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The propagator of the inverted Caldirola-Kanai oscillator
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In this paper, we present three methods to calculate the propagator for the inverted Caldirola-Kanai oscillator. The first method is the Feynmar
path integral. The second method was formulated by Schwinger for deriving the relativistic Green function but has rarely been applied to
calculate the non-relativistic propagator. The third method is the application of the integrals of the motion of a quantum system in evaluating
the propagator. The comparison of advantages and difficulties of each method is also discussed.
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1. Introduction because it provides an accurate expression for the propagator
. ) ) and has numerous applications in researching the physics of
The wave mechanics of E. Sdittinger is the accepted piack hole horizon events and quantum Hall lowest Landau
method for comprehending the nature of quantum physicfevels [18]. We will talk about how these techniques relate
[1]. This approach aims to solve Sélinger's equation and  tg poth classical and quantum mechanics in the end. The
produce the wave function(z, ), which may be understood  srycture of this essay is as follows. We will compute the
as the probability amplitude of finding a particle at the coor-propagator for an inverted Caldirola-Kanai oscillator using
dinatesr andt. Propagator methods are a substitute strategye Feynman path integral method in Sec. 2. In Sec. 3, the
The propagator is the amplitude of the transition prObab“‘propagator of the same system as Sec. 2 was derived using
ity for a particle moving from the starting locatige’, ') to  the Schwinger approach. Section 4 explains how to use the

the destinatior(z",¢"). The three approaches for comput- jntegrals of the motion to evaluate the propagator. Finally,
ing the non-relativistic propagator are presented in this studysec. 5 provides the conclusion.

The Feynman path integral [2] is the first technique. R. P.

Feynman [3] first proposed this approach, and it was sub- . .
sequently used to address issues in both quantum mechafi- Feynman path integral for an inverted
ics and quantum field theory [4,5]. The Feynman path in-  Caldirola-Kanai oscillator

tegral, which is discussed in an undergraduate quantum me-

chanics course, has recently become the most widely usdf this section, the propagator for an inverted Caldirola-Kanai

method for calculating the non-relativistic propagator. TheoScillator will be obtained by applying the Feynman path in-
>gral. S. Baskoutas and A. Jannussis [17] propose the fol-

Schwinger approach is the second technique. When estim i o2 e ; ,

ing the relativistic Green function for a charged particle with '°ing as the Hamiltonian of this oscillator:

a spin of 1/2 in constant and plane wave external electromag- PP M oy oo

netic fields, J. Schwinger developed this technique [6]. Later, H(t) = 5—e™" — Jwiase’, @

the propagator in both relativistic and non-relativistic quan- . . - .

tum mechanics was calculated using the Schwinger metho\gherer Is the damping coqstan_t c?eﬁ|0|gnt, ands the con-
[7-12]. This approach can only be used in quantum field the-Stan,t frgquency. The Hamiltonian’s equivalent Lagrangian in
ory, though. In 1975, V. V. Dodonov, I. A. Malkin, and V. I. Bq. D is

Man’ko developed the third approach [13]. This approach is 1 .0 1 55

based on the relationship between a quantum system’s Green L{t) = gme &+ §mertw e @

function or propagator and the integrals of the motion. TheWhen the Lagrangian in Eq2) is subjected to the Euler-

initial position and m°me_”t“T" opergtor can be used tO_ eX[_agrange equation, the resulting equation of motion has the
press the propagator, which is the eigenfunction of the 'ntefollowing form:

grals of the motion. This approach for computing the propa-

gator has numerous applications in both relativistic and non- &4 ri —w?z =0. 3
relativistic quantum mechanics, according to a research stud]y

[14-16], although it is not covered in textbooks on quantum!he answer tc3) can be expressed as

mechanics and quantum field theory. _ .
This essay also compares the benefits and drawbacks of #(t) = e7> [Acosh Ot + Bsinh 1], )

each teaching approach for students and teachers. Invertgghere? = w2 + (r2/4) whereA and B are constants.
Caldilora-Kanai oscillators are the systems used to illustrate
the methods in this paper [17]. This oscillator was chosen
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We define the classical paths between the points0t’) and(z",t") as

—rt ’

< [e% sinh Q(t" — t)z’ + ™% sinh Qt —t")a"]. ©)

alt) = ——7—+
Tal(t) sinh Q¢ — t')

We enforce the boundary conditionsaxft’) = 2’ andz (") = «”. This gives us the constants A and B in E4). (The official
definition of the action is provided by
17
S "2 ) = / L(&,z,t)dt. (6)
t/
By substituting the Lagrangian c2)into (6) and then integrating portions of the first term |6f (vith the aid of @), the
classical action can be expressed as follows:

Sa(@", "' ') = %xlc/ﬁgz - %mlczi"/cl- (7)
When we insert the classical paths frc) ihto (7) to calculate the classical action, the outcome is
S (2" t" 2" 1) = —%(e””x"2 — e + %Q(e””x”z + e 2 coth Q" — )
— mQe ™ eschQ(t" —t")z'z". (8)

Feynman [2] states that the quantum propagator is denoted as
K@ 5l 1) = / eSO Dl (1)), ©)
where the measur®[z(t)] is the integration over all paths connecting from, ¢') to (z”, t”).

The propagator for the general quadratic Lagrandién = (1/2)a(t)@? — (1/2)b(t)x? + c(t)x wherea(t), b(t) andc(t),
are well-behaved functions of time, which can be computed from the semiclassical approximation of the path integral as [19]

"o,
K" t";x

t/) 1 8250l($//7 t”; .%‘/, t/)
’ 2mih ox'0x"

] exp [2Scl(x”7t”;a:’,t’)] . (10)

The pre-exponential function can be represented by replacing the traditional aci®)mth((10).

3 mQer(t+t) /2 B
= _ . 11
] 2mih sinh Q¢ — t') (1)

We can get the appropriate propagator for the inverted Caldirola-Kanai oscillator by subst@ytmgl (L1) into (10), where

1
7y 2 .
K"t t) = ( mQder )72 ) exp {—ZZ: (e””x”z — e”,x’Q)]

32Scl($//7 t”; x/, t/)
ox'dx"

1
2mih

27ihsinh Q¢ — )

imS rt” 12 12 / , r(t! ') Ly
exp [Q?LsinhQ(t” —t)’ ( {6 Totenw } cosh Q(t" — ') —2e™ = —a'z" |. (12)

The propagator 07(2) can be rewritten as

1
O rt/2 2 .
K(z,2';t) = (me) exp [—ZZZT (e"'z® — x'Q)}

2mih sinh Qt h
) Q rt
X exp <271Z’:111(2t (e”xQ + m’2> cosh Qt — 2e2 a:x’] > , (13)

wherez” = z, 2’ = 2/,t” =t andt’ = 0.
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THE PROPAGATOR OF THE INVERTED CALDIROLA-KANAI OSCILLATOR 3
3. Schwinger method for an inverted Caldirola-Kanai oscillator

The Heisenberg’s equations of the operataisii(t)/dt) = [i(t), H(t)] andih(dp(t) /dt) = [p(t), H(t)] are solved in order
to get the position operatd(¢) and the momentum operatpft) as

rt
2

X _ - ro X € e N
2(t) = e (cosh Qt + o sinh Qt) #(0) + = sinh Q1p(0), (14)
and
9 .
p(t) = MY % sinh Qtz(0) + e (coshQt — rsinh Of p(0), (15)
Q 2Q)
wherez(0)=z(¢t = 0), andp(0)=p(t = 0), and
N H2 1
H(t)= e_”p—(t) — —me w22 (t). (16)

2m 2
By removingp(0) from (15) with the aid of (L4), the momentum operat@g(t¢) can be expressed in terms:ift) andz(0) as:

rt
mSle=

p(t) = me™ (Q coth Qf — g) #(t) - == (0). (17)

The Hamiltonian operator is then rewritten in time ordered by substitufidgaind 7) into (16) in such a way that, for
each term off{ (¢), the operatot(t) must write on the left and the operato(0) must write on the right, assisted by the
commutator(0), &(t)] = (ihsinh Qt/mQ)e~("/2) as

rt 2

ﬁord(t) = m; (92 csch?Qt — rQ coth Qt + 2) 22 (t) — mQe? (Q cschQt coth Qt — % cscth)

1 ih
X #(t)a(0) + 5mO? esch?2ti(0) - % (Q coth Qf — g) . (18)

The propagator can be determined using the equation

. t 2 / . t
K(z,2';t) = C(x,2") exp (—Z/ < 2(®)|Hora(t)|2'(0) >dt> = C(z,z ) exp (— i/ [1mert <Q2 csch?Qut
0 0

h < z(t)|2'(0) > h 2

2

1 ’2 rt ’
— rQcothQt + 2) 2%+ EmQ2 csch®Qtz ~ — mQe2 (Q cschQt coth Qt — g cscth) TT

ih r
. (Q coth Qt — 5) )dt] : (19)
whereC|(z, x') is an arbitrary integration constant. This equation was provided by S. Pepore and B. Sukbot [10].

The following step is to integrate each term[@8). It is simple to determine how to integrate the first termi8)(@across
time by using the equation

. t 2 . Q .
—%aﬁQ ; et (92 csch®Qt — rQ coth Qt + 2) dt = %e” coth Qtz? — %e”x? (20)
It is possible to integrate the second termIf)(as
imQO? 2 [t im$ ,
et / cseh?Qidt = 25 coth Ot 1)
2h 0 2h
In order to assess the third term G8j, the following relation can be used:
] Q ’ t rt ] Q rt ’
%mx / ez (Q cschQt coth Qt — gCSCth> dt = 7”% e?2 cschQtzx . (22)
0
Last but not least, the integration of the final term in E®) (over time can be expressed as
t
Q 1 t
_/0 (2 coth Qt — Z) dt = —3 In(sinh Q¢) + % (23)
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If we insert 0)-(23) into (19), the required propagator has the form:

’ / Lf ] 3 Q rt ’
K(z,z ;t) = C(z,z )4/ m exp (”Zre”xQ> exp {%Zﬁhﬂt(eﬁ cos hQtz? + cos hQta’ — 2e2 xx )| . (24)

The application of

_OK (z,x ,t)
o’

with the aid of ((4) we must, however, recast the operai@(®) in terms of the operators(t) andz(0) as

=< a(t)[p(0)[z'(0) >, (25)

1

Lo mQe? T\ .
p(0) = ok th(t) — mS) (coth Qt + @) z(0). (26)

Then, by replacing24) and 26) into (25), it is simple to demonstrate that

ih@C(m,x’) _mr

_ /
5~ 5 ¢ C(z,z"). (27)
It is possible to solve Eqg27) to obtain
C(z,2") = C(z)exp (ZZ;LTxQ) . (28)

If we replace 28) with (24), the propagator can be express as

/ | % ' imQ -
K(z,x ;t) = C(x) m exp <_2417ng(€”$2 — x’2)> exp [%Zzﬂlm(e”ﬁ + %) coshQt — 2% z2)| . (29)

By applying the relation

OK (z,2';t)
ox
one can derive the arbitrary constant of integratit:).

Similar to this, we found thadC(z)/0x = 0 by inserting [29) into (30), which suggests thaf'(x) is constant. The
propagator’s initial condition,

—ih =< z(t)[p(t)|2'(0)) >, (30)

lim K(z,2;t) =0(z—2), (31)

t—0t

can be used to determine the constaft).
The constanf(z) can be expressed as

o=,/ (32)
2mih

if we apply 31) to (29).

We can get the propagator for an inverted Caldirola-Kanai oscillator that has the same form as calculated via the Feynman
path integral by putting32) into (29).
4. Integrals of the motion for an inverted Caldirola-Kanai oscillator

In order to start using this method, first determine the integrals of the motion, which were defined as

dl ol 1, .
E_E-FE[H,I}—O, (33)

wherel are integrals of the motion operator.
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THE PROPAGATOR OF THE INVERTED CALDIROLA-KANAI OSCILLATOR

5
The integrals of the motiof(0) andp(0) that matched the Hamiltonian operator in Eb6)(can therefore be expressed as

~ rt roort o ~ 67% . ~
z(0) = (e cosh Qt — 506" sinh Qt) z(t) — — sinh Qt | p(t),

(34)
and

2 ) _rt
m;; e? sinh Qt) Z(t) + (eg cosh Qt + 62 -

O sinh Qt) p(t). (35)
The Green function, also known as the propagator, is the eigenfunction of the integrals of #{6}iamd;5(0), which fulfill
the equations

#2(0)K (z,2';t) = ' K (x, 2’5 t), (36)
and
= 0K (z,2';t)
p(0)K ") =ih— 2, 37
PO)K (z,2"5t) =i B (37)
In coordinate representation of numbeé3§)(and 37) can be written clearly as
T (e% coshQt — —— e sinh Qt) + ﬁe*% sinh th K(z,2';t) = 2/ K(x,2';t) (38)
20 m$ Ox T e
and
2 rt - rt el 8 - 6K /. t
(a: (mgc)u e2 sinh Qt) —ih(e™2 cosh Qt + % sinh Qt)(‘?:ﬂ) K(z,a';t) = ih%. (39)
To make 88) and B9) easier to compute, we rewrite them in terms of
OK (z,2';t) imQ | e, " rett\ |
i — — | € coth Qt — K(z,2';t 40
Oz h |smhatt ~\© 2 ) ¢ Kl asb), (40)
and

OK (z,2';t)
ox’

rt

_L 2 —(Q hQ @)’K g
h[m vt UL coth Q¢ + 5 )¢ (x,2';t).

(41)
If we integrate 40) with respect to the variable, the outcome can be expressed as

K(z,a';) = C(a/, ) exp (Z H msl

Q
ot hQt — @ rt 2 m 5 / 42
= 5 € coth Qt 1€ (% Sinthe2xﬂc , (42)
whereC'(2/, t) is an arbitrary constant of integration.
The formula forC (2, t) in Eq. (42), can be obtained substituting in E41f with the result being:
aC(2',t) mry ,
St =2 (mQ coth Ot + 7) 2'C(a,1). (43)
The answer to problen®8) can be expressed as
C(2',t) = C(t) exp (% [mQQ coth Qt + n;r] x'2> , (44)
whereC'(¢) is a freely chosen integration constant.
We get the propagator in the form of

. O 0
K(x,2';t) = C(t) exp (;l [(Tn?e” coth Qt — nj[e”’) 22+ (m2 coth Qt + T) e

mQes
- ) 4
sinh Q¢ e 1 ) (45)
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6 U. JAIRUK AND S. PEPORE
The propagator from Eq4b) is substituted into the Sabdinger equation

- O0K(z,2';t) h? L OPK(z,2'5t) 1 ., o 5 ,
oA\t NV e R 2 K . 4
ih 5 o€ 527 5me" W (x,2';t), (46)

to calculateC'(¢).
Following the aforementioned procedure, we arrive at

dC(t) r  QcothQt
B C(t) (4 ——5 > . (47)

The answer to the problem) can be expressed as

C

Ct) = ——
®) \/sinthe

T (48)

whereC is an arbitrary integration constant.
The constan€ can be represented by the expression

C =2 (49)
2mih

K(z,z';t=0) = 6(z — 2'). (50)

if we assume the initial condition of propagator

We derive the propagator that agrees with the outcome determined by the Schwinger method and Feynman path integral by
substituting48) and @9) into (45).

5. Conclusions

IHeisenberg uncertainty principle. In Schwinger’s formula-
tion, the pre-exponential factor appears from the commuta-
we 'have succes;fully calcylateq the exact propagator fOtrion relation of{#(0), (¢)] that is calculated in Eq2@). This

the inverted Caldilora-Kanai oscillator using three dlﬂEeremdemostrates the different nature between classical mechanics
methods. For a quadratic Lagrangian, we suggested here tht%d guantum mechanics. In classical mechanics, the physi-

Feynman path integral is the simplest technique because J:tal observables are complex numbers that can commute. But
only requires substituting the classical action in the semiclas-

. T . in quantum mechanics, the physical observables are opera-
sical approximation formula in qu.(J). However, for non- . tors and cannot commute, which shows the importance of
quad.rat|c Lagrangian, the F:alculatpq of the pre-e)fp.onenn he ordering of measurements. The integrals of the motion,
fl_mct|on of the propagator is very difficult even deriving the which are linear functions of the coordinate and momentum
simple harmonic oscillator prop_agato_r [20-22]. The_ SeC'operators, specify the initial point on the classical trajectory.
ond methqd formulated b)_/ Schwmggr is normally appl.le.d t he pre-exponential function of this method can be obtained
guantum field the_ory but is appropriated for non—relatlws'gcby substituting45) into Schivdinger's equation in Eq46),
qyantum mecha_tmc;. Howevgr, the calculation .Of Integration, ; , implies that the transition probability amplitude can
with respect to time in Eq10) is not easy. The third method

o . e appear from the wave equation of Sgtiinger.
has the difficulty in modifying$g)-(39) to (40)-(41). Finally, we conclude here that the presentation of these

The connection between classical mechanics and quathree methods will help students and teachers compare the
tum mechanics of Feynman path integral is explicitly shownadvantage and difficulties of each of them. We also recom-
in (10) by the classical actio§.;(z”,t";2’,t'). The pre- mend here that these three methods are powerful methods in
exponential function in Eq/10) comes from the sum of all the calculation of the propagator for non-relativistic and rel-
historical paths that present the wave-particle duality andativistic quantum systems.
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