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Retarded potentials and radiation of a rotating charged rod
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Received 5 September 2022; accepted 6 December 2022

In this paper we determine the electromagnetic properties of a rotating charged rod, which rotates around thex-axis with an angular frequency
that it’s not constant. As the charge is changing its position over time, the electromagnetic information reaches us with a certain time lag.
Therefore, it is necessary to obtain the time-dependent(retarded) potentials at any point in space, for which we need multipolar expansion to
determine the field at any point in space and do a Taylor expansion of the distance at which we want to measure the electromagnetic fields,
in the static and induction zone. Then, we determine the Poynting vector in the corresponding radiation zone. Finally, we determine the
radiated power, emphasizing the symmetries of the problem and showing how we can approach its solution considering these symmetries.
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1. Introduction

In electrodynamics we have many techniques to solve a prob-
lem, for instance, to find the electric potential we can use di-
rect integration, multipolar expansion or either the Laplace
or Poisson equation, or we can even find it using the elec-
tric field found through Gauss’s law. However, among all
this range of possibilities, it is sometimes difficult to decide
which is the best way to attack and solve the problem, due to
the symmetries it presents.

Emphasizing the symmetries and all the possibilities
mentioned above, in this work we attack a “typical problem”,
which we have sectioned into two parts, static and dynamic.
The Static problem consists in determining the electric poten-
tial at any point in space for a finite rod that is in thez-axis
Fig. 1a), with a homogeneous linear distribution of charge.
Due to the cylindrical symmetry of the rod, one could decide
to use Gauss’s law. However, since the bar is finite and the
potential is required in the whole space, it’s necessary to do a
previous analysis about what symmetries there are.

In the dynamics case, the rod pivots on the center of coor-
dinates and rotates around thex-axis, Figs. 1b)-f), and rotates
with a variable angular velocity. Since the charge is moving,
we have a time dependent charge distribution, and we want
to determine the potentials at any point in space, therefor,
the information from where the charge is will take now some
time to arrive to where the observer is, hence there will be no
longer any symmetry. Therefore, it is necessary to make use
of the retarded potentials, and the behavior of these potentials
depends on the distance at which we want to measure it. For
this, it will be necessary to make use of a Taylor expansion in
the distance.

On the other hand, since the rod is rotating with a vari-
able angular speed, then, it is very likely that it will generate
an electromagnetic radiation, therefore, we also need to com-

pute the corresponding Poynting vector.
This paper is organized as follows. In Sec. 2, we present

the problem and the physical implications, then we find the
potentialΦ and the electric fieldE when the rod is at rest.
Later we consider that the rod is in motion, so it is necessary
to determine the retarded potentials, both in the near zone
and in the intermediate zone as well. In Sec. 2.3 we calcu-
late the Poynting vector and the radiated power. Finally, the
conclusions and remarks are presented in Sec. 3.

2. The Problem

In this work we will solve the following question.
A rod with a uniform charge densityλ(r′) lies on thez-

axis fromz = 0 to z = a. The rod turns around thex-axis,
with an angular frequencycos(ωt). a) First consider that the
rod is at rest Fig. 1a), and determine the scalar potentialΦ,
and the electric fieldE at all points of space. b) Now, con-
sider that the rod turns around thex-axis Figs. 1b), f), with a
variable angular frequency, determine the potentials. c) Find
the Poynting vector and calculate the radiated power.

2.1. Electrostatic problem

To solve this problem, we could think of using cylindrical co-
ordinates bearing in mind that the rod has a uniform charge
density, then it has symmetry in the radiusr and angleφ.
Because of these symmetries, we could think in Gauss’s law,∮

E · da = qin/ε0, with qin =
∫

λ(r′) dl. However, the elec-
tric field in all space is required,i.e, at any point(x, y, z).
Since the rod is finite the observer can be either at a point
above the rod, along the rod, or below the rod. The previous
fact indicates a dependence on the polar angleθ, but the
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FIGURE 1. a) The rod is at rest, onz-axis, b) the rod starts to ro-
tate around thex-axes, c)-f) the rod continue rotating with different
angular velocity. Always pivoting at the origin.

Gauss’s law does not have this dependence in cylindrical co-
ordinates. Therefore, the only way to have such dependency
is through a multipolar expansion(r, θ), in spherical coordi-
nates, through the scalar potential.

Since the rod is at rest, there is symmetry in the azimuthal
angleφ, and the dependence is only on(r , θ). It’s known
from multipole expansion [1], Eq. (4.2) that

Φ(r, θ) = k

∞∑
n=0

1
rn+1

∫
(r′)n Pn(cos θ)ρ(r′) dV ′ ,

It is important to remember thatr is where we need to mea-
sure the field, andr′ is where the charge distribution is lo-
cated. For our caseρ(r′) dV ′ → λ(r′) dz′ = (Q/a) dz′ and
r′ = z′, substituting

Φ(r, θ) = k

∞∑
n=0

λ(r′)
r(n+1)

a∫

0

(z′)n Pn(cos θ) dz′

= kλ(r′)
∞∑

n=0

Pn(cos θ)
r(n+1)

· an+1

n + 1
.

Finally, replacingλ(r′) = Q/a.

Φ(r, θ) = kQ

∞∑
n=0

1
n + 1

an

rn+1
Pn(cos θ) ,

substituting some Legendre polynomials

Φ(r, θ) ≈ kQ

[
1
r

+
a

2r2
P1(cos θ)

+
a2

3r3
P2(cos θ) + · · ·

]

≈ kQ

[
1
r

+
a

2r2
cos θ

+
a2

6r3

(
3 cos2 θ − 1

)
+ · · ·

]
. (1)

Where the first term is defined as the monopoleΦ ∼ 1/r, the
second term is the dipoleΦ ∼ 1/r2, and the third term is the
quadrupoleΦ ∼ 1/r3, see [2] for more multipoles, and how
generate this.

For the electric field,E = −∇Φ, with ∇, in spherical
coordinates, from Eq. (1).

E(r, θ) ≈ kQ
[( 1

r2
+

a

r3
cos θ+

a2

2r4

(
3 cos2 θ−1

)
+ · · ·

)
r̂

+
( a

2r3
sin θ +

a2

r4
cos θ sin θ + · · ·

)
θ̂
]
. (2)

2.2. The Retarded Potentials.

Now, if we consider that the rod is rotating with angular fre-
quencycos(ωt) Fig. 1b), f), then, to determine the poten-
tials anywhere in space, we need the potentials to depend on
time, and this is achieved through the retarded potentials [3],
Eq. (10.26),

Φ(r, t) = k

∫
λ(r′, tr)

R
dl′, A(r, t) =

µ0

4π

∫
I(r′, tr)

R
dl′,

whereR = |~r−~r ′|, andtr = t− (R/c), is the retarded time.
These potentials satisfy the Lorenz gauge [4]. The electric
potential in all space is required but, in this case, there is no
azimuthal symmetry since the rotation is along thex-axis.

Therefore, the use of spherical harmonics is necessary.
Once more, we do multipolar expansion inR, but now with
dependence on (r, θ, φ), Eq. (3.70) of [1].

FIGURE 2. a) Rod’s electric field Eq(2), with the rod in the cen-
ter. Subsequently, some cross sectional planes of the field b) plane
(x, y), c) plane(x, z), d) plane(y, z). Brightness reflects closeness
to the rod.
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1
|~r − ~r ′| = 4π

∞∑

l=0

l∑

m=−l

1
2l + 1

(r′)l

rl+1
Y ∗

lm(θ′, φ′)Ylm(θ, φ) ,

then

Φ(r, t) =
α

ε0

∫
(z′)l λ(r′, tr) dz′ , (3)

A(r, t) = αµ0

∫
(z′)l I(r′, tr) dz′ , (4)

were

α =
∞∑

l=0

l∑

m=−l

1
2l + 1

1
rl+1

Y ∗
lm(θ′, φ′)Ylm(θ, φ) ,

sinceα, is a function that does not have depend onz′, has
been left out of the integral.

The sum in Eq. (4), starts atl = 1, becausel = 0 is
the magnetic monopole. And the charge and current distribu-
tions, respectively, will be

λ(r′, tr) = λ(r′) cos(ω tr), (5)

I(r′, tr) = λ(r′)~v = λ(r′) ~ω × ~r ′

= λ(r′)ω0a cos(ω tr)(sin φ r̂+sin θ cosφ φ̂). (6)

From the mathematic form of equation Eq. (3) and
Eq. (4), we can writeA, in terms ofΦ.

A(r, t) =
ω0a

c2
(sinφ r̂ + sin θ cosφ φ̂) Φ(r, t) . (7)

Therefore, we will only concentrate on determining
Φ(r, t), since the retarded magnetic vectorial potential is
completely determined throughΦ(r, t).

Now we wish to establish certain simple, but general,
properties of the fields in the limit where the sources are very
small compared to a wavelength. As the source size isa, and
the wavelength isλ′ = 2πc/ω, then ifa ¿ λ′, there are three
spatial regions of interest; the near, the intermediate, and the
far zones. We will only explore the near and the intermediate
zone because the far zone is the radiation zone, and that will
be explored in Sec. 2.3. As we will see, the fields have very
different properties in the different zones.

2.2.1. The near (static) zone,a ¿ r ¿ λ′

In this zone the fields have the character of a static field, with a radial component that changes according to the distance, it also
depends on the properties of the source.

From the definition ofR.

R = |~r − ~r ′| =
[
r2 + r′2 − 2rr′ cos θ

]1/2

= r
[
1− 2

(r′

r

)
cos θ + 2

(r′

r

)2]1/2

,

and remember that we have already definedr′ = z′, to integrate with respect todz′, subsequently.

R = r

[
1− 2

(z′

r

)
cos θ + 2

(z′

r

)2
]1/2

.

Expanding in Taylor to first order respect toz′.

R ∼= r

(
1− z′

2r
cos θ

)
, (8)

substituting Eq. (8) in cos(ω tr), up to the first order inz′

cos(ω tr) = cos[ω(t−R/c)] ≈ cos[ω(t− r/c)] cos
(ωz′

2c
cos θ

)
− sin[ω(t− r/c)] sin

(ωz′

2c
cos θ

)
. (9)

Finally, replacing Eq. (9) in Eq. (5), and subsequently substituting these equations into Eq. (3), the retarded potential takes the
form

Φ(r, t) = α
λ(r′)
ε0

[
cos[ω(t− r/c)]

a∫

0

(z′)l cos
(ωz′

2c
cos θ

)
dz′ − sin[ω(t− r/c)]

a∫

0

(z′)l sin
(ωz′

2c
cos θ

)
dz′

]
. (10)

For illustration integrating forl = 0, λ(r′) = Q/a, andα = (1/
√

4π)(1/r) the retarded potential is

Φ(r, t) =
Q

ε0a
√

4π

1
r

[
cos[ω(t− r/c)]

2c

ω
sec θ sin

(aω

2c
cos θ

)
− sin[ω(t− r/c)]

4c

ω
sec θ sin2

(aω

4c
cos θ

)]
, (11)

and analogously for the retarded magnetic vector potential Eq. (7).
In this zone the sources are inside their own near zone at optical frequencies. In the case of atoms, if the atoms are in a

liquid or solid state, there is a near field interaction that may be important in determining optical dispersion and other observable
phenomena. Only for microwave frequencies or less does the near zone become relevant on a macroscopic scale.
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2.2.2. The intermediate (induction) zone,a ¿ r ∼ λ′

Since waves of frequencyω have a wavelengthλ′ = 2πc/ω, this result in the requirementz′ ¿ λ′. Under this condition,
sin θ ≈ θ. Applying this to Eq. (9)

cos(ω tr) = cos[ω(t−R/c)] ∼= cos[ω(t− r/c)]− ωz′

2c
cos θ sin[ω(t− r/c)]

Again, substituting the previous expansion, in Eq. (5), and subsequently substituting these equations into Eq. (3), the retarded
potential takes the form

Φ(r, t) = α
λ(r′)
ε0

[
cos[ω(t− r/c)]

a∫

0

(z′)l dz′ − ω

2c
cos θ sin[ω(t− r/c)]

a∫

0

(z′)l+1 dz′
]

,

Finally, integrating the retarded potential

Φ(r, t) =
∞∑

l=0

l∑

m=−l

1
2l + 1

1
rl+1

Y ∗
lm(θ′, φ′) Ylm(θ, φ)

Q

ε0
al

[
cos[ω(t− r/c)]

l + 1
− ωa

2c(l + 2)
cos θ sin[ω(t− r/c)]

]
, (12)

and basically, the same for the retarded magnetic vector potential Eq. (7). Recall that forA(r, t) the sum starts atl = 1. Again,
for illustration let’s takel = 0, the retarded potential Eq. (12) take the form

Φ(r, t) =
Q

ε0
√

4π

a

r

[
cos[ω(t− r/c)]− ωa

4c
cos θ sin[ω(t− r/c)]

]
, (13)

If we compare the equations Eq. (11) and Eq. (13), we
can observe that both decay as1/r, which is typical for elec-
tromagnetic radiation [5]. However, the dependence on fre-
quency is inverse.

In the induction zone most of the simple approximations
fail. The waves change character completely inside this zone.
This zone is important in molecular dynamics and condensed
matter theory because these objects interact in this zone.

2.3. c) The Poynting vector and power radiated

This is the third zone (the far (radiation) zone)a ¿ λ′ ¿ r,
generally, the sources are smaller, much smaller than a wave-
length. In the far zone, the emitted EM fields are character-
istically transverse and fall off in amplitude as1/r or faster,
and often far enough away they look locally like plane waves
This is typical of radiation fields from compact sources.

To get the electromagnetic radiation, we can observe from
Eq. (1) that, the most dominant term (after monopole), in
the series, is the dipole. Therefore, we need to construct the
dipole moment of the rod. To do so, we match the potential
of a dipole to the term1/r2, in Eq. (1).

k
Qa

2
cos θ

r2
= k p

cos θ

r2
, p =

Qa

2
= p0 .

To get the time-dependent dipole moment we multiply by the
spin frequency around thex-axis.

p = p0 cos(ωt) x̂ = p0 cos(ωt)

×
(

sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂
)

,

Since we are interested in determining the radiation of the
rotating rod, we use the generalization of electric dipole radi-
ation. From Eq. (11.59) of [3], for the Poynting vector

S =
µ0

c

[ p̈(t0)
4πr

]2

sin2 θ r̂ ,

bear in mind that this equation can only be applied to the os-
cillating electric dipole, and only is valid forr′ ¿ r. The dot
in S, denotes derivative with respect to time.

S =
µ0

c

(
p0ω

2

4πr

)2

cos2(ωt) sin2 θ r̂,

bear in mind that the intensity is obtained by averaging (in
time) over a complete cycle of the Poynting vector

〈S〉 =
µ0p

2
0ω

4

32π2c

sin2 θ

r2
r̂. (14)

In Fig. 3, we can see that the Poynting vector is exactly a
donut which was expected due to the rotation and the angular
frequency of the rod. However, its direction of propagation is
well defined.
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FIGURE 3. Poynting vector distribution. No power is radiated nei-
ther in the forward nor in the backward direction, rather it is emitted
in a donut about the direction of instantaneous acceleration.

The total power radiated is found by integrating〈S〉, over
a sphere of radiusr.

P (r, t) =
∮

S · da =
µ0p

2
0

12πc
ω4.

As it is known, the power radiated by an electric dipole
varies as the fourth power of the frequency for fixed dipole
moments [6, 7]. Therefore, this system is emitting electro-
magnetic radiation.

3. Conclusion and remarks

It was possible to find the potentialΦ, and the electric field
E, at any point in space using the multipolar expansion for
a rod that rotates around thex-axis. It is important to em-
phasize that, when we calculateΦ, in the static case, we only

need to make use of Legendre’s polynomials, since the rod
is fixed, and we have azimuthal symmetry. However, when
the rod is rotating around thex-axis, there is no longer az-
imuthal symmetry then the use of spherical harmonics was
necessary. Furthermore, since the charge was in motion, it
was necessary to introduce the temporal information into the
potential and this is achieved through the retarded potentials.
If the rod was moving along an axis with a certain speed, then
instead of the retarded potentials we would need the Liénard-
Wiechert potentials.

The retarded potentials were obtained in the static and in
the intermediate zone. The decays in distance in these zones
are the same1/rl+1. However, the oscillatory behavior of the
fields is what changes. For the static zoneΦ ∝ (1/ω), while
in the intermediate zoneΦ ∝ ω.

The corresponding Poynting vector was obtained at the
radiation zone. It is also important to emphasize the direction
of this vector since it always points out in the radial direction,
regardless of the shape of the object that produces it, which
is to be expected due to the intensity profile which takes the
form of a donut. In addition, the power radiated was obtained
and we can guarantee that the system is indeed radiating since
it is known that dipole radiation is proportional to the fourth
power of the frequency.

Recall that many electromagnetic waves exhibit the char-
acteristics of electric dipole radiation. An important charac-
teristic of this type of radiation is that the intensity of the elec-
tromagnetic wave radiated by a dipole antenna is zero along
the antenna axis and it presents a maximum in directions per-
pendicular to the antenna axis.

Finally, in this work we wanted to emphasize some sym-
metries that could be present in a problem, and not contem-
plating them correctly would lead us to an erroneous solution.
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