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Wavelet eXtropy of fractal signals
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Recently, the concept of eXtropy was proposed as a complementary dual of Shannon entropy. This article extends the standard time-domain
eXtropy concept to the time-scale domain and then obtains a closed-form expression for this wavelet eXtropy for fractal signals of parameter
α. A didactic study of the wavelet eXtropy of fractal signals reveals that this infomation-theory quantifier increases for short-memory fractal
signals, is maximum for white noise (α = 0) and decreases for long-memory fractal processes. Compared to the standard wavelet entropy,
wavelet eXtropy performs similar, however has lower variability for stationary fractal signals and higher variability for nonstationary ones.
Moreover, the computation of fractality based eXtropy planes allows to highlight further properties and also potential applications for the
analysis/estimation of fractals.
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1. Introduction

The analysis of fractals by means of information theory quan-
tifiers permits to extend and complement traditional time, fre-
quency and time-scale approaches [1] such as detrended fluc-
tuation analysis (DFA) [2], rescaled range(R/S) statistic [3],
Periodogram [4], wavelets [5,6], etc., by more accurate and
efficient approaches such as Shannon entropy and Fisher’s
information measure (FIM) [7,8]. Information theory-based
methods not only allow to characterize the information con-
tent and complexity within a fractal signal but also to pro-
vide a deeper understanding of the signal such as classify-
ing them as stationary/nonstationary [9], short-memory/long-
memory and even a more general classification within some
scaling range. The analysis of time series by traditional
Shannon and Tsallisq-entropies have characterized complex-
ity in electroencephalogram (EEG) signals [10], identified
structural damage [11] and analyzed event related poten-
tials in neuroelectrical signals [12,13]. In the fractal anal-
ysis context, wavelet entropy has been used for the clas-
sification of fractal signals(as stationary/nostationary, long-
memory/short-memory, etc) [9], detection of level-shifts
[14], estimation of the fractality parameterα among others.
Recently, the concept of eXtropy has been proposed in the
literature as a complementary dual of Shannon entropy [15]
and is currently considered a research hotspot in physics. The
purpose of the present article is twofold, first, to extend the
standard time domain eXtropy concept to the wavelet domain
and second to obtain a closed-form expression for the wavelet
eXtropy of fractal signals of parameterα. The latter, will
not only allow to compare wavelet eXtropy planes for fractal
signals but also to completely characterize wavelet eXtropy
values for the different fractals. In addition, wavelet eX-
tropy planes permits to perform a comparison with wavelet
entropy and to highlight potential applications. When com-

pared to wavelet entropy, wavelet eXtropy presents similar
behaviour; increasing for stationary fractal signals and de-
creasing for nonstationary ones, however a key difference is
that wavelet eXtropy presents lower variability within fractal
stationary processes. The rest of the present contribution is
structured as follows. Section 2 reviews some wavelet related
results for fractal procesess, specifically, quantities that allow
to compute probability mass functions (pmfs) from wavelet
representations. Section 3 proposes a wavelet eXtropy def-
inition based on a discrete-wavelet transform(DWT)-based
wavelet spectrum, obtains a closed-form expression of this
eXtropy for fractal processes and computes wavelet eXtropy
planes. Furthermore, this section details eXtropy behaviour
for the variety of fractal processes and discusses potential ap-
plications for the analysis/estimation of fractality. Section 4
concludes the paper.

2. Wavelet analysis of fractal signals

Wavelet transforms play a special role in the analysis of
signals in physics [16] and other scientific areas [17,18].
Specifically adequate for nonstationary signal analysis,
wavelet transforms can be computed in continuosly varying
time/scale settings (CWT) or discrete ones (DWT). The dis-
crete wavelet transform (DWT) of a signalXt is given by:

dX(j, k) =
∫ ∞

−∞
Xt ψj,k(t) dt, (1)

whereψj,k(t) = 2−j/2ψ(2−jt−k) is a dyadically scaled and
integer-shifted mother wavelet which satisfies admissibility
condition. For random signals, the first and second moments
of the DWT are usually employed, the first moment is defined
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as follows,

EdX(j, k) = E
{∫ ∞

−∞
Xtψj,k(t)dt

}
= 0, (2)

while, the second, also known in the literature as the wavelet
spectrum [19], takes the form given by the following relation:

Ed2
X(j, k) =

∫ ∞

−∞
SX(2−jf)|Ψ(f)|2 df, (3)

whereΨ(f) =
∫

ψ(t)e−j2πft dt is the Fourier integral of
the mother waveletψ(t), SX(.) is the power spectral den-
sity (PSD) of the processXt, E, the expectation operator
anddX(j, k) is the DWT of the processXt at time k and
wavelet scalej. Recall that for fractal signals of parameter
α, Sx(f) ∼ c|f |−α and thus by substituting this well-known
PSD into Eq. (3) results in the wavelet spectrum of fractals
signals of parameterα, i.e.,

Ed2
X(j, k) = 2jα C(α,ψ), (4)

whereC(α,ψ) is a constant that depends onα and the mother
waveletψ(t) [20]. The wavelet spectrum of fractal processes
as given by (4) has been used in the literature for the estima-
tion of the parameterα [19] and for the computation of the
so-called wavelet energy [21]. The wavelet energy at scalej
is defined as [22],

pj =
Ed2

X(j, k)∑
j Ed2

X(j, k)
. (5)

Wavelet energypj satisfies the axioms of probability,i.e.,
0 ≤ pj ≤ 1,

∑
j pj = 1 and is therefore a probability func-

tion or probability mass funcion (pmf) which represents the
probability that the energy of a signal to be located at wavelet
scalej. From the wavelet energypj , many statistical quan-
tities can be computed including entropies, eXtropies, and
other information theory quantifiers such as Fisher-Shannon
information planes, etc. For fractal signals, their wavelet en-
ergy,pj , is given by,

pj = 2(j−1)α × 1− 2α

1− 2αM
, (6)

whereα is the fractality parameter andM is the number of
scales considered within a signal.

3. Wavelet eXtropy

The wavelet entropy of a fractal process measures the infor-
mation content or complexity of a random signal or system
in the time-scale or wavelet domain. Wavelet entropy,H(p),
is defined as [21,22],

H(p) = −
∑

j

pj log(pj), (7)

for a given pmfpj . For fractal processes, the wavelet entropy
is computed by substituting Eq. (6) into (7) which results in

the wavelet entropy of fractal processes given by the follow-
ing relation,

H(p) = α

{
1

1− 2−α
− M

1− 2−αM

}

− log 2
{

1− 2α

1− 2αM

}
. (8)

From Eq. (8), many important results have been obtained in
the literature for fractal Processes. For instance, wavelet en-
tropy is maximum (H → 1) whenα → 0 and for station-
ary short-memory processes it is increasing with increasing
α and for long-memory signals, decreasing for increasingα.
For nonstationary fractal signals it is completely nonincreas-
ing [22-25]. Wavelet entropy has found extensive applica-
tions in many areas of science and technology. Recently, the
concept of eXtropy has been introduced as a complementary
dual of Shannon entropy [15]. As a matter of fact, the eX-
tropy concept is currently a research hotspot in physics and
statistics and many results such as maximum entropy, belief
entropy, etc., are being extended to their eXtropy counterparts
giving rise to maximum eXtropy [26], belief eXtropy [27,28],
etc. The main purpose and result of the present article is to
extend the eXtropy concept to the time-scale domain a give a
didactic presentation of their behaviour for fractal processes
of parameterα. In order to extend the eXtropy concept to the
time-scale domain, Eq. (6) is applied to the standard defini-
tion of eXtropy given by the following equation:

J (p) = −
∑

j

(1− pj) log2(1− pj), (9)

which results in the following:

J(p) =
∞∑

n=1

(−1)n−1

n

(
2α − 1

1− 2αM

)n

×
{

1− 2α

1− 2αM

1− 2(α+αn)M

1− 2(α+αn)
− 1− 2αnM

1− 2αn

}
. (10)

Equation (10) therefore represents the wavelet eXtropy
of fractal signals with parameterα from which many impor-
tant results can be obtained for the different regions of the
parameterα. Recall that for fractal processes, the values of
α dictate their statistical behaviour. For instance, it is well
known thatα = 0 represents a completely disorder process,
white noise, for−1 < α < 1, the process is stationary and
for α > 1 it is nonstationary. Moreover forα ∈ (−1, 0), the
process is short-memory and stationary and forα ∈ (0, 1)
it is stationary long-memory. Therefore, the purpose of the
article is to completely characterize wavelet eXtropy within
these regions in a similar way wavelet entropy was character-
ized previously in the literature In the following a normalized
version of eXtropy and entropy is used in order to provide a
comparison of their behaviour.
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FIGURE 1. Wavelet information planes for fractal signals of parameterα. Top-left plot is the wavelet entropy plane within the range
−4 < α < 4 and varying time series’ length. Top-right plot is the corresponding plane for the wavelet eXtropy within the same fractality
index and time series’ length range. 2D cross sections for lengths26, 28 and211 for both quantifiers are illustrated in bottom plots.

Figure 1 displays the information planes for the wavelet
entropy and wavelet eXtropy of fractal processes of param-
eterα. Note from the top plots that the behaviour of both
information theory quantifiers is similar; maximum atα = 0,
increasing forα < 0 and decreasing forα > 0. Although
similar behaviour is observed in both information planes,
small differences between wavelet entropy and eXtropy are
clear. First, a 2D cross section of the 3D information eX-
tropy plane shows that wavelet eXtropy is independent of
time series’ length (see bottom plot of Fig. 1), in addition,
wavelet eXtropy appears to be wider than wavelet entropy
meaning that an identical entropy/eXtropy range is covered
by a wider scaling range. The latter result, in principle, indi-
cates that wavelet entropy is a ’better’ information quantifier
than wavelet eXtropy, however, as we will see next this is not
the case. Figure 2, shows a version of the 2D plots given in
Fig. 2 within the fractality range−2 < α < 3. Note from
this figure that both information theory quantifiers are shown
within the same plot which allows to better inspect the simi-
larities and differences between entropy and eXtropy values.
From this plot, and considering first stationary (−1 < α < 1)
and nonstationary (1 < α < 3) fractal signals, it is clear

FIGURE 2. Wavelet entropy/eXtropy for fractal signals of parame-
terα. Wavelet eXtropy displays lower variability values than those
observed for wavelet entropy for stationary signals, however, the
variability for wavelet eXtropy is higher when considering nonsta-
tionary fractal signals (α > 1).
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that wavelet eXtropy presents lower variability than wavelet
entropy for stationary fractal signals. In fact, wavelet eX-
tropy values will vary from0.85 to 1 and wavelet entropy
ones from0.6 to 1. For nonstationary fractal signals, how-
ever, wavelet eXtropy values are more variable than those
observed for wavelet entropy. Wavelet eXtropy, therefore is a
valuable tool for characterizing the complexities associated to
fractal signals. Wavelet eXtropy is maximum for completely
random o disordered fractals such as white noise(α = 0), is
increasing forα < 0 and decreasing forα > 0. In addition,
presents low variability for stationary fractal signals and high
variability for nonstationary ones.

Based on the above, a classification scheme for station-
ary/nonstationary fractality can be derived from this variabil-
ity behaviour.

4. Conclusions

In this contribution, an extension of the time-domain eXtropy
concept to the wavelet domain was first presented. A closed-
form expression for this wavelet eXtropy was then obtained
for fractal signals of parameterα and later wavelet eXtropy
information planes were computed in a range of both the frac-
tality index and time series’ length. Wavelet eXtropy is max-
imum for white noise, increasing for stationary fractals and
decreasing for nonstationary ones. Wavelet eXtropy presents
similar behaviour as that of wavelet entropy, however, has
lower variability for stationary fractals and higher variabil-
ity from nonstationary ones. Finally, from this behaviour, a
classification scheme based on variability may be derived for
fractal processes.
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