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We show that the orthochronous proper Lorentz transformations that leave one of the Cartesian coordinates fixed can be refzesented by
unitary matrices with determinant equal to 1, whose entries are double numbers. This representation is employed in the calculation of the
Wigner angle, which arises in the composition of two boosts in arbitrary directions.
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1. Introduction unitary matrices with determinant equal to 1, whose entries
are double numbers. In Sec. 3 we make use of this represen-

Despite the initial resistance to employ the complex numberdation finding the effect of two boosts in arbitrary directions.

the necessity and usefulness of the complex numbers have

been. recognized and e>.<ploited in the last twq hundred Years  pouble numbers in the Lorentz transforma-

and, in the present day, in many areas of physics, the complex ..

numbers are a standard tool applied with fluidity. In many of tions

these applications, such as the solution of differential eq”aRougth speaking, the double numbers are the expressions of
tions (e.g, in electrodynamics) and the calculation of SOMe4pa forma + ib, wherea andb are real numbers anjds an

definite integrals, the complex numbers are not really indis“imaginary” unit such thaj? — 1, butj # +1. The double

pensable, but highly convenient. _numbers are summed and multiplied among themselves by
Another example of the use of the complex numbers inmposing the commutativity and associativity of the sum and

physical or geometrical problems is the representation of thene product, as well as the distributivity of the product over

rotations in the three-dimensional Euclidean space by meange sum. Sincél + j)(1 — j) = 0, but none of the factors is

of complex2 x 2 matrices. The purely geometrical study of equal to zero, the double numbers are not a field.

these rotations leads to the consideration of complex unitary  As we know from the elementary special relativity theory,

2 x 2 matrices with determinant equal to 1 (segy, Ref. [1])  the homogeneous Lorentz transformations can be defined as

and, maybe surprisingly, these matrices are required in quaghose coordinate transformations that leave invariant
tum mechanics in order to represent the effect of any rotation

on a spin-1/2 particle. 2% 4+ y? + 22 — (ct)?,
On the other hand, there exist two additional sets of num- herez, y, z, ct are the coordinates of an event with respect

bers, somewhat analogous to the complex ones, called doub}f\é some inertial frame. In order to make use of the double
and _dual numbers (though they also receive oth_er NAMES Imbers we restrict ourselves to the space-time points with
the literature), that are scarcely employed in physics or math- _ 0; in that way, the homogeneous Lorentz transformations
ematics. However, Refs. [2—-4] contain some applications o at p,reserve the’condition: 0 leave invariant

the double and the dual numbers in the standard mathemati-
cal physics. 22 9% — (ct)?, 1)

The aim of this paper is to give another example of the o ) )

suitability of the double numbers. We show that some sub&nd, therefore, itis convenient to introduce the doble2
groups of the restricted Lorentz groupd, that formed by ~ Matrix (that is, the entries df are double numbers)

the transformations leavinginvariant) can be conveniently ot

. . _ Y T +Jc o
represented b x 2 matrices whose entries are double num- =\ z—jet -y J @)
bers, and we show the advantageousness of this fact by cal- .
culating the so-called Wigner angle associated with the comhich has the properties
position of two boosts in arbitrary directions. pt—p, trP =0, 3)

In Sec. 2 we show in an elementary manner that the re-
stricted Lorentz transformations that leave one of the Cartewhere, as in the case of complex matric&%, denotes the
sian coordinates invariant can be represented by2the2  transpose of the conjugate &f, with the conjugate of the



2 G. F. TORRES DEL CASTILLO

double number + jb (denoted by + jb) being defined as unitary matrix if and only ifK is. However, this ambiguity
a — jb. The relevance of the definition ¢f comes from the is not an inconvenience. (A similar behavior is encountered

fact that in the case of the representation of the rotations in the three-
det P = —y% — 22 + (ct)? (4)  dimensional Euclidean space by complex2 matrices men-
. i L ) tioned at the Introduction.)
[cf: Eq. D] (the that Eq./4) remains valid if we omit the If now (ct”, 2", y") are related tdct’, ', 3/') by a second
unitj in the entries of2) but, as we shall see, the presence of

. - orthochronous proper Lorentz transformation, represented by
jis essential in what follows.) some special unitary matrik in a form analogous téj (that

Any space-time point with = 0 gives rise to a unique s p — 1, p'1,f whereP" is the Hermitean trace-free matrix
matrix P given by Eq. B), which satisfies Eqs3[. Con-  corresponding téet”, 2, y")), then

versely, any doubl@ x 2 matrix satisfying Eqs.3) must be
of the form @) and defines a unique set of valuesrof; and P" = L(KPK"L' = (LK) P (LK)',

ct. In other words, any space-time point with= 0 can

be represented by the arréy, z,y) or by the tracefree Her- Meaning that the composition of the two Lorentz transforma-
mitean matrix /). tions is represented by the produek” (and also by-LK).

On the other hand, any transformatidnt, z, y)
(ct’,x’,y") that leaves invarianflj must be linear and, there-
fore, can be represented by a (realx 3 matrix or, equiv-
alently, making use of the one-to-one correspondence esta
lished above, by

2.1. Explicit forms

The basic example of a Lorentz transformation considered in
e elementary textbooks on special relativity is that corre-
P KPM 5) sponding to two inertial. frames whose Cartesian axes coin-
- ’ cide att = 0 and the primed axes move with respect to the
where P’ is the matrix corresponding tat’,2’,y'), andk  unprimed ones with velocity along thez-axis (the so-called
andM are double x 2 matrices in such away th&'f = p/ ~ Standard configuration, see.g, Ref. [5]). The coordinates
andtr P’ = 0 [see Eqs/3)]. Since, as in the case of complex Of any event with respect to these frames are related by

matrices,(K PM)" = MTPTKT, the conditionP’t = P’ , v
is satisfied ifAM/ = KT. Then,trP' = tr (KPKT) = ct =7 (Ct - gx) )
tr (PKTK), so that the conditionr P’ = 0 is satisfied if , v
Kt = K~! (that is, K is a unitary matrix). Thus, for any T =7 (w - ECt) ) (@)
double2 x 2 matrix K such thatk" = K—!, the mapping ,
P — P’ given by vy=59
P' = KPK', (6)  where X
will represent a Lorentz transformation [which follows "=
from the fact thatdet P’ = detK detP det KT = V-
det P det(KKT) = det P and Eq. 4)]. It is convenient, especially in what follows, to make use
Finally, since det(KK') = detK detK' = oftherapidity, w, instead of the velocity; these two param-

det K det K, we notice that if a double matrik” satisfies  eters are related by

KKt = I, thendet K det K = 1, which is equivalent to

the existence of a real numbarsuch thatdet K = +e® tanhw = E, (8)
(we have here an analog of Euler’s formu* = cosh o + ¢

jsinh a, as can be readily verified with the aid of the Tay- then, v

lor expansions). Then, the matriX = ¢ ¢/2K satisfies v = coshw, y— = sinhw, 9)
det K = +1 and KPK' = (e73%/2K) P (/2K T) = ¢
KPK', which means that and K produce the same
Lorentz transformatiorg).

and the transformation/), being linear, can be written in
terms of matrices

The unitary double matrices with determinant equal to ct’ coshw —sinhw 0 ct
1 give rise to orthochronous proper Lorentz transformations ' | =| —sinhw coshw 0 x
(that is Lorentz transformations that do not change the di- Y 0 0 1 y

rection of the time and do not change the orientation of the )

spatial axes). In fact, in the following subsection we shallSincer’+jct’ = (z+jct)(coshw—jsinhw) = (z+jct)e™*,

give the explicit form of the special unitary doullec 2 ma- th_ls Lore_ntz transformation can be expressed in the f@m (

trices corresponding to a boost in an arbitrary direction andVith K given by

to an arbitrary rotation in they-plane. (Special means that o—iw/2 0

the determinant is equal to 1.) ( 0 /2 ) )
It may be pointed out thak” and— K represent the same

Lorentz transformation [see E@){ and that— K is a special  or its negative.

(10)
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In a similar manner, if the primed axes move along the

y-axis with respect to the unprimed ones, instead/pf\e Even though the special unitary matric€) (11), and
have (12) are simple enough to easily execute any required com-
ct' =~ (ct — Ey) ) putation (especially in comparison with thex 4 matrices
¢ regularly employed, see.g, Ref. [6]), it is convenient to
=z, introduce the skew-Hermitean matrices
v
y'z'y(y_gd)’ g'_<_j 0) J_(Q J)
1= : ) = . )
which, using the expressior@)( is represented by thex 3 0 ] 0
matrix 0 —1
coshw 0 —sinhw 03 = ( 1 0 ) (13)
0 1 0 ,
—sinhw 0 coshw
and, alternatively, by the special unitary matfixgiven by (that is,o;" = —oy, fori = 1,2,3). One can readily verify
. that these matrices, which are analogous to the Pauli matri-
cosh(w/2)  jsinh(w/2) (11)  ces appearing in connection with the group of rotations in the
jsinh(w/2) cosh(w/2) )’

) ) three-dimensional Euclidean space, satisfy the relations
or its negative.

The ordinary (spatial) rotations are also included in the

Lorentz transformations. Since we are considering here two o’ =1=07" 03” = -1, (14)
spatial coordinates only, we only have rotations in ihe
plane: wherel is the unit2 x 2 matrix, and

ct' = ct,

x’zxcos@—f—ysin&, 0102 = 03, 0203 = —01, 0301 = —02, (15)

y = —xsinf + ycoso, with 0,0 = —oj0;, wheni # j. (A minor difference, how-
and this linear transformation is represented by the real meeVver, is that the usual Pauli matrices are Hermitian, in order to
trix facilitate their relation with observables, namely the compo-

1 0 0 nents of the spin.) For instance, the matii?)(is equivalent
0 cosf sinf |, to
0 —sinf cosf 0 9
which corresponds to the special unitary matrix cos 5 I +sin 593
< cos(0/2) —sin(6/2) )
. , (12) . . .
sin(/2)  cos(6/2) and the matrix corresponding to the case where the primed

and its negative. axes move with respect to the unprimed ones in an arbitrary
| direction defined by the unit vectar= (ny,ns) is

( cosh(w/2) — nqjsinh(w/2) ngoj sinh(w/2)

w w
= cosh — I + sinh —(ny101 + no0os), 16
ngjsinh(w/2) cosh(w/2) 4+ n1jsinh(w/2) ) 2 2 (Mo +na02) (16)
and its negative, assuming that the unprimed axes coincide with the primed ened)af his expression reduces ®0j and
(11) whenn = (1,0) andn = (0, 1), respectively. The expressiob6) can be compared with the corresponding stanfar@
matrix

v v
Y —Y—-n1 —Y—n2
c c
v
—vgnl L+ (y—=1n12  (y—1)ning a7

—A/gng (y=Dning 14 (v —1)ny?
[see,e.q, Ref. [6], Eq. (11.98)].

In the following section we apply the representation of the Lorentz transformations obtained above in the analysis of the
composition of two Lorentz transformations in arbitrary directions.
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3. The Wigner angle and the Thomas precession

A well-known fact is that the composition of two “pure boosts,” that is, two homogeneous Lorentz transformations relating
inertial frames with parallel axes, may not be a pure boost, but it is equivalent to the composition of a boost and a rotation
of (spatial) axes. The subject is discussed in many textbooks and in a long list of papem.dsdeefs. [8—12]). One
of the physical implications of this fact is the so-called Thomas precession which is relevant in atomic physieg(see,
Refs. [6,7,13, 14] and the references cited therein).

Let S be an inertial frame and let Be a second inertial frame moving with respect to S with rapiditip the direction
defined by the unit vectan = (n,n5) so that the coordinates of any event witk= 0 with respect to S and’%re related
by means of?’ = KPKT, with K given by Eq./16). (Note that, in this approach, a boost in an arbitrary direction is almost
as simple as a boost along one of the coordinate axes.) LettRird inertial frame with its axes also parallel to those of S,
moving with respect to S with rapidity’ in the direction defined by the unit vectat = (n/,n%). Then, the coordinates of
any event withz = 0 with respect to S and’Sare related by means ¢’ = LPL' with L given by an expression similar to
Eq. (16) with w and(n1,n2) replaced byw’ and(n}, n}), respectively. Hence, the coordinates with respect tan§.5” of
any event with: = 2’ = 2" = 0 are related by = L (KTP'K) L' = (LK") P’ (LKT)'. Thus, the Lorentz transformation
relating the coordinates measured ira8d ' is represented by the doulilex 2 matrix
wl
2
which may not be of the fornil€) [owing to the possible presence of terms propotionalstn the result of the multiplication
(18)] and this means that the axes df&hd S need not be parallel. In fact, the transformation represented&ycan be
expressed as the composition of a boost followed by a rotation of the spatial axes; that is, the A&)dunas{ be equivalent
to

!
LKT = [COSh w? I + sinh —(no;1 + ngag)] [cosh% I —sinh %(nlal + ngag)} , (18)

2 2
where(} is the angle between the axes ¢fa®d S (the Wigner angle)w is the rapidity of 8 with respect to Sand (7, 712)
is a unit vector defining the direction of motion df @ith respectto S
Multiplying the matrices appearing in Eq& 8} and ([L9) with the aid of ((L4) and [L5), making use of the linear independence
of the sef{I, 01, 02, 03} one gets the four equations

Q

Q Q Iy 7
[cos — I +sin — 03] [cosh % I + sinh %(ﬁlal + fzgag)} , (19)

/ /

cos o cosh % = cosh % cosh % — (n-n’)sinh % sinh %, (20)
Y’ W , Iy W '
sin — cosh 5= (n1ng — ngn} ) sinh 3 sinh - (21)
Q -~ Q ~ / /
711 cos — sinh v + 7o sin — sinh w_ n} cosh Ysinn L — n1 sinh Y cosh E, (22)
2 2 2 2 2 2 2 2
Q ~ Q ~ / !
Tlo COS 3 sinh % — 71 sin 3 sinh % = n cosh % sinh w? — ngy sinh % cosh %7 (23)

which determine the four unknowss w, 7, andns. By combining Eqgs.20) and 21) one obtains

. . !
(n1ny — ngny)sinh ¢ sinh %4~

tan — = , ;
w w’ .n’) <] W o3 w
2 cosh § cosh % — (n - n’)sinh ¥ sinh

(ninb — nan}) [cosh(—“"gw/) - cosh(—“’;“’/ )}

= ! ’ ! ! 9 24
[cosh(—“";w ) + cosh(*5*~ )] —(n-n) [cosh(—’“";“’ ) — cosh(®5*= )} (24)

and, summing the squares of the left-hand side22)fgdnd 23) one finds the surprisingly simple relation
cosh 1 = cosh w coshw’ — (n - n’) sinh w sinh w’. (25)

It may be remarked that Eq®4) and 25) are valid without restrictions on the relative velocities of the frames. The last
expression inZ4) for the Wigner angle can be considerably simplified if we assume that the velocitiésaotl®' with
respect to S differ “slightly.” Writingw’ = w + dw, with jw < w, and assuming that the angle betweeandn’, denoted
by 46, is small,§6 < 1, keeping up to first order terms iw anddd, we havenin}, — nonj = sindf ~ §, n-n’ ~ 1,
cosh([w 4+ w']/2) ~ coshw + sinh w (dw/2), andcosh([w — w’]/2) ~ 1, so that

0 ~ (coshw — 1)46.
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4. Final remarks which corresponds to a double numigér Then one finds
that¢’ is given in terms of through a linear fractional trans-
Apart from the procedure followed in Sec. 2 to find a rep-formation, that can be associated with & 2 matrix, which
resentation of the subgroup of the orthochronous propeis, up to a factor, the matrix” defined above. (All this con-
Lorentz transformations preserving the conditior= 0 by  struction is similar to that presented in Sec. 1.4 of Ref. [1],
double2 x 2 matrices, there are some alternative methodghis time making use of the double number plane instead of
that can be applied to obtain the basic results presented abowbe complex plane in the stereographic projection.)

One of them consists in the use of the stereographic projec- Another method consists in applying the more algebraic
tion: each pointct, z,y) on the surfacél/ defined by the approach given in Chap. 5 of Ref. [1], with the definition of
equationz? + 32 — (ct)? = 1, with y > 1, is joined with the  the appropriate Infeld—van der Waerden symbols, which now
point (0,0, —1) by means of a straight line. The intersection are double numbers (see also Ref. [4]).

of this line with the plane = 0 is the point with coordinates It may be remarked that even though the double matri-
(ct,x,0)/(1 + y), which can be identified with the double ces employed above represent a restricted class of the homo-
numberé = (x + jct)/(1 + y). Sincez? + y? — (ct)?isin-  geneous Lorentz transformations, for problems where only
variant under any homogeneous Lorentz transformation thatvo spatial directions are relevant (such as the calculation of
preserves the condition = 0, under such a transformation the Wigner angle and the Thomas precession), this restriction
any point of M is mapped into another point of this surface, does not signify a loss of generality.
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