Education in Physics Revista Mexicana dei€a E22010211 1-5 JANUARY-JUNE 2025

Wavelet eXtropy of fractal signals
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Recently, the concept of eXtropy was proposed as a complementary dual of Shannon entropy. This article extends the standard time-domai
eXtropy concept to the time-scale domain and then obtains a closed-form expression for this wavelet eXtropy for fractal signals of parameter
«. A didactic study of the wavelet eXtropy of fractal signals reveals that this infomation-theory quantifier increases for short-memory fractal
signals, is maximum for white noisex(= 0) and decreases for long-memory fractal processes. Compared to the standard wavelet entropy,
wavelet eXtropy performs similar, however has lower variability for stationary fractal signals and higher variability for nonstationary ones.
Moreover, the computation of fractality based eXtropy planes allows to highlight further properties and also potential applications for the
analysis/estimation of fractals.

Keywords: Fractal; eXtropy; wavelets; wavelet entropy; wavelet eXtropy; fractal analysis.

DOI: https://doi.org/10.31349/RevMexFisE.22.010211

1. Introduction pared to wavelet entropy, wavelet eXtropy presents similar
behaviour; increasing for stationary fractal signals and de-
The analysis of fractals by means of information theory quanereasing for nonstationary ones, however a key difference is
tifiers permits to extend and complement traditional time, frethat wavelet eXtropy presents lower variability within fractal
guency and time-scale approaches [1] such as detrended flustationary processes. The rest of the present contribution is
tuation analysis (DFA) [2], rescaled ran@®(S) statistic [3],  structured as follows. Section 2 reviews some wavelet related
Periodogram [4], wavelets [5,6], etc., by more accurate andesults for fractal procesess, specifically, quantities that allow
efficient approaches such as Shannon entropy and Fishets compute probability mass functions (pmfs) from wavelet
information measure (FIM) [7,8]. Information theory-based representations. Section 3 proposes a wavelet eXtropy def-
methods not only allow to characterize the information con-nition based on a discrete-wavelet transform(DWT)-based
tent and complexity within a fractal signal but also to pro-wavelet spectrum, obtains a closed-form expression of this
vide a deeper understanding of the signal such as classifieXtropy for fractal processes and computes wavelet eXtropy
ing them as stationary/nonstationary [9], short-memory/longplanes. Furthermore, this section details eXtropy behaviour
memory and even a more general classification within soméor the variety of fractal processes and discusses potential ap-
scaling range. The analysis of time series by traditionaplications for the analysis/estimation of fractality. Section 4
Shannon and Tsallig-entropies have characterized complex-concludes the paper.
ity in electroencephalogram (EEG) signals [10], identified
structural damage [11] and analyzed event related poten-
tials in neuroelectrical signals [12,13]. In the fractal anal- . :
ysis context, wavelet en?ropy [has b]een used for the clasz-' Wavelet analysis of fractal signals
sification of fractal signals(as stationary/nostationary, long- i ) i
memory/short-memory, etc) [9], detection of level-shifts VWavelet transforms play a special role in the analysis of
[14], estimation of the fractality parameteramong others. Signals in physics [16] and other scientific areas [17,18].
Recently, the concept of eXtropy has been proposed in thePecifically adequate for nonstatlor)ary S|.gnal analy§|s,
literature as a complementary dual of Shannon entropy [15{V@Velet transforms can be computed in continuosly varying
and is currently considered a research hotspot in physics. THENe/scale settings (CWT) or discrete ones (DWT). The dis-
purpose of the present article is twofold, first, to extend theFréte wavelet transform (DWT) of a signal, is given by:
standard time domain eXtropy concept to the wavelet domain -
and second to obtalrj a closed-form expression for the V\(avelet dx (j, k) = / Xy () dt, (1)
eXtropy of fractal signals of parameter The latter, will —oco
not only allow to compare wavelet eXtropy planes for fractal
signals but also to completely characterize wavelet eXtropwherey; ;. (t) = 271/24)(277t—k) is a dyadically scaled and
values for the different fractals. In addition, wavelet eX- integer-shifted mother wavelet which satisfies admissibility
tropy planes permits to perform a comparison with wavelettondition. For random signals, the first and second moments
entropy and to highlight potential applications. When com-of the DWT are usually employed, the first moment is defined
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as follows, the wavelet entropy of fractal processes given by the follow-
0o ing relation,
Bt k) =B{ [~ Xy =0 @
—oo 1 M
: H H H(p) = —a —aM
while, the second, also known in the literature as the wavelet 1-2 1-2
spectrum [19], takes the form given by the following relation: 1_ 9o

A0 = [ Sx@IpWOPY. @)
o From Eq. B), many important results have been obtained in
where¥(f) = [(t)e=72"/tdt is the Fourier integral of the literature for fractal Processes. For instance, wavelet en-
the mother wavelet)(t), Sx(.) is the power spectral den- tropy is maximum  — 1) whena — 0 and for station-
sity (PSD) of the procesX;, E, the expectation operator ary short-memory processes it is increasing with increasing
anddx (j, k) is the DWT of the procesX; at timek and  « and for long-memory signals, decreasing for increasing
wavelet scalg/. Recall that for fractal signals of parameter For nonstationary fractal signals it is completely nonincreas-
a, Sz (f) ~ c|f|~ and thus by substituting this well-known ing [22-25]. Wavelet entropy has found extensive applica-
PSD into Eq./8) results in the wavelet spectrum of fractals tions in many areas of science and technology. Recently, the

signals of parametet, i.e., concept of eXtropy has been introduced as a complementary
5 io dual of Shannon entropy [15]. As a matter of fact, the eX-
Edx (4, k) = 2% C(e,¥), (4) tropy concept is currently a research hotspot in physics and

statistics and many results such as maximum entropy, belief

wavelety(t) [20]. The wavelet spectrum of fractal processese_nt_mpY' etc., are peing extended to their_eXtropy counterparts
as given byl4) has been used in the literature for the estima-9'VIng rise to maximum extropy [26], belief eXtropy [27,28],

tion of the parameten [19] and for the computation of the etc. The main purpose and result pf the present a_rticle lis to
so-called wavelet energy [21]. The wavelet energy at siale extend the eXtropy concept to the time-scale domain a give a
is defined as [22] didactic presentation of their behaviour for fractal processes

of parametetv. In order to extend the eXtropy concept to the

whereC(«, v) is a constant that depends@mnd the mother

o Ed% (j, k) ) time-scale domain, Eg6) is applied to the standard defini-
b= Zj Ed% (5, k) tion of eXtropy given by the following equation:
Wavelet energy, satisfies the axioms of probability.e.,
i g > T(p) ==Y (1-p;)logy(1—p)), ©

0<p; <1, Zj p; = 1 and is therefore a probability func-
tion or probability mass funcion (pmf) which represents the
probability that the energy of a signal to be located at wavelefyhich results in the following:
scalej. From the wavelet energy;, many statistical quan-

tities can be computed including entropies, eXtropies, and x (—1)nt 20 1 \"
other information theory quantifiers such as Fisher-Shannon J(p) = Z (1 — QQM)
information planes, etc. For fractal signals, their wavelet en- n=1 "

ergy,p;, is given by, { 1—9v 1 _— 2(a+an)JV[ 1 — 9onM } (10)

J

X

_ 9« _ 9aM _ 9(a+an) _ 9an
py =200 L2 (6) b e
Equation [L0) therefore represents the wavelet eXtropy
of fractal signals with parameter from which many impor-
tant results can be obtained for the different regions of the
parameter.. Recall that for fractal processes, the values of
3. Wavelet eXtropy « dictate their statistical behaviour. For instance, it is well
known thata = 0 represents a completely disorder process,
The wavelet entropy of a fractal process measures the infoiyhite noise, for-1 < o < 1, the process is stationary and
mation content or complexity of a random signal or systemfor « > 1 it is nonstationary. Moreover far € (—1,0), the
in the time-scale or wavelet domain. Wavelet entrdgyp),  process is short-memory and stationary anddoe (0,1)

whereq is the fractality parameter an is the number of
scales considered within a signal.

is defined as [21,22], it is stationary long-memory. Therefore, the purpose of the
B article is to completely characterize wavelet eXtropy within
H(p) = - Z p;log(p;), (") these regions in a similar way wavelet entropy was character-
J

ized previously in the literature In the following a normalized
for a given pmip;. For fractal processes, the wavelet entropyversion of eXtropy and entropy is used in order to provide a
is computed by substituting Eg)(into (7) which results in  comparison of their behaviour.
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FIGURE 1. Wavelet information planes for fractal signals of parameterTop-left plot is the wavelet entropy plane within the range
—4 < a < 4 and varying time series’ length. Top-right plot is the corresponding plane for the wavelet eXtropy within the same fractality
index and time series’ length range. 2D cross sections for lejtt2$ and2'! for both quantifiers are illustrated in bottom plots.

Figure 1 displays the information planes for the wavelet 1 [evemmns I eXtropy, J(p) |
entropy and wavelet eXtropy of fractal processes of param- Entropy, H(p)
etera. Note from the top plots that the behaviour of both
information theory quantifiers is similar; maximumeat= 0, sk A AN
increasing fore < 0 and decreasing far > 0. Although '
similar behaviour is observed in both information planes,
small differences between wavelet entropy and eXtropy are
clear. First, a 2D cross section of the 3D information eX-
tropy plane shows that wavelet eXtropy is independent of
time series’ length (see bottom plot of Fig. 1), in addition,
wavelet eXtropy appears to be wider than wavelet entropy
meaning that an identical entropy/eXtropy range is covered
by a wider scaling range. The latter result, in principle, indi-
cates that wavelet entropy is a 'better’ information quantifier
than wavelet eXtropy, however, as we will see next this is not
the case. Figure 2, shows a version of the 2D plots given in

Fig. 2 within the fractality range-2 < « < 3. Note from _
this figure that both information theory quantifiers are shown’ 'SURE 2. Wavelet entropy/eXtropy for fractal signals of parame-
within the same plot which allows to better inspect the Simi-tera' Wavelet eXtropy displays lower \_/arlablllt_y values than those

o\ . observed for wavelet entropy for stationary signals, however, the

larities a_nd differences petvyeen_entrop_y and extropy Valu('ngariability for wavelet eXtropy is higher when considering nonsta-
From this plot, and considering first stationaryl(< oo <1)  tionary fractal signalsd > 1).
and nonstationaryl(< « < 3) fractal signals, itis clear

06 ...................................................................

H(p) y T(p)
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that wavelet eXtropy presents lower variability than wavelet4. Conclusions

entropy for stationary fractal signals. In fact, wavelet eX-
tropy values will vary from0.85 to 1 and wavelet entropy

random o disordered fractals such as white n¢ise= 0), is
increasing forv < 0 and decreasing far > 0. In addition,

variability for nonstationary ones.

ity behaviour.

In this contribution, an extension of the time-domain eXtropy
ones from0.6 to 1. For nonstationary fractal signals, how- concept to the wavelet domain was first presented. A closed-
ever, wavelet eXtropy values are more variable than thoséorm expression for this wavelet eXtropy was then obtained
observed for wavelet entropy. Wavelet eXtropy, therefore is dor fractal signals of parameter and later wavelet eXtropy
valuable tool for characterizing the complexities associated tinformation planes were computed in a range of both the frac-
fractal signals. Wavelet eXtropy is maximum for completely tality index and time series’ length. Wavelet eXtropy is max-
imum for white noise, increasing for stationary fractals and
decreasing for nonstationary ones. Wavelet eXtropy presents
presents low variability for stationary fractal signals and highsimilar behaviour as that of wavelet entropy, however, has
lower variability for stationary fractals and higher variabil-

Based on the above, a classification scheme for statiority from nonstationary ones. Finally, from this behaviour, a
ary/nonstationary fractality can be derived from this variabil-classification scheme based on variability may be derived for
fractal processes.
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