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The motion of a particle on the surface of a general cone
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We use the formalism of Lagrange to find the equations of motion of a particle on the inner surface of a “general cone”. The equations
of motion are challenging to solve, but we can evaluate them numerically with different software, to obtain the particle’s trajectory on the
surface as a function of parameters such as angular momentumLθ, cone shape and initial conditions, and then we find the total free-fall time
of the particle. The results show a special cone in which the free fall time has a minimum for a fixed angular momentum and fall height.
Differences in the free-fall times and the particle’s are also analyzed for a two-coordinate (r, z) and three-coordinate (r, θ, z) system. This
work shows the importance of learning to use software (Wolfram Mathematica, Python, POV-Ray) to help with some complex theoretical
problems. Finally, the results can easily be generalized for other more complex surfaces.
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1. Introduction

The problem of finding the equation of motion of a particle
sliding on the surface of a cone is studied in elementary and
advanced theoretical mechanics courses [1–3]. The differen-
tial equations cannot be solved analytically, and only general
results can be found for the particle’s path [4–6]. In this arti-
cle, we propose to study the movement of a particle on a cone
with different contours [7]:

z = arn, (1)

wheren is a positive integer which parameterizes the shape,
a is a constant (in this work we seta = 1, with units
[L]−(n−1)). The casen = 1 is the one studied in elemen-
tary mechanics courses [2]. We use a cylindrical coordinate
system (ρ, θ, z) to locate the particle’s position on the cone’s
surface [8]. The main goal of the present work is to find the
time it takes for a particle to fall on the cone’s surface for dif-
ferent values of the exponentn in the Eq. (1). We consider the
particle under a constant gravitational fieldg, without friction
with the surface. The trajectory of a particle is found with the
formalism of the Euler-Lagrange equation:

(
∂L

∂qi

)
− d

dt

(
∂L

∂q̇i

)
= 0, (2)

whereL (qi, q̇i) is the Lagrangianof the system in gener-
alized coordinatesqi. TheLagrangianis the difference be-
tween kinetic energyK(q̇1) and potential energyU(qi):

L (q, q̇) = K(q̇i)− U(qi), (3)

where the indexi runs overi = 1, 2, 3 for a three-dimensional
system, and withi = 1, 2 for a two-dimensional one. In par-
ticular, we useq1 = r, q2 = θ, q3 = z and for kinetic energy
we need the square of the velocity:

v2 = ṙ2 + r2θ̇2 + ż2, (4)

but if we restrict the particle to the surface of the cone,
Eq. (1), we get:

v2 = ṙ2(1 + n2r2(n−1)) + r2θ̇2. (5)

For potential energyU , we have only the effect of gravity that
depends on the heightz, we get:

U = mgz = mg rn. (6)

Then theLagrangianof the system is:

L =
1
2
m( ṙ2(1 + n2r2(n−1)) + r2θ̇2)−mg rn. (7)

TheLagrangiandepends on two coordinates, the radial dis-
tancer and angular positionθ. Then we have two-equation
of motion (2).

For r:

r̈(1 + n2r2(n−1)) + gnrn−1

+ ṙ2n2(n− 1)r2n−3 − rθ̇2 = 0. (8)

Forθ:

d

dt
(mr2θ̇) = 0. (9)

From Eq. (9), we get the conservation of angular momentum:

mr2θ̇ = Lθ. (10)

SystemA, the particle’s trajectory is calculated by nu-
merically solving Eqs. (8) and (9), which depends on two
coordinates (r, θ,). In this work, we use a program written in
Python; specific details of the code are available in the link
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of the Ref. [9] (as an alternative, we also provide code for the
softwareWolfram Mathematica, which is much more flexi-
ble and powerful and provides a real-time animations of the
particle motion). Using Eqs. (1) and (8), we find an expres-
sion for the total distance of fallzT , when radial velocity is
considered equal to zerör = ṙ = 0, we have:

zT =
(

L2
θ

g n m2

) n
n+2

. (11)

Total energyE is conserved (the system does not dissipate
energy), using the Eqs. (5) and (6), we have:

E =
1
2
m( ṙ2(1 + n2r2(n−1)) + r2θ̇2) + mg rn, (12)

where we can define the effective potential:

Veff =
1
2
mr2θ̇2 + mg rn. (13)

Equations (12) and (13) depend on the optional parame-
tersn, E, andLθ. The particle must fall along the surface of
the cone, reaching a minimum value, and then by conserva-
tion of energy, the particle tends to rise until it reaches a point
of maximum height,i.e. the system has two values of return
r1 andr2 for the values of angular momentumLθ and energy
E. Then, setting the radial velocity equal to zeroṙ = 0 in
Eq. (12), and using Eq. (10), we find:

E =
L2

θ

2mr2
+ mg rn. (14)

Using this equation for the return points with a fixed an-
gular momentumLθ, we find.

L2
θ =

(rn
2 − rn

1 )(r2
1r

2
2)

r2
2 − r2

1

(2m2g). (15)

Then, using relation (1) we have an expression for the
value ofLθ that can be adjusted for specific values ofr1 and
r2.

On the other hand, for the case whenθ is fixed, that
we call systemB, the angular dependenceθ̇ is eliminated in
Eq. (8), and then we have only one equation for radial dis-
tance,i.e. the particle falls along the plane (r, z)

r̈(1 + n2r2(n−1)) + gnrn−1

+ ṙ2n2(n− 1)r2n−3 = 0. (16)

2. Exercises

1.- We can use a different equation for the shape of the
cone [7]:

z = a(r − h)n, (17)

wherea andh are arbitrary parameters. Find the equa-
tions of motion equivalent to Eqs. (8) and (9) using this
new Eq. (17).

2.- The choice of the cylindrical coordinate system is arbi-
trary. Find the condition of motion (15) for a spherical
coordinate system.

3. Results

An analytical solution to the particle trajectory is compli-
cated, so it is necessary to use numerical methods. The sys-
tem of Eqs. (8) and (9) was solved using thePythonpro-
gramming language (which is free) and theWolfram Math-
ematica software(see Ref. [9]), where the following val-
ues of the physical constants were used for all calculations,
g = 9.81 kg/m s2, andm = 1 kg.

In Fig. 1, we show the free fall heightz as a function of
time for the systemA and different values of angular momen-
tumLθ. The initial conditions for the solution of Eqs. (8) and
(9) arer(0) = 1.0 m, ṙ(0) = 0 m/s, θ(0) = 0.0 rad, with
n = 2. We can see that the free fall height varies depending
on the angular momentum used. ForLθ = 1/2 kg m2/s, we
have the most significant displacement in thez coordinate,
and forLθ = 3 kg m2/s, the smallest. These extreme values
can be roughly understood using Eq. (15) with n = 2, we
find:

z =
L2

θ

2m2r2
1g

, (18)

evaluating forLθ = 1/2 kg m2/s andr1 = r(0) = 1.0 m,
we havez = 0.013 m (and forLθ = 3 kg m2/s we have
z = 0.46 m) values that agree with the results found by the
numerical solution. For negative values of angular momen-
tum Lθ, the same results are obtained when we plot the tra-
jectory in thez coordinates (orx coordinates, not shown).

FIGURE 1. The systemA, the free fall heightz as a function of time
for different values of angular momentumLθ and with parameters
n = 2, r(0) = 1.0 m, ṙ(0) = 0 m/s,θ(0) = 0.0 rad. The inset
shows the case of a negative value of angular momentum on the
y-axis.
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FIGURE 2. The systemA, the free fall heightz as a function of time
for different values of the exponentn in the equation of cone and
with parametersLθ = 1.0 kg m2/s, r(0) = 1.0 m, ṙ(0) = 0 m/s,
θ(0) = 0.0 rad.

However, for the direction iny the trajectories are out of
phase byπ/2, as seen in the inset in Fig. 1, withLθ = −3 kg
m2/s. Also, it can be seen that the particle exhibits an oscil-
latory motion, and the period of oscillation is a function of
Lθ.

In Fig. 2, we analyze the system when the exponentn in
Eq. (1) is varied, with angular momentum fixed toLθ = 1 kg
m2/s and initial conditionsr(0) = 1.0 m, ṙ(0) = 0 m/s,
θ(0) = 0.0 rad/s. We can see how with large values ofn

(n = 7) the free fall height is significantz ≈ 1 m, while
whenn is small (n = 0.5) the free- fall height isz ≈ 0.4 m.
As expected, the system also shows oscillations and the pe-
riod of oscillation is inversely proportional to the exponentn
in Eq. (1).

Figure 3 shows the trajectories in thex − y andx − z
planes for three values of exponentn. In thex− z plane, we
can see the system with different profiles, a “parabolic one”
with n = 2, a “linear one” withn = 1, and forn = 0.5
one with the profilez =

√
r. Note how the scale on thez-

axis is different in the three cases. However, for thex − y
plane, the scale of the axes is the same, but the trajectories of
the particles show appreciable differences. In Ref. [9], you
can downloadWolfram Mathematica, PythonandPOV-Ray
codes to visualize the particle trajectory in space. Using the
Wolfram Mathematicacode, one can detect the effect on the
particle trajectory of changing parameters such as the value
of the exponent in Eq. (1), the value of the angular momen-
tum Lθ, initial conditions in Eq. (8) and the total time of the
trajectory, all these changes are updated in real-time to see
the motion of the particle in the cone. For example, varying
the full-time gives an animation of the motion of the particle.
The code ofPOV-Rayis shown to generate images (with high
resolution) of the particle trajectory, which can be joined to-
gether to create a movie. These software are simple and easy
to learn, so you have an essential numerical tool that can be
used in various calculations, such as those performed in this
article.

FIGURE 3. The systemA, the trajectory of the particle for the planex − z (down) andx − y (top), for different values of the exponentn,
and the same parameters as Fig. 2.Wolfram Mathematica, PythonandPOV-Ray[11] codes for other visualizations of the trajectory can be
found in Ref. [9].
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FIGURE 4. The systemA, a) shows the free fall time as a func-
tion of the value ofn in the equation of the cone, with parameters
Lθ = 0.01 kg m2/s,r(0) = 1.0 m, ṙ(0) = 0 m/s,θ(0) = 0.0 rad.
b) Shows the fall heightz as a function of time for different values
of the exponentn and the same parameters. The dotted line sets the
cut-off distancez = 0.1 m.

FIGURE 5. The systemB. a) Shows the the fall heightz as a func-
tion of time for different values of the exponentn in the Eq. 1) and
the parametersr(0) = 10.0 m, ṙ(0) = 0 m/s. b) Is the same but
for other values ofn.

For a better comparison of the free fall time, the particle
has to fall the same distance when the value of the exponent
n is changed, and this is achieved by choosing a small value
of the angular momentumLθ [Eq. (11)]. Figure 4b) shows
the results of the free fall height for a particle with the pa-
rameter ofLθ = 0.01 kg m2/s. It can be seen how the decay
time increases as the value of the exponentn in Eq. (1) de-
creases. For large values ofn, the changes in the free fall
height are small. Figure 4a) shows the decay times, select-
ing a cutoff distance ofz = 0.1 m [dotted line in Fig. 4b)]
as a function of the exponentn in Eq. (1). It is observed
how the time decays can be fitted to an exponential function
T = 0.45 + 0.47e−1.11n, the dotted line in Fig. 4a).

Figure 5 shows the free-fall heightz as a function of
time for the systemB, when the equation of motion (16) is
solved numerically. The initial conditions arer(0) = 10.0 m,

FIGURE 6. The systemB. a) Shows the free fall time as a function
of the value ofn in the equation of the cone (1), with parameters
r(0) = 10.0 m, ṙ(0) = 0 m/s. b) Shows a zoom for the last four
points.

FIGURE 7. The systemA. a) Shows the free fall time as a function
of the value ofn in the equation of the cone (1), with parameters
r(0) = 21/n m, ṙ(0) = 0 m/s, and forLθ use Eq. (15). b) Shows
the fall heightz as a function of time for different values of the
exponentn in the equation of the cone.

ṙ(0) = 0 m/s. The free-fall height shows the same trend as
Fig. 4 (the decay time increases as the value of the exponent
n in Eq. (1) decreases). For large values ofn, the changes in
the decay path are small, as can be seen in Fig. 5b). Figure
6 shows the decay time for the systemB as a function of the
exponentn. For large values ofn, the time is approximately
constantt ≈ 1.4 [see Fig. 6b)], while for small values ofn,
the decay time tends to large valuest ≈ 14.

Finally, in Fig. 7, we set thez1 = rn
1 andz2 = rn

2 dis-
tances, and then we calculate the value of the angular mo-
mentumLθ with Eq. (15). For the systemA, the inset in
Fig. 7b) shows the free fall height results as a function time
for various values of the exponentn. It is observed how the
times decreases as the value ofn increases until it reaches the
value ofn = 2, where the behavior is reversed. Figure 7a)
shows a value in which the free-fall time is minimum for the
valuen ≈ 1.75 and then tends to be constant for large values
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of n, i.e., the decay time is not an exponential function. This
result contrasts with the cases mentioned above in Figs. 4a)
and 6a).

4. Conclusions

In this work, we find the equations of motion of a particle
falling on the surface of a general cone. The equations of
motion are numerically solved and then the particle’s trajec-
tory can be calculated. We analyze the free fall times as a
function of parameters such as the angular momentumLθ,
Eq. (10), the value ofn in the equation of the cone, Eq. (1),

and for a systems with one (systemB) or two degrees of free-
dom (systemA). We found that by varying the value ofn,
the free fall time decays continuously, showing that particles
with large values of the exponentn in the profile fall first. On
the other hand, if we fix the fall distance and adjust the value
of the angular momentumLθ, the system shows a minimum
for the free fall time when the cone profile has an exponent
n ≈ 1.75 in Eq. (1). These results show how the numerical
solution of the Lagrangian equations generates exciting re-
sults, which can give us new information about systems stud-
ied in elementary courses.
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