entries are double numbers. This representation is employed in the calculation of the
Wigner angle, which arises in the composition of two boosts in arbitrary directions.
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1. Introduction

Despite the initial resistance to employ the complex numbers,
the necessity and usefulness of the complex numbers have
been recognized and exploited in the last two hundred years
and, in the present day, in many areas of physics, the complex
numbers are a standard tool applied with fluidity. In many of
these applications, such as the solution of differential equa-
tions (e.g., in electrodynamics) and the calculation of some
definite integrals, the complex numbers are not really indis-
pensable, but highly convenient.

Another example of the use of the complex numbers in
physical or geometrical problems is the representation of the
rotations in the three-dimensional Euclidean space by means
of complex2 × 2 matrices. The purely geometrical study of
these rotations leads to the consideration of complex unitary
2×2 matrices with determinant equal to 1 (see,e.g., Ref. [1])
and, maybe surprisingly, these matrices are required in quan-
tum mechanics in order to represent the effect of any rotation
on a spin-1/2 particle.

On the other hand, there exist two additional sets of num-
bers, somewhat analogous to the complex ones, called double
and dual numbers (though they also receive other names in
the literature), that are scarcely employed in physics or math-
ematics. However, Refs. [2–4] contain some applications of
the double and the dual numbers in the standard mathemati-
cal physics.

The aim of this paper is to give another example of the
suitability of the double numbers. We show that some sub-
groups of the restricted Lorentz group (e.g., that formed by
the transformations leavingz invariant) can be conveniently
represented by2× 2 matrices whose entries are double num-
bers, and we show the advantageousness of this fact by cal-
culating the so-called Wigner angle associated with the com-
position of two boosts in arbitrary directions.

In Sec. 2 we show in an elementary manner that the re-
stricted Lorentz transformations that leave one of the Carte-
sian coordinates invariant can be represented by the2 × 2

unitary matrices with determinant equal to 1, whose entries
are double numbers. In Sec. 3 we make use of this represen-
tation finding the effect of two boosts in arbitrary directions.

2. Double numbers in the Lorentz transforma-
tions

Roughly speaking, the double numbers are the expressions of
the forma + jb, wherea andb are real numbers andj is an
“imaginary” unit such thatj2 = 1, but j 6= ±1. The double
numbers are summed and multiplied among themselves by
imposing the commutativity and associativity of the sum and
the product, as well as the distributivity of the product over
the sum. Since(1 + j)(1 − j) = 0, but none of the factors is
equal to zero, the double numbers are not a field.

As we know from the elementary special relativity theory,
the homogeneous Lorentz transformations can be defined as
those coordinate transformations that leave invariant

x2 + y2 + z2 − (ct)2,

wherex, y, z, ct are the coordinates of an event with respect
to some inertial frame. In order to make use of the double
numbers we restrict ourselves to the space-time points with
z = 0; in that way, the homogeneous Lorentz transformations
that preserve the conditionz = 0 leave invariant

x2 + y2 − (ct)2, (1)

and, therefore, it is convenient to introduce the double2 × 2
matrix (that is, the entries ofP are double numbers)

P ≡
(

y x + jct
x− jct −y

)
, (2)

which has the properties

P † = P, trP = 0, (3)

where, as in the case of complex matrices,P † denotes the
transpose of the conjugate ofP , with the conjugate of the
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double numbera + jb (denoted bya + jb) being defined as
a − jb. The relevance of the definition ofP comes from the
fact that

det P = −y2 − x2 + (ct)2 (4)

[cf. Eq. (1)]. (Note that Eq. (4) remains valid if we omit the
unit j in the entries of (2) but, as we shall see, the presence of
j is essential in what follows.)

Any space-time point withz = 0 gives rise to a unique
matrix P given by Eq. (2), which satisfies Eqs. (3). Con-
versely, any double2 × 2 matrix satisfying Eqs. (3) must be
of the form (2) and defines a unique set of values ofx, y and
ct. In other words, any space-time point withz = 0 can
be represented by the array(ct, x, y) or by the tracefree Her-
mitean matrix (2).

On the other hand, any transformation(ct, x, y) 7→
(ct′, x′, y′) that leaves invariant (1) must be linear and, there-
fore, can be represented by a (real)3 × 3 matrix or, equiv-
alently, making use of the one-to-one correspondence estab-
lished above, by

P ′ = KPM, (5)

whereP ′ is the matrix corresponding to(ct′, x′, y′), andK
andM are double2×2 matrices in such a way thatP ′† = P ′

andtr P ′ = 0 [see Eqs. (3)]. Since, as in the case of complex
matrices,(KPM)† = M†P †K†, the conditionP ′† = P ′

is satisfied ifM = K†. Then, trP ′ = tr (KPK†) =
tr (PK†K), so that the conditiontrP ′ = 0 is satisfied if
K† = K−1 (that is,K is a unitary matrix). Thus, for any
double2 × 2 matrix K such thatK† = K−1, the mapping
P 7→ P ′ given by

P ′ = KPK†, (6)

will represent a Lorentz transformation [which follows
from the fact thatdet P ′ = det K det P detK† =
detP det(KK†) = det P and Eq. (4)].

Finally, since det(KK†) = det K detK† =
detK det K, we notice that if a double matrixK satisfies
KK† = I, thendetK detK = 1, which is equivalent to
the existence of a real numberα such thatdetK = ± ejα

(we have here an analog of Euler’s formula:ejα = coshα +
j sinh α, as can be readily verified with the aid of the Tay-
lor expansions). Then, the matrix̃K ≡ e−jα/2K satisfies
det K̃ = ±1 and K̃PK̃† = (e−jα/2K) P (ejα/2K†) =
KPK†, which means thatK and K̃ produce the same
Lorentz transformation (6).

The unitary double matrices with determinant equal to
1 give rise to orthochronous proper Lorentz transformations
(that is Lorentz transformations that do not change the di-
rection of the time and do not change the orientation of the
spatial axes). In fact, in the following subsection we shall
give the explicit form of the special unitary double2× 2 ma-
trices corresponding to a boost in an arbitrary direction and
to an arbitrary rotation in thexy-plane. (Special means that
the determinant is equal to 1.)

It may be pointed out thatK and−K represent the same
Lorentz transformation [see Eq. (6)] and that−K is a special

unitary matrix if and only ifK is. However, this ambiguity
is not an inconvenience. (A similar behavior is encountered
in the case of the representation of the rotations in the three-
dimensional Euclidean space by complex2×2 matrices men-
tioned at the Introduction.)

If now (ct′′, x′′, y′′) are related to(ct′, x′, y′) by a second
orthochronous proper Lorentz transformation, represented by
some special unitary matrixL in a form analogous to (6) (that
isP ′′ = LP ′L†, whereP ′′ is the Hermitean trace-free matrix
corresponding to(ct′′, x′′, y′′)), then

P ′′ = L(KPK†)L† = (LK)P (LK)†,

meaning that the composition of the two Lorentz transforma-
tions is represented by the productLK (and also by−LK).

2.1. Explicit forms

The basic example of a Lorentz transformation considered in
the elementary textbooks on special relativity is that corre-
sponding to two inertial frames whose Cartesian axes coin-
cide att = 0 and the primed axes move with respect to the
unprimed ones with velocityv along thex-axis (the so-called
standard configuration, see,e.g., Ref. [5]). The coordinates
of any event with respect to these frames are related by

ct′ = γ
(
ct− v

c
x
)

,

x′ = γ
(
x− v

c
ct

)
, (7)

y′ = y,

where
γ =

1√
1− v2

c2

.

It is convenient, especially in what follows, to make use
of therapidity, w, instead of the velocity,v; these two param-
eters are related by

tanh w =
v

c
, (8)

then,
γ = coshw, γ

v

c
= sinh w, (9)

and the transformation (7), being linear, can be written in
terms of matrices




ct′

x′

y′


 =




cosh w − sinh w 0
− sinhw cosh w 0

0 0 1







ct
x
y


 .

Sincex′+jct′ = (x+jct)(cosh w−j sinh w) = (x+jct)e−jw,
this Lorentz transformation can be expressed in the form (6)
with K given by

(
e−jw/2 0

0 ejw/2

)
, (10)

or its negative.
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In a similar manner, if the primed axes move along the
y-axis with respect to the unprimed ones, instead of (7), we
have

ct′ = γ
(
ct− v

c
y
)

,

x′ = x,

y′ = γ
(
y − v

c
ct

)
,

which, using the expressions (9), is represented by the3 × 3
matrix 


cosh w 0 − sinhw

0 1 0
− sinhw 0 cosh w


 ,

and, alternatively, by the special unitary matrixK given by(
cosh(w/2) j sinh(w/2)
j sinh(w/2) cosh(w/2)

)
, (11)

or its negative.
The ordinary (spatial) rotations are also included in the

Lorentz transformations. Since we are considering here two
spatial coordinates only, we only have rotations in thexy-
plane:

ct′ = ct,

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ,

and this linear transformation is represented by the real ma-
trix 


1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 ,

which corresponds to the special unitary matrix(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (12)

and its negative.

Even though the special unitary matrices (10), (11), and
(12) are simple enough to easily execute any required com-
putation (especially in comparison with the4 × 4 matrices
regularly employed, see,e.g., Ref. [6]), it is convenient to
introduce the skew-Hermitean matrices

σ1 ≡
( −j 0

0 j

)
, σ2 ≡

(
0 j
j 0

)
,

σ3 ≡
(

0 −1
1 0

)
(13)

(that is,σi
† = −σi, for i = 1, 2, 3). One can readily verify

that these matrices, which are analogous to the Pauli matri-
ces appearing in connection with the group of rotations in the
three-dimensional Euclidean space, satisfy the relations

σ1
2 = I = σ2

2, σ3
2 = −I, (14)

whereI is the unit2× 2 matrix, and

σ1σ2 = σ3, σ2σ3 = −σ1, σ3σ1 = −σ2, (15)

with σiσj = −σjσi, wheni 6= j. (A minor difference, how-
ever, is that the usual Pauli matrices are Hermitian, in order to
facilitate their relation with observables, namely the compo-
nents of the spin.) For instance, the matrix (12) is equivalent
to

cos
θ

2
I + sin

θ

2
σ3,

and the matrix corresponding to the case where the primed
axes move with respect to the unprimed ones in an arbitrary
direction defined by the unit vectorn = (n1, n2) is

(
cosh(w/2)− n1j sinh(w/2) n2j sinh(w/2)

n2j sinh(w/2) cosh(w/2) + n1j sinh(w/2)

)
= cosh

w

2
I + sinh

w

2
(n1σ1 + n2σ2), (16)

and its negative, assuming that the unprimed axes coincide with the primed ones att = 0. This expression reduces to (10) and
(11) whenn = (1, 0) andn = (0, 1), respectively. The expression (16) can be compared with the corresponding standard3×3
matrix 



γ −γ
v

c
n1 −γ

v

c
n2

−γ
v

c
n1 1 + (γ − 1)n1

2 (γ − 1)n1n2

−γ
v

c
n2 (γ − 1)n1n2 1 + (γ − 1)n2

2




(17)

[see,e.g., Ref. [6], Eq. (11.98)].
In the following section we apply the representation of the Lorentz transformations obtained above in the analysis of the

composition of two Lorentz transformations in arbitrary directions.
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3. The Wigner angle and the Thomas precession

A well-known fact is that the composition of two “pure boosts,” that is, two homogeneous Lorentz transformations relating
inertial frames with parallel axes, may not be a pure boost, but it is equivalent to the composition of a boost and a rotation
of (spatial) axes. The subject is discussed in many textbooks and in a long list of papers (see,e.g., Refs. [8–12]). One
of the physical implications of this fact is the so-called Thomas precession which is relevant in atomic physics (see,e.g.,
Refs. [6,7,13,14] and the references cited therein).

Let S be an inertial frame and let S′ be a second inertial frame moving with respect to S with rapidityw in the direction
defined by the unit vectorn = (n1, n2) so that the coordinates of any event withz = 0 with respect to S and S′ are related
by means ofP ′ = KPK†, with K given by Eq. (16). (Note that, in this approach, a boost in an arbitrary direction is almost
as simple as a boost along one of the coordinate axes.) Let S′′ a third inertial frame with its axes also parallel to those of S,
moving with respect to S with rapidityw′ in the direction defined by the unit vectorn′ = (n′1, n

′
2). Then, the coordinates of

any event withz = 0 with respect to S and S′′ are related by means ofP ′′ = LPL† with L given by an expression similar to
Eq. (16) with w and(n1, n2) replaced byw′ and(n′1, n

′
2), respectively. Hence, the coordinates with respect to S′ andS′′ of

any event withz = z′ = z′′ = 0 are related byP ′′ = L (K†P ′K) L† = (LK†)P ′ (LK†)†. Thus, the Lorentz transformation
relating the coordinates measured in S′ and S′′ is represented by the double2× 2 matrix

LK† =
[
cosh

w′

2
I + sinh

w′

2
(n′1σ1 + n′2σ2)

] [
cosh

w

2
I − sinh

w

2
(n1σ1 + n2σ2)

]
, (18)

which may not be of the form (16) [owing to the possible presence of terms propotional toσ3 in the result of the multiplication
(18)] and this means that the axes of S′ and S′′ need not be parallel. In fact, the transformation represented by (18) can be
expressed as the composition of a boost followed by a rotation of the spatial axes; that is, the product (18) must be equivalent
to [

cos
Ω
2

I + sin
Ω
2

σ3

] [
cosh

w̃

2
I + sinh

w̃

2
(ñ1σ1 + ñ2σ2)

]
, (19)

whereΩ is the angle between the axes of S′ and S′′ (the Wigner angle),̃w is the rapidity of S′′ with respect to S′ and(ñ1, ñ2)
is a unit vector defining the direction of motion of S′′ with respect to S′.

Multiplying the matrices appearing in Eqs. (18) and (19) with the aid of (14) and (15), making use of the linear independence
of the set{I, σ1, σ2, σ3} one gets the four equations

cos
Ω
2

cosh
w̃

2
= cosh

w

2
cosh

w′

2
− (n · n′) sinh

w

2
sinh

w′

2
, (20)

sin
Ω
2

cosh
w̃

2
= (n1n

′
2 − n2n

′
1) sinh

w

2
sinh

w′

2
, (21)

ñ1 cos
Ω
2

sinh
w̃

2
+ ñ2 sin

Ω
2

sinh
w̃

2
= n′1 cosh

w

2
sinh

w′

2
− n1 sinh

w

2
cosh

w′

2
, (22)

ñ2 cos
Ω
2

sinh
w̃

2
− ñ1 sin

Ω
2

sinh
w̃

2
= n′2 cosh

w

2
sinh

w′

2
− n2 sinh

w

2
cosh

w′

2
, (23)

which determine the four unknownsΩ, w̃, ñ1 andñ2. By combining Eqs. (20) and (21) one obtains

tan
Ω
2

=
(n1n

′
2 − n2n

′
1) sinh w

2 sinh w′
2

cosh w
2 cosh w′

2 − (n · n′) sinh w
2 sinh w′

2

=
(n1n

′
2 − n2n

′
1)

[
cosh(w+w′

2 )− cosh(w−w′
2 )

]
[
cosh(w+w′

2 ) + cosh(w−w′
2 )

]− (n · n′) [
cosh(w+w′

2 )− cosh(w−w′
2 )

] , (24)

and, summing the squares of the left-hand sides of (22) and (23) one finds the surprisingly simple relation

cosh w̃ = cosh w coshw′ − (n · n′) sinh w sinhw′. (25)

It may be remarked that Eqs. (24) and (25) are valid without restrictions on the relative velocities of the frames. The last
expression in (24) for the Wigner angle can be considerably simplified if we assume that the velocities of S′ and S′′ with
respect to S differ “slightly.” Writingw′ = w + δw, with δw ¿ w, and assuming that the angle betweenn andn′, denoted
by δθ, is small,δθ ¿ 1, keeping up to first order terms inδw andδθ, we haven1n

′
2 − n2n

′
1 = sin δθ ' δθ, n · n′ ' 1,

cosh([w + w′]/2) ' cosh w + sinh w (δw/2), andcosh([w − w′]/2) ' 1, so that

δΩ ' (coshw − 1)δθ.
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4. Final remarks

Apart from the procedure followed in Sec. 2 to find a rep-
resentation of the subgroup of the orthochronous proper
Lorentz transformations preserving the conditionz = 0 by
double2 × 2 matrices, there are some alternative methods
that can be applied to obtain the basic results presented above.
One of them consists in the use of the stereographic projec-
tion: each point(ct, x, y) on the surfaceM defined by the
equationx2 + y2 − (ct)2 = 1, with y ≥ 1, is joined with the
point (0, 0,−1) by means of a straight line. The intersection
of this line with the planey = 0 is the point with coordinates
(ct, x, 0)/(1 + y), which can be identified with the double
numberξ ≡ (x + jct)/(1 + y). Sincex2 + y2 − (ct)2 is in-
variant under any homogeneous Lorentz transformation that
preserves the conditionz = 0, under such a transformation
any point ofM is mapped into another point of this surface,

which corresponds to a double numberξ′. Then one finds
thatξ′ is given in terms ofξ through a linear fractional trans-
formation, that can be associated with a2 × 2 matrix, which
is, up to a factor, the matrixK defined above. (All this con-
struction is similar to that presented in Sec. 1.4 of Ref. [1],
this time making use of the double number plane instead of
the complex plane in the stereographic projection.)

Another method consists in applying the more algebraic
approach given in Chap. 5 of Ref. [1], with the definition of
the appropriate Infeld–van der Waerden symbols, which now
are double numbers (see also Ref. [4]).

It may be remarked that even though the double matri-
ces employed above represent a restricted class of the homo-
geneous Lorentz transformations, for problems where only
two spatial directions are relevant (such as the calculation of
the Wigner angle and the Thomas precession), this restriction
does not signify a loss of generality.
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