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The problem of the body rotating on a frictionless table, attached
to a hanging body, solved partially by conservation theorems
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Conservation theorems of Mechanics, have been applied to the problem consisting of a body rotating on a frictionless table, attached to a
hanging body, as an illustrative example for students of Physics with no knowledge of sophisticated mathematical methods, how to obtain
a description of the physical behavior of a system, when obtaining the equation of motion requires those complicated methods. Applying
the conservation of angular momentum it is shown that the angular frequency increases inversely to the square of the radius of motion; then
the radiusrc is found at which the centripetal force and the tension of the string compensate each other; then, applying the conservation of
energy, turning points are found. At the end, following scenery is obtained: the radial component of motion of the rotating body takes place
between two turning points, namely a maximum atr = l given by the initial conditions, and a minimum atr = rc

√
rc/2l. With the help of

these equations, obtained without the need of solving differential equations, it is possible to obtain a semi quantitative physical behavior of
this particular system.
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1. Introduction

There are some problems in Mechanics, as well as in many
other fields of Physics, whose solution demands the applica-
tion of complicated differential equations, and of numerical
methods. These methods sometimes obscure the physical de-
scription of the dynamic behavior of the system, and a com-
prehensive physical picture is obtained only after results are
presented as sequences of graphs. However, in some cases
when the equation of motion is not strictly necessary, and
higher levels of mathematical knowledge is required to ob-
tain the equation of motion, the application of conservation
theorems and some other simple considerations, can deliver
a reasonable picture of the physical behavior of the system.
This approach has already been used by Lock[1] to study the
stability of torque-free rotations of tops, and it is considered
here to illustrate the case of a massm1 rotating on a friction-
less table, attached to a hanging massm2 through a massless
string of lengthl passing through a small hole at the center of
the table, as shown on (Fig. 1).

For students of science and engineering of the first
semesters of the university, this problem has been presented
in textbooks [2] for the special case of the stationary state of
m1 moving in a circle, as an application of the equilibrium
condition between the outward centripetal force originated
onm1, and the weight ofm2. Furthermore, textbooks which
tackle this problem in a more advanced scope applying the
Lagrangian method [3,4], arrive only at the differential equa-
tion of motion without solving it, leaving actually the solu-
tion of the problem without a physical interpretation. To a
significant extent, this deficiency intends to be solved here.

FIGURE 1. Massm1 rotates over a frictionless table. Massm2

exerts its weight onm1 through a string of lengthl. r andθ are
polar coordinates ofm1.

2. Methodological process

Let vt be the tangential andvr the radial components respec-
tively of the velocity ofm1 at any time. The magnitude of the
angular momentum of this system isL = r m1 vt, and at the
initial condition, when massm1 starts with angular velocity
ω0 at the distancel from the origin located at the hole, it is
L0 = m1l

2ω0. Conservation ofL and the relation between
angular and tangential velocities applied to the initial state,
give

rm1vt = m1r
2ω = m1l

2ω0,
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then

ω =
l2

r2
ω0, (1)

which indicates that the angular speed of massm1 acceler-
ates indefinitely as the radius diminishes; however, at some
time, equilibrium of the centripetal force and the weight of
massm2 is reached, and from that time on, motion begins to
decelerate. This equilibrium of forces occurs at some radius
rc when

m1ac −m2g = 0 (2)

with ac the outward centripetal acceleration

ac =
v2

t

rc
= ω2rc. (3)

rc is an inflection point, and it is expected that after reaching
it, the radial acceleration becomes outwards. This behavior is
to some extent similar to that of a harmonic oscillator: when
the mass attached to a spring is displaced a certain length,
the elastic force of the spring tends to restore the mass to its
equilibrium position, where the force is zero; however, due
to the inertia of the mass, it continues compressing the spring
with diminishing speed, until the mass stops, and reverts its
motion. The equilibrium position in the harmonic oscillator
is an inflection point, and in our case it is equivalent to the
point rc. Using (1), (2) and (3)

m1
l4

r3
c

ω2
0 −m2g = 0,

andrc is

rc =
{

m1

m2

(l2ω0)2

g

} 1
3

. (4)

This radius should be less than or equal tol, which gives

m1

m2

(l2ω0)2

g
≤ l3,

or

ω0 ≤
√

m2

m1

g

l
. (5)

Equality in this equation means that at the start, there is equi-
librium of radial forces:

m2g = m1lω
2
0 .

The second member of this equation ism1ac, sinceω = ω0.
The motion is in a circle of radiusr = l, and the radial speed
vr = 0. If (5) is not fulfilled, then at the start of the mo-
tion the centripetal forcem1lω

2
0 will exceed the tension force

m2g, and there will no stable motion.
The kinetic energy,K1, of massm1 is

K1 =
1
2
m1(vr + vt)2 =

1
2
m1(vr + vt) · (vr + vt)

=
1
2
m1(v2

r + v2
t ).

Substituting the tangential component of velocityvt by the
angular velocityω, i.e. vt = rω, last equation becomes

K1 =
1
2
m1(v2

r + r2ω2).

The potential energy of massm2, V2, supposing zero level at
the height of the table, isV2 = −m2g(l − r), and its kinetic
energy isK2 = 1

2m2v
2
r , since its (vertical) speed equals the

radial speed ofm1. At the start,r0 = l andvr = 0, and the
total initial energy is

E =
1
2
m1l

2ω2
0 .

Then at any other moment, since no dissipative forces inter-
vene this initial energy is conserved:E = K1 + K2 + V2,
i.e.:

1
2
m1l

2ω2
0=

1
2
m1(v2

r+r2ω2)+
1
2
m2v

2
r −m2g(l − r).

Applying (1) and rearranging terms

1
2
m1l

2ω2
0 =

1
2

l4

r2
m1ω

2
0 +

1
2
(m1 + m2)v2

r −m2g(l − r).

At the turning pointsvr = 0, and this equation becomes

1
2
m1ω

2
0l2

(
1− l2

r2

)
+ m2g(l − r) = 0,

which can be written as
1
2
m1ω

2
0l2(r2 − l2) + m2gr2(l − r) = 0.

It is evident thatr = l is one root of this equation, and its
elimination leads to

1
2
m1ω

2
0l2(r + l)−m2gr2 = 0,

or
m2gr2 − 1

2
m1ω

2
0l2r − 1

2
m1ω

2
0l3 = 0,

whose solutions, using (4), are

r± =
1
4

r3
c

l2

[
1±

√
1 +

(2l)3

r3
c

]
. (6)

The negative root givesr− < 0, which is not allowed since
r is a positive quantity between0 and l, which leaves only
two solutions, namelyr = l andr = r+. Realizing also that
((2l)3/r3

c ) À 1, the student can demonstrate that

r+
∼= rc

√
rc

2l
, (7)

which impliesr+ < rc.
As a result, following picture arises from these solutions:

At the start of the motion,i.e. at t = 0, r = l, ω = ω0 and
vr = 0; from this time on,ω andvr increase until the inflec-
tion point atr = rc is reached, then the radial speed of the
particle slows down, and arrives at a turning pointr+, and
from this point on,r increases untilr = l, and the motion
becomes cyclic. No equation of motion is obtained, but the
main physical behavior is understood in this way.
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3. Conclusions

Using conservation theorems and only the mathematical tools
a student of elementary physics curses has, the main physical
behavior of the system is obtained, and Eqs. (1), (4) and (7)
give the student the opportunity to explore the behavior of
massm1 for many different particular cases, for example,
from Eq. (4), it is readily seen that the relation

rc

l
=

{
m1lω

2
0

m2g

} 1
3

=
{

L

m2g

} 1
3

,

giving the position of the inflection point relative to the length
of the string, indicates that the higher the angular momentum,

or the lower the weight of the hanging body, the closer isrc

to l, and together with the relation obtained from Eq. (7):

r+

rc

∼=
√

rc

2l
,

they indicate that the equilibrium radius for the static case (at
r = rc) does not lie at the middle point of the turning points.

Also, these equations will let the student know the appro-
priate conditions at the laboratory to design an experiment.
Additionally, advanced students who have arrived at the dif-
ferential equations, without its numerical solution, will find
this treatment illustrative.
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