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The motion of a particle on the surface of a general cone
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We use the formalism of Lagrange to find the equations of motion of a particle on the inner surface of a “general cone”. The equations
of motion are challenging to solve, but we can evaluate them numerically with different software, to obtain the particle’s trajectory on the
surface as a function of parameters such as angular momdntucone shape and initial conditions, and then we find the total free-fall time

of the particle. The results show a special cone in which the free fall time has a minimum for a fixed angular momentum and fall height.
Differences in the free-fall times and the particle’s are also analyzed for a two-coordingted three-coordinate-(f, z) system. This

work shows the importance of learning to use softwakel{ram MathematicaPython POV-Ray to help with some complex theoretical
problems. Finally, the results can easily be generalized for other more complex surfaces.
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1. Introduction

The problem of finding the equation of motion of a particle v? =72 42?4 22 (4)
sliding on the surface of a cone is studied in elementary and ) )
advanced theoretical mechanics courses [1-3]. The differer2ut if we restrict the particle to the surface of the cone,
tial equations cannot be solved analytically, and only generdfd- (1), we get:
results can be found for the particle’s path [4—6]_. In this arti- v? = 72(1 + nQTQ(n_l)) 1262, )
cle, we propose to study the movement of a particle on a cone
with different contours [7]: For potential energy/, we have only the effect of gravity that
depends on the height we get:
z=ar", (1)

U=mgz=mgr". (6)
wheren is a positive integer which parameterizes the shape,
a is a constant (in this work we set = 1, with units  Then theLagrangianof the system is:
[L]~ (1), The casen = 1 is the one studied in elemen- 1 _
tary mechanics courses [2]. We use a cylindrical coordinate .Z = 5m(7'“2(1 + 022 =D) 1202 — g™ (7)
system p, 0, z) to locate the particle’s position on the cone’s
surface [8]. The main goal of the present work is to find theThe Lagrangiandepends on two coordinates, the radial dis-
time it takes for a particle to fall on the cone’s surface for dif-tancer and angular positioi. Then we have two-equation
ferent values of the exponenin the Eq. ). We considerthe of motion ).
particle under a constant gravitational figldvithout friction Forr:
with the surface. The trajectory of a particle is found with the

. . 5 2,.2(n—1) n—1
formalism of the Euler-Lagrange equation: (L +nr ) +gnr

(83) i (ag) 0 (2) +7'"2n2(n— 1)T2n_3 —’I"é2 =0. (8)

dq; dt \ 0q; ’ For6:

where_#(q;, ¢;) is the Lagrangianof the system in gener- i(myﬂé) -0 9)

alized coordinateg;. The Lagrangianis the difference be- dt '

tween kinetic energf'(41) and potential energy (¢:): From Eq./0), we get the conservation of angular momentum:
Z(¢,4) = K(di) — Ulai), 3) mr?0 = L. (10)

where the indexruns over = 1, 2, 3 for a three-dimensional SystemA, the particle’s trajectory is calculated by nu-

system, and withi = 1, 2 for a two-dimensional one. In par- merically solving Eqgs.8) and ), which depends on two
ticular, we usey; = r, g2 = 6, g3 = z and for kinetic energy  coordinates; 6,). In this work, we use a program written in
we need the square of the velocity: Python specific details of the code are available in the link
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of the Ref. [9] (as an alternative, we also provide code for the whereq andh are arbitrary parameters. Find the equa-
softwareWolfram Mathematicawhich is much more flexi- tions of motion equivalent to Eq8)(and 9) using this
ble and powerful and provides a real-time animations of the new Eq. L7).

particle motion). Using Eqsllf and B8), we find an expres-

sion for the total distance of fal;, when radial velocity is 2.~ The choice of the cylindrical coordinate system is arbi-

considered equal to zefo= i = 0, we have: trary. Find the condition of motioril§) for a spherical
coordinate system.
L3 \ 7
2p = < 0 2) ) (11)
gnm 3. Results
Total energyF is conserved (the system does not dissipatenn analytical solution to the particle trajectory is compli-
energy), using the EqsS)(and ), we have: cated, so it is necessary to use numerical methods. The sys-
1 ) tem of Eqgs. 8) and ©) was solved using th@ython pro-
E= 5m(7’~2(1 + 0?2 ) 49202 £ mgr™,  (12)  gramming language (which is free) and tlfram Math-
ematica softwargsee Ref. [9]), where the following val-
where we can define the effective potential: ues of the physical constants were used for all calculations,
1 g = 9.81 kg/m &, andm = 1 kg.
Vepp = 5mr29'2 +mgr". (13) In Fig. 1, we show the free fall heightas a function of

time for the systenA and different values of angular momen-

Equations/12) and {L3) depend on the optional parame- tum Ly. The initial conditions for the solution of Eq$)(and
tersn, E, andLy. The particle must fall along the surface of (9) arer(0) = 1.0 m, #(0) = 0 m/s,0(0) = 0.0 rad, with
the cone, reaching a minimum value, and then by conserva: = 2. We can see that the free fall height varies depending
tion of energy, the particle tends to rise until it reaches a poin@n the angular momentum used. Hor = 1/2 kg /s, we
of maximum heightj.e. the system has two values of return have the most significant displacement in theoordinate,
71 andr,, for the values of angular momentufy and energy  and forLy = 3 kg /s, the smallest. These extreme values
E. Then, setting the radial velocity equal to zere= 0 in  can be roughly understood using E45 with n = 2, we

Eq. (12), and using Eq/10), we find: find:
12 Lo L (18)
E= 2mi2 +mgr". (14) 2m?rig’
Using this equation for the return points with a fixed an-€valuating forLy = 1/2 kg m?/s andr; = r(0) = 1.0 m,
gular momentund,, we find. we havez = 0.013 m (and forL, = 3 kg m?/s we have

z = 0.46 m) values that agree with the results found by the
12— (ry —r2)(r2r3) (2m2g) (15) numerical solution. For negative values of angular momen-
o~ rs —r? 9): tum Ly, the same results are obtained when we plot the tra-

1
) ) _ jectory in thez coordinates (ox coordinates, not shown).
Then, using relation 1) we have an expression for the

value of Ly that can be adjusted for specific values-pfand
T2.

On the other hand, for the case wheris fixed, that
we call systenB, the angular dependenéés eliminated in
Eq. (8), and then we have only one equation for radial dis-
tance,.e. the particle falls along the plane, ¢)

E
7(1+ n2r2("*1)) + gnr™ ! N
+ 722 (n — 1)r*"=3 = 0. (16)
2. Exercises
0
1.- We can use a different equation for the shape of the Tis]

cone [7]: FIGURE 1. The systermf\, the free fall height as a function of time

for different values of angular momentuhy and with parameters
n = 2,r(0) =1.0m,7(0) = 0m/s,§(0) = 0.0 rad. The inset

n shows the case of a negative value of angular momentum on the
z=ua(r—h)", a7 y-axis.
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10d e g (n = 7) the free fall height is significant ~ 1 m, while
whenn is small ( = 0.5) the free- fall height i ~ 0.4 m.
0.8 As expected, the system also shows oscillations and the pe-
riod of oscillation is inversely proportional to the exponent
in Eq. (2).
E 06 Figure 3 shows the trajectories in the— y andx — z
N planes for three values of exponentin thex — z plane, we
0.4+ can see the system with different profiles, a “parabolic one”
with n = 2, a “linear one” withn = 1, and forn = 0.5
0.2 one with the profilez = /r. Note how the scale on the
axis is different in the three cases. However, for the y
0.04 } plane, the scale of the axes is the same, but the trajectories of
0.0 05 10 15 2.0 25 the particles show appreciable differences. In Ref. [9], you

t [s] can downloadMNolfram MathematicaPythonand POV-Ray
FIGURE 2. The systenA, the free fall height as a function of time codes to visualize t_he particle trajectory in space. Using the
for different values of the exponentin the equation of cone and  Wolfram Mathematicaode, one can detect the effect on the
with parameterd.y = 1.0 kg /s, (0) = 1.0 m, #(0) = 0 m/s, particle trajectory of changing parameters such as the value
6(0) = 0.0 rad. of the exponent in Egllj, the value of the angular momen-
tum Ly, initial conditions in Eq./8) and the total time of the
However, for the direction iry the trajectories are out of trajectory, all these changes are updated in real-time to see
phase byr/2, as seenin the insetin Fig. 1, wifly = —3kg  the motion of the particle in the cone. For example, varying
m?/s. Also, it can be seen that the particle exhibits an oscilthe full-time gives an animation of the motion of the particle.
latory motion, and the period of oscillation is a function of The code oPOV-Rayis shown to generate images (with high
L. resolution) of the particle trajectory, which can be joined to-
In Fig. 2, we analyze the system when the expomeint  gether to create a movie. These software are simple and easy
Eq. () is varied, with angular momentum fixedig = 1 kg  to learn, so you have an essential numerical tool that can be
m?/s and initial conditions'(0) = 1.0 m, #(0) = 0 m/s,  used in various calculations, such as those performed in this
6(0) = 0.0 rad/s. We can see how with large valuesnof article.
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FIGURE 3. The systemA, the trajectory of the particle for the plane— z (down) andx — y (top), for different values of the exponent
and the same parameters as Fig\lfram MathematicaPythonandPOV-Ray[11] codes for other visualizations of the trajectory can be
found in Ref. [9].

Rev. Mex. Fis. E21 010206



D. G. GOMEZ-PEREZ AND O. GONZALEZ-AMEZCUA

T T X T T T T T T T T
T ! ] [ T T T T T T T
b) 1.47- ]
0.70 H
104 1.46 El
0.63 1 H 1.45 4
— =
I% @, =
- 1.441 1]
0.56 4 y n [t
] . : \ : \ ] \ 1.434 \ iy
g i 0.45 X 0.75 —— .
0.49 A g ] 1.42 l.)) , . ; . . .
n 2 3 4 .5 6 7 8
—=noooy S . . =
T T T T T T T a)
1 2 3 4 5 6 7 1 — T T T T T T
n

FIGURE 4. The systemA, a) shows the free fall time as a func-
tion of the value of» in the equation of the cone, with parameters FiGURE 6. The systenB. a) Shows the free fall time as a function
Lo = 0.01 kgnm?/s,r(0) = 1.0 m,#(0) = 0 m/s,0(0) = 0.0 rad. of the value ofn in the equation of the cone (1), with parameters
b) Shows the fall height as a function of time for different values

r(0) = 10.0 m, 7(0) = 0 m/s. b) Shows a zoom for the last four
of the exponent. and the same parameters. The dotted line sets thepoints.
cut-off distancez = 0.1 m.
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of the value ofn in the equation of the cone (1), with parameters
FIGURE 5. The systenB. a) Shows the the fall heightas a func- r(0) = 2" m, 7(0) = 0 m/s, and forLy use Eq. (15). b) Shows
tion of time for different values of the exponenin the Eq. 1) and

the fall heightz as a function of time for different values of the
the parameterg(0) = 10.0 m, 7#(0) = 0 m/s. b) Is the same but  exponent in the equation of the cone.
for other values of..

7(0) = 0 m/s. The free-fall height shows the same trend as
For a better comparison of the free fall time, the particleFig. 4 (the decay time increases as the value of the exponent

has to fall the same distance when the value of the exponentin Eg. (1) decreases). For large valuesmfthe changes in

n is changed, and this is achieved by choosing a small valuthe decay path are small, as can be seen in Fig. 5b). Figure
of the angular momentum, [Eq. (11)]. Figure 4b) shows 6 shows the decay time for the syst@&as a function of the

the results of the free fall height for a particle with the pa-exponent:. For large values of, the time is approximately
rameter ofL, = 0.01 kg m?/s. It can be seen how the decay constant ~ 1.4 [see Fig. 6b)], while for small values af,

time increases as the value of the exponeim Eq. (1) de-  the decay time tends to large values 14.

creases. For large values of the changes in the free fall Finally, in Fig. 7, we set the; = r} andz, = r} dis-
height are small. Figure 4a) shows the decay times, selectances, and then we calculate the value of the angular mo-
ing a cutoff distance of = 0.1 m [dotted line in Fig. 4b)] mentumL, with Eq. (15). For the systend, the inset in

as a function of the exponentin Eq. (1). It is observed Fig. 7b) shows the free fall height results as a function time

how the time decays can be fitted to an exponential functioffior various values of the exponent It is observed how the
T = 0.45 + 0.47¢~ 111" the dotted line in Fig. 4a).

times decreases as the valuexaficreases until it reaches the
Figure 5 shows the free-fall height as a function of value ofn = 2, where the behavior is reversed. Figure 7a)
time for the systenB, when the equation of motiold6) is  shows a value in which the free-fall time is minimum for the
solved numerically. The initial conditions are)) = 10.0 m,  valuen =~ 1.75 and then tends to be constant for large values
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of n, i.e., the decay time is not an exponential function. Thisand for a systems with one (syst@&@jor two degrees of free-
result contrasts with the cases mentioned above in Figs. 4aom (systemA). We found that by varying the value af,

and 6a). the free fall time decays continuously, showing that particles
with large values of the exponentn the profile fall first. On

the other hand, if we fix the fall distance and adjust the value
of the angular momenturfy, the system shows a minimum

In this work, we find the equations of motion of a particle for the free fall time when the cone profile has an exponent
falling on the surface of a general cone. The equations oft ~ 1.75 in Eq. (1). These results show how the numerical
motion are numerically solved and then the particle’s trajecsolution of the Lagrangian equations generates exciting re-
tory can be calculated. We analyze the free fall times as &ults, which can give us new information about systems stud-
function of parameters such as the angular momentym ied in elementary courses.

Eg. (10), the value ofn in the equation of the cone, Ed)(
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