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The one-dimensional Coulomb oscillator
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We consider the one-dimensional oscillations of a charged point particle under the restoring Coulomb force. We find that for very small
amplitudes, the speed of the particle remains almost constant and approximately equal to the speed of light. We also obtain the exact
analytical expression for finding the oscillation period. It turns out to be a monotonically increasing function of the amplitude. For small
amplitudes, this quantity is directly proportional to the amplitude itself.
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1. Introduction

The idea of non-linearity is one of the key ideas of modern
physics and has great scientific sense [1,2]. The development
of science, based on the study of the phenomena of a new
class of complexity,i.e., non-linear systems and processes,
leads to the development of deeper methods of scientific anal-
ysis and the formation of a new vision of the world. For
example, the modern theory of non-linear oscillations [3] is
both an applied and fundamental science. The applied char-
acter of this theory is determined by its multiple applications
in physics, mechanics, automated control, radio-engineering,
electronics, instrumentation, and so on. In this field of sci-
ence, a great deal of research on different systems and phe-
nomena has been done by using the methods of the theory
of non-linear oscillations. Furthermore, new technical direc-
tions have arisen on the basis of this theory, namely, vibra-
tional engineering and vibrational diagnostics, biomechanics,
etc.

Contrary to the general claim that small oscillations in
any system can be approximately treated in terms of simple
harmonic motion (that is, the motion under the restoring force
proportional to the displacement), there are infinitely many
oscillating systems for which this approximation is not valid.
Such oscillations are often called intrinsically non-linear os-
cillations. For these oscillations, the isochronous property
(the period of oscillations does not depend on the amplitude)
fails even for small amplitudes. Some other features and
examples of the intrinsically non-linear oscillations are an-
alyzed in the excellent paper by Mohazzabi [4].

In this paper, we consider the properties of one-
dimensional oscillations of a charged particle under the
restoring Coulomb force. This type of oscillations can be re-
alized for confined electrons in hydrogen atoms in high mag-
netic fields, semiconductor quantum wires and carbon nan-
otubes, polymers, and plasma (Langmuir oscillations) [5, 6].
The issues covered in this paper will be useful to undergrad-
uates studying the theory of non-linear oscillations.

2. Phase portrait of the oscillations

Let us consider a point particle with the rest massm and
chargeq1 that can move only along theOx-axis under the
restoring Coulomb force arising due to the presence of fixed
point chargeq2 placed at the originO. We assume that at the
initial time t = 0 x = A > 0 (A is the oscillation amplitude)
andvx = 0, where~v is the particle velocity.

As the Coulomb potential has a singularity (in Ref. [4]
only positive degrees of the displacement in the expression
for the potential are considered) at the point where the point-
like charge rests, we use the laws of relativistic dynamics, so
that the velocity of the oscillating particle everywhere takes
a finite value less than the speed of lightc. Another question
concerns the form of the Coulomb potential in the framework
of relativistic dynamics. We are entitled to consider the mo-
tion of a charged particle in an arbitrary reference frame, in-
cluding the one, where the attracting center is at rest. In this
reference frame, the Coulomb potential has the usual classi-
cal form. In other words, the special theory of relativity does
not correct the classical Coulomb potential of a fixed charge
in any way (see Landau and Lifshitz course [7], in which a
similar problem of the three-dimensional motion of a rela-
tivistic particle in an external Coulomb field is considered).

In this paper, we neglect the radiation damping force [8],
that causes the weak damping of the oscillations over time.
We also note that there are no the retarded effects [9], since
the electric field of fixed chargeq2 is stationary (electro-
static). Due to the omitting of the radiation damping force,
we can apply the relativistic conservation law of energy. In
our case, it has the following form:

mc2

√
1− v2

x/c2
− |q1q2|

4πε0|x| = mc2 − |q1q2|
4πε0A

. (1)

We can rewrite Eq. (1) in the following dimensionless
form: (vx

c

)2

= 1− 1
(1− a−1 + |ρ|−1)2

, (2)
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FIGURE 1. The phase trajectories ata = 1, 3, 6, 10.

wherea = 4πε0mc2A/|q1q2| > 0; ρ = 4πε0mc2x/|q1q2|
(|ρ| < a). In Fig. 1 we present the set of phase portraits
constructed using Eq. (2) for different values ofa.

At ρ = 0 vx = c. For ρ → 0 vx ≈ c(1 − ρ2/2) ≈ c.
Therefore, near the singularity of the potential the particle
move with almost constant speed approximately equal to the
speed of light. It is also seen that with an increase in the
parametera, the inflection points appear on the phase trajec-
tories (exploring functionvx(ρ, a), we find that it takes place
for a > 3.4). At a fixed value ofvx the value ofρ increases
with the increasing of amplitudea.

3. Time dependence of the displacement

Using Eq. (2) and relationvx = dx/dt, we get:

t(ρ, a) = ±τ

ρ∫

a

dρ′√
1− 1

(1−a−1+|ρ′|−1)2

, (3)

whereτ = |q1q2|/(4πε0mc3). Since, we will consider only
the positive instants of timet > 0, then we must choose the
sign ”−” before the integral in Eq. (3) (becausedρ′ < 0).
Further, due to the fact that the Coulomb potential is symmet-
ric, it is sufficient for us to restrict ourselves to consideration
of time moments less than a quarter of the oscillation period
T and omit the absolute value ofρ

′−1 . At that rate:

t(ρ, a) = τ

a∫

ρ

dρ′√
1− 1

(1−a−1+ρ′−1)2

, (4)

for 0 ≤ t ≤ T/4 and0 ≤ ρ ≤ a.
Let us consider the definite integral of the following form:

I(ρ, a) =

a∫

ρ

dρ′√
1− 1

(1−a−1+ρ′−1)2

. (5)

If we put ρ′−1 − k = cosh z′, wherek = a−1 − 1 (k ∈
(−1,∞)), then Eq. (5) will be as follows:

I(ρ, a) =

z∫

0

cosh z′dz′

(k + cosh z′)2
= R + k

∂R

∂k
, (6)

where

R =

z∫

0

dz′

k + cosh z′
, (7)

z = cosh−1
(
ρ−1 − k

)
.

Now, we make the substitutiontanh(z′/2) = u′. There-
fore,

R =
2

1− k

u∫

0

du′
1+k
1−k + u′2

, (8)

where

u =

√
ρ−1 − k − 1
ρ−1 − k + 1

. (9)

at that atρ = 0, we have:u = 1. Using list of the indefinite
integrals of rational functions and Eq. (8), we finally derive:

R =
2√

1− k2
tan−1

(
u

√
1− k

1 + k

)
, (10)

for |k| < 1. If k > 1

R =
2√

k2 − 1
tanh−1

(
u

√
k − 1
k + 1

)
. (11)

It should be noted that when taking the partial derivative
∂R/∂k, we should consider the variableu (see Eqs. (9)-(11))
as a constant.

Taking into account Eqs. (4)-(6) and (9)-(11), we obtain:

t(ρ, a) = τI(ρ, a). (12)

The time dependence of the displacementρ can be found as
the inverse function of functiont(ρ, a). In Figs. 2 and 3 we
plot ρ(t/τ) at two different values ofa. It is seen that in
the case of very small amplitudes, the displacement changes
almost linearly (sawtooth) with time. It means that, for this

FIGURE 2. Dependenceρ(t/τ) ata = 0.05.
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FIGURE 3. Dependenceρ(t/τ) ata = 10.

FIGURE 4. The phase trajectory ata = 0.05.

condition, the speed of the oscillating particle remains almost
constant (see also Fig. 4), from which it is visible that this
constant speed is approximately equal to the speed of light).

Indeed, at small amplitudes nearx = ±A the walls of the
potential well become so steep that the particle reaches rel-
ativistic velocities, having moved from these turning points
even by a small (compared toA) distance to the center.
Wherein, when the speed becomes close to the speed of light,
derivativedv/dE (whereE is the sum of rest energy and ki-
netic energy) becomes small. In other words, the total energy
E can increase significantly with a small change in speed.

4. Period of the oscillations

The period of the oscillation can be found using Eq. (12) as:

T (a) = 4τI(0, a). (13)

FIGURE 5. The amplitude dependence of the oscillation period.
Solid line - the exact dependence; dashed line - the approximate
linear dependenceT ≈ 4τa.

It follows from Fig. 5 thatT (a) is a monotonically increasing
function of the amplitude.

For very small values ofa, we can put the integrand in
Eq. (4) approximately equal to 1. Then, using Eq. (13) we
haveT ≈ 4τa. Figure 5 also helps us to evaluate the up-
per boundamax that determines the smallness of parametera
(amax ≈ 0.1).

5. Conclusions

It is interesting to compare the results obtained in this pa-
per with those derived within the framework of the one-
dimensional relativistic linear oscillator. In our case, for most
of the region between turning points, the speed of the oscilla-
tor differs only negligibly from the speed of light if the oscil-
lation amplitude is very small. The same feature takes place
for the linear oscillator, but for very large amplitudes [10].
For the linear oscillator the isochronous property takes place
even in the relativistic regime [11]. Our study shows that for
small amplitudes, the oscillation period of the Coulomb os-
cillator depends linearly on its amplitude.

We hope that our consideration should help readers bet-
ter understand such an important concept as the intrinsically
non-linear oscillations, and can be used in undergraduate
courses or projects.
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