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Quantum HHL algorithm applied to electric circuit and line transmission wave
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The HHL quantum algorithm [1] is a procedure that addresses the resolution of linear systems of equations (QLSP). Under certain conditions,
the algorithm has a logarithmic order in the number of equations, better than the faster classical method. The algorithm manages to find a
quantum state proportional to the solution vector, up to a normalization factor. The disadvantage is that to determine each of the coefficients
of the solution vector, the algorithm’s output quantum state must be determined with additional statistical methods, thus losing its exponential
advantage. There are certain types of problems in which this disadvantage can be circumvented, the statistical treatment is unavoidable, but
for certain cases such as electrical circuits, in which the main interest is to find only one of the currents, (for example the load current), we
only need to measure one of the qubits of the solution state. In this article we solve the linear system associated with the currents of an
electrical circuit with sinusoidal voltage, using the HHL algorithm, simulated in a Scilab numerical environment. An optimized example of
an electrical line transmission wave in a real computer on the IBMQ platform, is also solved.
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1. Introduction

Solving linear systems of equations is crucial in many areas
of mathematics and engineering. The Quantum HHL algo-
rithm (HHL), formulated by Aram Harrow, Avinatan Has-
sidim, and Seth Lloyd in 2009 [1] is the first quantum al-
gorithm capable of solving this problem with an logarithmic
order onN (at least for sparse matrix), whereN is the num-
ber of equations, when the best classical method is of order
N [2]. However, the HHL quantum algorithm has certain
practical limitations. By using a classical method we may
determine each of the elements of the solution vector, but
with a quantum solution we can only obtain a quantum state
that represents the solution vector. To determine each of the
entries of the solution vector, it is necessary to apply statis-
tical methods, thus losing its original exponential advantage.
In order to improve these aspects, some variations of the al-
gorithm have been proposed [3], but these variations lack the
capacity of being able to solve the problem completely.

On the other hand, one could try to reduce the statistical
inference, looking for problems in which only one of the un-
knowns of the system of equations is relevant. In this article
we will study a typical engineering and physics problem that
appears in any undergraduate university course, in which the
system of equations comes from Kirchhoff’s laws applied to
an electrical circuit of linear elements such as resistors, ca-
pacitors and inductances with AC currents. The complexity
of the circuit increases, alongside the number of meshes, re-
sulting in higher computational power needed to solve the
equations. Fortunately, in the case of electrical circuits, typi-
cally only finding the module and phase of the current trough
the load impedance is relevant, which simplifies the statis-
tics to be made afterwards by allowing to use some form of
analysis only on one qubit.

This analysis is interesting for a quantum computing
course, from the pedagogical point of view, since it solves
a well-known problem as a simple electrical circuits, using a
quantum algorithm.

In Sec. 2, after a brief introduction, theHHL algorithm
with related algorithms are presented. In Secs. 3 and 4,
the general solution for circuits and transmission line is pre-
sented. As a practical example, in Sec. 5 analyzes a concate-
nated mesh circuit ofN = 4 with impedances with a sin-
gle sinusoidal voltage source, using the HHL algorithm sim-
ulated in the Scilab numerical environment. As a second ex-
ample, in Chapter 6, the electromagnetic wave problem of an
not dissipated transmission line will be solved using the same
algorithm on the Qiskit platform (IBMQ open platform) [4].

2. The HHL algorithm

2.1. Objective and drawbacks of the algorithm

Given the system of equationsA |x〉 = |b〉, whereA is an
hermitic matrix, (or can ve otherwise reconverted), and|b〉
a unitary vector state, one may be interested in determining
the solution vector. Actually, the outcome of the algorithm is
not the coefficients of the vector~x but a quantum state anal-
ogous to the solution|x〉 = A−1 |b〉, up to normalization.
Specifically, the outcome of the algorithm will be a normal-
ized quantum state of the form|x〉/‖x‖ in which the ampli-
tudes shall represent the solutions of our system. This has the
important setback, that in order to be able to determi ne the
value of the amplitudes, one relays on statistically undesir-
able methods such as Quantum Tomography [5], thus losing
the quantum speedup advantage.

However, there are certain problems in which one may
not need to know all the amplitudes, but some expectation
value of an operator acting on the solution vector, or other
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problems in which only one of the variables is relevant. Im-
plementing a classical algorithm for solving linear systems
requires solving the system almost in its entirety to be able
to find one of the variables, while in the quantum algorithm,
when the state|x〉/‖x‖ is found, we may apply statistics after
measuring only one qubit.

2.2. Previous algorithms

The HHL algorithm uses two quantum subroutines that help
construct the result vector|x〉, the Quantum Fourier Trans-
form algorithm (QFT) [5] and the Quantum Phase Estimation
algorithm (QPE) [6]. We sumarize theese two algorithms in
the next sections.

2.2.1. QFT Algorithm

The idea of a Quantum Fourier Transform (QFT) arises from
the fact that classical Discrete Fourier Transform (DFT) [7],
must be represented by a unitary operator, so it is straightfor-
ward to think of it as an implementable quantum circuit, act-
ing on a quantum state. Therefore, by using universal quan-
tum gates, this operator may be implemented on a real Quan-
tum Computer.

Let |X〉 and |Y 〉 be some certain Quantum State of the
computational Basis the QFT is defined as:

UQFT |X〉 =
1

2t/2

2t−1∑
y=0

e
i2πxy

2t |Y 〉 , (1)

wheret is the number of qubits of the system,|X〉 and |Y 〉
are computational basis states expressed in binary notation,x
andy are the decimal number representation of such states.

After some algebraic treatment [5] the above Eq. (1) can
be written as a separable form, acting on each qubit of the
state|X〉:

UQFT |X〉 =
1

2t/2

(
|0〉+ e2πix/21 |1〉

)

⊗
(
|0〉+ e2πix/22 |1〉

)
...

⊗
(
|0〉+ e2πix/2t |1〉

)
. (2)

In the current state of the art of Quantum comput-
ing, commonly called Noisy intermediate-scale quantum era
(NISQ, [8]), applying this quantum algorithm on a real quan-
tum computer requires finding a decomposition of the matrix
associated to the transformation into a universal set of gates,
whose combination of Kronecker products and compositions
yields the desired matrix.

For the QFT algorithm, this decomposition in quan-
tum gates is known [5], and requires a few basic gates:
the Hadamard transformH and a controlled rotationsCRz

around thez axis; Rz. Their matrix representations are
shown in Eq. (3) and Eq. (4).

FIGURE 1. Three qubit QFT circuit.

H =
1√
2

[
1 1
1 −1

]
, (3)

CRz = I ⊗ I... |0〉 〈0|+ Rz(φ)⊗ I... |1〉 〈1| , (4)

whereRz(φ) is

Rz(φ) =
[

1 0
0 eiφ

]
. (5)

As an example, for a three qubit state, the QFT circuit
with Rz(π/2) = S andRz(π/4) = T is shown in Fig. 1.

2.2.2. QPE Algorithm

The Quantum Phase Estimation algorithm was devised to
estimate the eigenvalues (or phases) of the corresponding
eigenvectors of a unitary operator [5] .

For any unitary operatorU , all the eigenvalues are of
modulus1, then for anyk ∈ 1, .., 2n,

U |uk〉 = e2πiθk |uk〉 , (6)

where|uk〉 is a eigenvector ofU . The QPE algorithm esti-
mate the phaseθk in t registers. Assuming that0 ≤ θk < 1,
and2tθk ∈ N, then the algorithm found exactly the binary
representation ofθk, otherwise, it determines the value with
high probability [see Eq. (12)].

The initial state|ψ0〉 of the algorithm is

|ψ0〉 = |0〉⊗t ⊗ |uk〉 . (7)

The first step of the algorithm is to apply a set of
Hadamard,H⊗t to thet registers qubits, resulting in the state

|ψ1〉 =
1

2t/2
(|0〉+ |1〉)⊗t |uk〉 . (8)

A set of controlled operatorsCU2j

are then applied, where
the controls attacks the registerj ∈ 0, ..., t− 1. For example,
for the third registerCU22

is

CU22
= |0〉 〈0| ⊗ I ⊗ I ⊗ I

+ |1〉 〈1| ⊗ I ⊗ I ⊗ U4. (9)

The complete representation of QPE algorithm is shown in
the Fig. 2.
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FIGURE 2. QPE algorithm.

The resulting state after some algebraic manipulations is

|ψ3〉 =
1

2t/2

(
|0〉+ e2πi2t−1θk |1〉

)
⊗ ...

⊗
(
|0〉+ e2πi20θk |1〉

)
|uk〉 . (10)

As we see from Eq. (2), if 2tθk ∈ N and0 < θk < 1 could be
replaced byx getting exactly the Eq. (10), that can be rewrit-
ten as

|ψ3〉 =
(
UQFT

∣∣2tθk

〉) |uk〉 . (11)

By applying an inverse transformU†
QFT on the registers

qubits we obtain the exact binary representation of the phase.
When2tθk 6= N, several authors analyzed the error that

this condition causes in the phases [5, 9]. In Ref. [5] the au-
thors demonstrated that for anym ∈ N andε > 0, the phase
value is obtained withm correct digits with probability at
least1− ε, chooses the number of register qubits as,

t ≥ m + log
(

2 +
1
ε

)
. (12)

2.3. HHL Algorithm

The previous algorithms are used as part of the HHL algo-
rithm. To solve the system of equationsA |x〉 = |b〉, whereA
is a2n× 2n matrix with eigenvaluesθk, and|b〉 a2n normal-
ized vector. The initial state witht + n + 1 qubits;t registers
qubits,n qubits for the state|b〉, and one ancilla qubit, will
evolved to the answer. The algorithm initialize with the state
of the form

|ψ0〉 = |0〉 |0〉⊗t |b〉 , (13)

whereb can be decomposed on the basis eigenvectors ofA as

|b〉 =
2n∑

k=1

bk |uk〉. (14)

Thet the qubits will be used to store the result of the phases.
The preparation of the state|b〉 is as computationally

complex as the algorithm itself, for the sake of simplic-
ity we assume the existence of an operatorM , such that
M |0〉 = |b〉, is determined efficiently and without errors.

• Step 1. The QPE estimation (2.2.2.) is applied to the
t registers qubits of initial state. After the first step the
state becomes

|ψ1〉 = H⊗t |0〉⊗t |b〉 =
1

2t/2
(|0〉+ |1〉)⊗t |b〉 (15)

• Step 2.To proceed, with the QPE estimation, the uni-
tary U = ei2πA must be generated, this stage can be
done with a procedure called Hamiltonian Simulation,
which also requires some computational complexity
discussed in Ref. [10]. As a consequence, the eigen-
values ofA, {θk} have been turned into the phases of
the operatorU .

After applying QPE estimation to the state|ψ1〉 we get

|ψ2〉 =
2k∑

k=1

1
2t/2

(|0〉+ e2πiθk2t−1 |1〉)⊗ ...

⊗ (|0〉+ e2πiθk21 |1〉)⊗ (|0〉+ e2πiθk20 |1〉)bk |uk〉

Then, an inverse of a Quantum Fourier Transform de-
fined as Eq. (2) is applied to the resulting register in
order to obtain an analogous state|θk〉 whereθk is the
eigenvalue of the eigenstate|uk〉 The resultant state is
of the form:

|ψ3〉 = QFT † |ψ2〉 =
2n∑

k=1

∣∣λ̄k

〉
bk |uk〉 , (16)

whereλ̄k is the binary approximation of the eigenvalue
θk in thet registers. From now on, we will assume that
the estimation is sufficient in its precision, and there-
fore we have the exact eigenvalues of the matrixA.

• Step 3.The idea behind the algorithm is to invert the
eigenvalues to get:

A−1 |b〉 =
2n∑

k=1

1
λ̄k

bk |uk〉. (17)

Once the eigenvalues are known, we proceed to apply
a rotation around they axis on the first auxiliary qubit

RY = e−iY φk , (18)

whereφk = arcsin
(
C/λ̄k

)
using the known estima-

tion of eigenvalues on the registerst as controls, re-
sulting in

|ψ4〉 =
2n∑

k=1

|0〉
√

1− C2

λ̄2
k

∣∣λ̄k

〉
bk |uk〉

+ |1〉 C

λ̄k

∣∣λ̄k

〉
bk |uk〉 , (19)
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where the constantC cancels out and ensures the ro-
tation may be implemented. TakingC = min |λ̄k| is
generally accepted.

Taking into account that if a measurement of the an-
cilla is made, and wait until the resulting state|1〉 is
obtained, then we have already succeeded in inverting
the corresponding eigenvalue corresponding to|uk〉.
Now it only remains to apply the inverse of QPE onto
the remaining state, resulting in

• Step 4.

|ψ5〉 = |1〉 ⊗QPE†
2n∑

k=1

1
λ̄k

∣∣λ̄k

〉
bk |uk〉

= |1〉 ⊗ |0〉⊗t ⊗ |x〉
‖x‖ , (20)

and in principle we should obtain the solution state|x〉,
up to a norm, in the qubits corresponding to|b〉.

2.3.1. Order of HHL algorithm

The HHL algorithm is capable of solving this problem with
an order of [1]

O

(
log(N)s2k2

ε

)
, (21)

wherek is the condition number of the matrixA, expressed
ask = λmax/λmin whereλmax y λmin are the minimum and
maximum eigenvalues of the matrix,s is the sparsity index of
the matrix indicating the maximum number of non zero ele-
ments per file or column, andε indicates the smallest measure
of error in representing a real number.

Using the best classical method in terms of speed, re-
quires an order ofO (Nsk log(1/ε)) [11] thus, we notice an
exponential upgrade in the number of equationsN in using
the HHL with regard to a classical method. However, we
have a downgrade ink ands.

3. SolvingN Mesh Circuit using HHL

Let anyN = 2n (with n natural number) mesh electric cir-
cuit composed of linear elements such as resistors, induc-
tance, and capacitance with sinusoidal voltage sources, can
be solved using Kirchhoff’s equations. If the number of
meshes is not exactly2n, then the identity equations must
be added.

For a stationary regime, the generalized Ohm’s law is ap-
plied between two nodesl, m

Il,m =
Vl,m

Zl,m
, (22)

where Vl,m is the generalized complex voltage between
the nodes,Zl,m = Rl,m + i(ωLl,m − [1/ωCl,m]) is the

FIGURE 3. Example ofN mesh electric circuit.

impedance corresponding to that section, andIl,m is the gen-
eralized complex electric current.

As a case of study, we will analyze a particular circuit,
shown in Fig. 3.

Where extrapolating the voltage to complex values
V0 cos(ωt) → V0e

iωt, the correspondingN linear equations
for the currents are:

V0 − Z1I1 − Z ′1(I1 − I2) = 0

−Z2I2 − Z ′2(I2 − I3) + Z ′1(I1 − I2) = 0

...

−ZLIL + Z ′N−1(IN−1 − IL) = 0. (23)

For example, the matrix representation of the equations with
N = 2 is

[
(Z1 + Z ′1) −Z ′1

Z ′1 −(Z ′1 + ZL)

] [
I1

IL

]
=

[
V0

0

]
.

4. Solving a Transmission Line Wave (TLW)
using HHL

A transmission line is a one of the devices used to propa-
gate electromagnetic waves. In general, it is a cable made
with a good electrical conductor, long enough, compared to
the wavelength size, in such way the phenomena of a wave
nature to be relevant. These transmission lines are used to
connect small wavelength radio transmitters to correspond-
ing antennas, computer network connections, as well as in
computer data buses of high frequency. An example of a typ-
ical electric transmission line is coaxial cable (see Fig. 4).

The transmission lines (TL) are a distributed parameter
system on a line, but they can be analyzed as concatenated
cells of infinitesimal length circuits, applying simple Kirch-

FIGURE 4. Typical electric line transmission used: a coaxial cable.
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FIGURE 5. Detailed circuit model for Transmission Line cable.

hoff Laws. Usually, a given line transmission cable exhibits
a certain electrical resistance, as well as an electrical in-
ductance, capacitance and reluctance, these magnitudes are
called parasitic as they were not put on purpose but are in-
trinsic properties of the cable.

Let us consider a transmission line cable of lengthl, as a
set of infinitesimal cells of lengthdx. The infinitesimal re-
sistance of the cell will bẽR = R(dx/l), whereR is the
total parasitic resistance. In the same way the infinitesimal
inductance will beL̃ = L(dx/l), whereL is the total para-
sitic inductance, the infinitesimal capacitanceC̃ = C(dx/l),
whereC is the total capacitance, and finally the infinitesimal
reluctanceG̃ = G(dx/l). An example of the circuit is shown
in Fig. 5.

We study here an example of the propagation of a elec-
tromagnetic current wave on the TL cable without dissipa-
tion, meansR → 0 andG → ∞ and a finite resistive load
ZL = R′ The wave equation for the currents at any point
0 ≤ x ≤ l and any timest is [12].

∂2I

∂x2
=

1
vw

2

∂2I

∂t2
, (24)

wherevw = l/
√

LC is the propagation velocity of the elec-
trical wave [12]. The expected wave solution,i.e. a cur-
rent wave traveling to right and another one traveling to left
for any particular frequencyω = 2πf , and number wave
k = ω/vw will be

I(x, t) = aei(ωt−kx) + bei(ωt+kx), (25)

wherea andb are the complex amplitudes of the wave trav-
eling to right and left respectively.

The frontiers condition for the left extreme of the lines
(x = 0), using Kirchhoff’s circuit law yield

iωV0e
iωt = − l

C

(
∂I

∂x

)

x=0

, (26)

and for right extreme of the lines (x = l) Kirchhoff’s circuit
law yield

R′
(

∂I

∂t

)

x=l

= − l

C

(
∂I

∂x

)

x=l

. (27)

Applying the conditions (26) and (27) to the Eq. (25) will get
the lineal system of equations

a− b =
V0

Z0
,

ae−ikl(p− 1) + beikl(p + 1) = 0, (28)

whereZ0 =
√

L/C is called characteristic line impedance
andp = R′/Z0.

Then the matrix representation is:
[

1 −1
e−ikl(p− 1) eikl(p + 1)

] [
a
b

]
=

[
V0/Z0

0

]
. (29)

5. HHL of electrical circuits in Scilab

To implement the HHL algorithm for 3-mesh electrical cir-
cuits or more, we need some elaborated quantum gates.
Although it is possible to decompose them in basic gates
(CNOT and generic one-qubit gates), the synthesis is still a
complicated task for a general unitary matrix. The Qiskit
platform is advancing in leaps and bounds, for example
achieving efficient implementations of particular types of ma-
trices. At the time of writing, (according to the tutorial [13])
the only truly efficient implementation it contains is the real
Tridiagonal-Toeplitz matrix class. Therefore, because our
matrix is of complex values, we give here a simulation of
solving an electrical circuit equations withN = 4 variables,
using HHL algorithm on Scilab platform.

As an example, the 3-mesh circuit Eq. (23) is analyzed.
Because for quantum states the global phase is undefined, to
obtain the global phase of the currents, one more identity
equation must be addedV = V0 to fix the phase, then the
equations becomes

V = V0,

V − (Z1 + Z ′1)I1 + Z ′1I2 = 0,

Z ′1I1 − (Z2 + Z ′2 + Z ′1)I2 + Z ′2IL = 0,

Z ′2I2 − (Z ′2 + ZL)IL = 0.

where all the impedance valuesZi, Z
′
i were chosen with ran-

dom phase and of order of magnitude 1Ω.
The idea here is to calculate only the module and the

phase of the load currentIL. To apply the HHL algorithm,
the associated matrix must be hermitian. For the electrical
circuit proposed, Eq. (30) the associated matrixA, of 4 × 4,
is in general not hermitian, so the matrix has to be expanded
to the form

A =
[

0 A
A† 0

]
, (30)

where the0 minds a quadratic matrix of zeros of sizeA, and
the state|b〉must be expanded accordingly to|b, 0〉. Then the
new matrixA is finally 8× 8.

The QPE phase estimation algorithm was designed to
find the different eigenvalues of an hermitian matrix, satisfy-
ing λi ∈ (0, 1). In general, the expansion of the matrixA
Eq. (30) does not meet this condition, so this array must be
modified together with the stateb, in such a way that

Â =
A√

Tr(AA†)
, ˆ|b〉 =

1√
Tr(AA†)

|b〉 . (31)
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Note that, this mapping does not affect the currents since
|I〉 = Â−1 ˆ|b〉 = A−1 |b〉. For the simulation of the algo-
rithm, n = 3 qubits were used for the expanded stateˆ|b〉 and
t = 4, 5, 6, 7 registers ancillaries qubits for the estimation of
the eigenvalues.

First the QPE algorithm is applied to find the eigenval-
ues which will then determine the rotations Eq. (18) neces-
sary for the inversion of the eigenvalues. One of the difficul-
ties encountered in the application of QPE is that it can be
demonstrated that the expansion Eq. (30) of the matrix leads
to half of the eigenvalues being positive and the other half
negative with, the same modulus. The latter causes that the
phases obtained from the negative eigenvalues are shifted by
2π, resulting in the negative eigenvalues being also shifted
by −λi → (−λi + 1). We assume that the eigenvalues are
unknown and therefore we can’t determine which ones were
shifted. This becomes a problem in the next step of HHL al-
gorithm, because we need the eigenvalues in order to apply
the rotations Eqs. (18). One way of solving this problem is to
first run QPE algorithm with a shifted matrix,i.e.:

Ã =
Â + kdI√
Tr

(
ÂÂ†

) , (32)

beingkd = max(|λi|) + 1/2t. In that way, the eigenvalues
obtained are always positive and less than one. Of course,
this means that we had to have a classical way of estimating
the minimum eigenvalue of the matrix. After obtaining the
eigenvalues, the inverse operation is performed, obtaining the
corrected ones. Then, the corresponding rotations are applied
and the resulting state is the expected currents. Besides that,
if the resulting shifted eigenvalues overlap, the QPE algo-
rithm gives wrong results, however that case is not addressed
here.

At this stage, only the load currentIL = |IL|eiφ (module
and phase) is relevant. To obtain it, we must add an ancillary
qubit and apply an control operatorM to the resulting state
|I〉. In this case we choose the last equation of Eqs. (23) to
be related toIL, so the generalizedM is a Toffoli operator

M = |111〉 〈111| ⊗X

+ (|000〉 〈000|+ ... |110〉 〈110|)⊗ Id. (33)

whereX is the Pauli matrixX |0〉 = |1〉,X |1〉 = |0〉 andId

is the identity operator. After measuring the ancillary qubit
in Z basis, we estimates the probabilitiesPZ(0) andPZ(1).
The phase is also required, so we must measure also inX
basis, obtainingPX(0), PX(1), and the desired load current
will be:

|IL| = PZ(1),

cos(φ) =
PX(0)− PX(1)

2PZ(0)
. (34)

In order to determine the real load currentIL we must mul-
tiply first by the norm of the vector|I〉. This value cannot

be obtained using the quantum algorithm so they have to be
calculated utilizing some classical method.

5.1. Exact and approximate eigenvalues

A particular case arises when the eigenvalues ofÂ take the
exact values:

λi =
{

0,
1
2t

,
2
2t

, ...,
2t − 1

2t

}
, (35)

resulting in the procedure yielding an exact result for any
given set of impedances,i.e. the gates do not induce error.

In contrast, when the eigenvalues do not fit the exact val-
ues of Eq. (35), the QPE approximates them to the closest
binary value that depends on the number of registerst, hence
the load current be affected due this approximation. In Table I
we see how this approximation, produces errors in determin-
ing the load currentIL = |IL|eiφ,

As an example, for source voltage fixed atV0 = 5V ,
the resistanceR = 1Ω as load impedanceZL, and the other
impedance set chosen as:

Z1 = 0.235− 0.087i, Z2 = 0.561 + 0.600i,

Z ′1 = 0.302 + 0.781i, Z ′2 = 0.501− 0.546i, (36)

the exact analytical load current is

Iclas.
L = 1.7476ei0.4867.

The efficiency of the algorithm is measured with three pa-
rameters: the Fidelity between the result quantum state and
the expected one, defined asF (|ψ〉 , |φ〉) = |〈ψ|φ〉|2 [5], that
induces a distance between states

DHHL,clas. = D(|ψ〉 , |φ〉) = arccos(F (|ψ〉 , |φ〉)), (37)

and the load current relative error in moduleε(mod) and
phaseε(phase).

As can be seen in Table I, although the distances between
statesD(|ψHHL〉 , |ψclas.〉) remain low as a function oft (on
max order of10−2), as expected the error decreases ast in-
crease, the load current modulus and phase have relatively
high margin of errors for smallert. This is due to the fact that
the load is the last impedance in the circuit (3) and in general
it is smaller, meaning that the largest error is precisely in the
load current.

TABLE I. Resulting load current for set of impedance Eqs. (36),
for different number of registert. The classical load current is
Iclas.

L = 1.7476ei0.4867.

t IHHL
L DHHL,clas. ε(mod) ε(phase)

4 1.983ei0.47 4.2× 10−2 1× 10−1 3× 10−2

5 2.291ei0.45 7.3× 10−2 2× 10−1 6× 10−2

6 1.742ei0.49 2.4× 10−3 3× 10−3 6× 10−4

7 1.749ei0.49 8.2× 10−4 2× 10−5 2× 10−4
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6. HHL on Qiskit (IBM Q)

Although the Qiskit platform (IBMQ platform.) is contin-
ually advancing and complex unitary operator packages al-
ready exist, it is not yet possible to implement a general lin-
ear system of equations. Some intricate gates of many qubits,
although already existing on the platform, are detailed here as
a decomposition into CNOT and one-qubit gates.

The system of Eqs. (29) of electric transmission line has
a 2 × 2 associated matrixA, that is not Hermitian in gen-
eral. To get an Hermitian matrix, the original one must be
expanded to4×4 matrix. To simplify the problem, we take a
particular case, whereV0, Z0 are chosen free butRL = 2Z0

andkl = π, thenp = RL/Z0 = 2, resulting inA a 2 × 2
Hermitian matrix equal to

A =
[

1. −1.
−1. −3.

]
. (38)

The original matrixA has eigenvalues of modulus greater
than one, so after divided by the factorf =

√
Tr(AA†),

Â = A/f, ˆ|b〉 = |b〉 /f , the new eigenvalues get in the range
[−1, 1]. The implementation on IBM Q is now feasible with
the basic gates defined in this platform.

First the QPE gate is applied to the initial 4-qubit state

|ψ0〉 = |a〉 ⊗ |t〉 ⊗
∣∣∣b̂

〉
= |0000〉 , (39)

whereq0 is the ancilla qubit,q1 andq2 are two registers|t〉 =
|00〉 andq3 is the normalized vector

∣∣∣b̂
〉

= |0〉. In the first
part the QPE algorithm, theCtrU gate have two Hadamard
gates and the two controlled gatesC(U) andC(U2), where
U = ei2πÂ as shown in Fig. 6. The second part is the inverse
of the QFT gate for two qubits.

After this application, one expected to get the approxi-
mation of the eigenvalues of̂A, λ1 = −0.9342 andλ2 =
0.3568, in its binary form, in qubitsq1, q2. For t = 2 regis-
ters, the approximation of the eigenvalues could only be the
values:{0, 1/4, 2/4, 3/4}. Actually, the eigenvalues are in
range[−1, 1], but given the first eigenvalueλ1 is negative (ap-
proximated−1),then the binary approximation is shifted by
1, getting the binary state|00〉 corresponding to the approx-
imation of value0. The second eigenvalueλ2 has e binary
approximation|01〉 corresponding1/4.

FIGURE 6. QPE algorithm with IBM Q quantum gates.

FIGURE 7. Generalized Toffoli gate for controlled ancilla rotations.

FIGURE 8. Rotations for inversion of eigenvalues on IBM Q.

The controlled ancilla rotations are generalized Toffoli
gates: ToffoliR1,2, which could be decomposed as shown
in Fig. 7 [5], where

Y =
[
0 −i
i 0

]
(40)

R1,2 = e−iY arcsin(C/λ1,2), C = 1/4 (41)

V1,2 =
√

R1,2. (42)

The gates are shown in the IBMQ platform as in Fig. 8.
The desired coefficientsa, b

|x〉 =
[
a
b

]
= Â−1

∣∣∣b̂
〉

, (43)

calculated analytically area =
√

9/10, b = −
√

1/10, given
the probabilities of measuring inZ basis:PZ(0) = 0.9 and
PZ(1) = 0.1. Due the estimation of eigenvalues by QPE,
the expected coefficient (calculated by scilab) are not exact:
a = 0.9508, b = −0.3096, being the expected probabilities
beingPZ(0) = 0.9041 andPZ(1) = 0.0959. The results in
the IBMQ simulator for32768 shots areP (0) = 0.9023 and
P (1) = 1 − P (0) = 0.0977, within the range of statistical
error. To get the phase of the coefficients we must measure
also inX basis, obtaining finally the coefficients by IBM Q
equal to:a = 0.9499, b = −0.3125. Finally, the same ex-
periment with the same number of shots, but in a real IBM Q
machine ibmqquito, is running, and the coefficient obtained
area = 0.9318, b = −0.3629. The results are summarized
in table Table II.

TABLE II. Coefficientsa, b of electric transmission line wave.

|x〉 Exact ibmqqasmsimulator ibmqquito

a
√

9/10 0.9499 0.9318

b −
√

1/10 −0.3125 −0.3629
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7. Summary

In this article, the HHL quantum algorithm for solving lin-
ear system of equations is implemented for electrical circuits
of sinusoidal current withN meshes and a current wave in
a transmission line. In the case of electrical circuits withN
meshes, only the load current is commonly relevant, but clas-
sically the system of equations must be solved almost in all
its steps, resulting in methods of orderN .

In the quantum case, the algorithm is logarithmic order
in N , but has a drawback because the result is statistical in
nature, that makes it to lose its advantage over the classical
algorithm. In our case, we only want to find the load cur-
rent, then in fact, the problem is limited to measurement and
statistic of a single qubit. The study is carried out in a Scilab
environment forN = 4 (which increases toN = 8 to con-
vert the matrix into hermitian) obtaining the load current in

module and phase. It can be seen in the Table II how increas-
ing the registers qubits in the estimation of the eigenvalues in
the QPE algorithm, improves the current result compared to
standard results.

Finally, a case of transmission line is implemented on
Qiskit platforms:ibmq qasm simulator and on a IBM real
quantum computeribmq quito. The comparison between a
classical linear solver, the simulated HHL algorithm and its
implementation on real quantum hardware , yields similar re-
sults, thus, reaffirming the efficacy of the algorithm.
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