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The propagator of the inverted Caldirola-Kanai oscillator
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In this paper, we present three methods to calculate the propagator for the inverted Caldirola-Kanai oscillator. The first method is the Feynman
path integral. The second method was formulated by Schwinger for deriving the relativistic Green function but has rarely been applied to
calculate the non-relativistic propagator. The third method is the application of the integrals of the motion of a quantum system in evaluating
the propagator. The comparison of advantages and difficulties of each method is also discussed.
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1. Introduction

The wave mechanics of E. Schrödinger is the accepted
method for comprehending the nature of quantum physics
[1]. This approach aims to solve Schrödinger’s equation and
produce the wave functionψ(x, t), which may be understood
as the probability amplitude of finding a particle at the coor-
dinatesx andt. Propagator methods are a substitute strategy.
The propagator is the amplitude of the transition probabil-
ity for a particle moving from the starting location(x′, t′) to
the destination(x′′, t′′). The three approaches for comput-
ing the non-relativistic propagator are presented in this study.
The Feynman path integral [2] is the first technique. R. P.
Feynman [3] first proposed this approach, and it was sub-
sequently used to address issues in both quantum mechan-
ics and quantum field theory [4, 5]. The Feynman path in-
tegral, which is discussed in an undergraduate quantum me-
chanics course, has recently become the most widely used
method for calculating the non-relativistic propagator. The
Schwinger approach is the second technique. When estimat-
ing the relativistic Green function for a charged particle with
a spin of 1/2 in constant and plane wave external electromag-
netic fields, J. Schwinger developed this technique [6]. Later,
the propagator in both relativistic and non-relativistic quan-
tum mechanics was calculated using the Schwinger method
[7-12]. This approach can only be used in quantum field the-
ory, though. In 1975, V. V. Dodonov, I. A. Malkin, and V. I.
Man’ko developed the third approach [13]. This approach is
based on the relationship between a quantum system’s Green
function or propagator and the integrals of the motion. The
initial position and momentum operator can be used to ex-
press the propagator, which is the eigenfunction of the inte-
grals of the motion. This approach for computing the propa-
gator has numerous applications in both relativistic and non-
relativistic quantum mechanics, according to a research study
[14-16], although it is not covered in textbooks on quantum
mechanics and quantum field theory.

This essay also compares the benefits and drawbacks of
each teaching approach for students and teachers. Inverted
Caldilora-Kanai oscillators are the systems used to illustrate
the methods in this paper [17]. This oscillator was chosen

because it provides an accurate expression for the propagator
and has numerous applications in researching the physics of
black hole horizon events and quantum Hall lowest Landau
levels [18]. We will talk about how these techniques relate
to both classical and quantum mechanics in the end. The
structure of this essay is as follows. We will compute the
propagator for an inverted Caldirola-Kanai oscillator using
the Feynman path integral method in Sec. 2. In Sec. 3, the
propagator of the same system as Sec. 2 was derived using
the Schwinger approach. Section 4 explains how to use the
integrals of the motion to evaluate the propagator. Finally,
Sec. 5 provides the conclusion.

2. Feynman path integral for an inverted
Caldirola-Kanai oscillator

In this section, the propagator for an inverted Caldirola-Kanai
oscillator will be obtained by applying the Feynman path in-
tegral. S. Baskoutas and A. Jannussis [17] propose the fol-
lowing as the Hamiltonian of this oscillator:

H(t) =
p2

2m
e−rt − m

2
ω2x2ert, (1)

wherer is the damping constant coefficient, andω is the con-
stant frequency. The Hamiltonian’s equivalent Lagrangian in
Eq. (1) is

L(t) =
1
2
mertẋ2 +

1
2
mertω2x2. (2)

When the Lagrangian in Eq. (2) is subjected to the Euler-
Lagrange equation, the resulting equation of motion has the
following form:

ẍ + rẋ− ω2x = 0. (3)

The answer to (3) can be expressed as

x(t) = e
−rt
2 [A coshΩt + B sinhΩt], (4)

whereΩ2 = ω2 + (r2/4) whereA andB are constants.
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We define the classical paths between the points of(x′, t′) and(x′′, t′′) as

xcl(t) =
e−rt

sinhΩ(t′′ − t′)
[
e

rt
′

2 sinhΩ(t′′ − t)x′ + e
rt′′
2 sinhΩ(t− t′)x′′

]
. (5)

We enforce the boundary conditions ofx(t′) = x′ andx(t′′) = x′′. This gives us the constants A and B in Eq. (4). The official
definition of the action is provided by

S(x′′, t′′;x′, t′) =
∫ t′′

t′
L(ẋ, x, t)dt. (6)

By substituting the Lagrangian of (2) into (6) and then integrating portions of the first term of (6) with the aid of (3), the
classical action can be expressed as follows:

Scl(x′′, t′′; x′, t′) =
m

2
x′′clẋ

′′
cl −

m

2
x′clẋ

′
cl. (7)

When we insert the classical paths from (5) into (7) to calculate the classical action, the outcome is

Scl(x′′, t′′; x′, t′) = −mr

4
(ert′′x′′2 − ert′x′2) +

mΩ
2

(ert′′x′′2 + ert′x′2) coth Ω(t′′ − t′)

−mΩe
r(t′′+t′)

2 cschΩ(t′′ − t′)x′x′′. (8)

Feynman [2] states that the quantum propagator is denoted as

K(x′′, t′′;x′, t′) =
∫

e
i
h̄

S[x(t)]D[x(t)], (9)

where the measureD[x(t)] is the integration over all paths connecting from(x′, t′) to (x′′, t′′).
The propagator for the general quadratic LagrangianL(t) = (1/2)a(t)ẋ2− (1/2)b(t)x2 + c(t)x wherea(t), b(t) andc(t),

are well-behaved functions of time, which can be computed from the semiclassical approximation of the path integral as [19]

K(x′′, t′′; x′, t′)
[

1
2πih̄

∣∣∣∣
∂2Scl(x′′, t′′;x′, t′)

∂x′∂x′′

∣∣∣∣
] 1

2

exp
[

i

h̄
Scl(x′′, t′′;x′, t′)

]
. (10)

The pre-exponential function can be represented by replacing the traditional action of (8) with (10).

[
1

2πih̄

∣∣∣∣
∂2Scl(x′′, t′′; x′, t′)

∂x′∂x′′

∣∣∣∣
] 1

2

=

(
mΩer(t′′+t′)/2

2πih̄ sinhΩ(t′′ − t′)

) 1
2

. (11)

We can get the appropriate propagator for the inverted Caldirola-Kanai oscillator by substituting (8) and (11) into (10), where

K(x′′, t′′; x
′
, t
′
) =

(
mΩer(t′′+t′)/2

2πih̄ sinhΩ(t′′ − t′)

) 1
2

exp
[
− imr

4h̄

(
ert′′x′′2 − ert′x′2

)]

× exp
[

imΩ
2h̄ sinhΩ(t′′ − t′)

,

([
ert′′x′′2 + ert′x′2

]
coshΩ(t′′ − t′)− 2e

r(t′′+t′)
2 x′x′′

)
. (12)

The propagator of (12) can be rewritten as

K(x, x′; t) =
(

mΩert/2

2πih̄ sinhΩt

) 1
2

exp
[
− imr

4h̄

(
ertx2 − x′2

)]

× exp

(
imΩ

2h̄ sinhΩt

[ (
ertx2 + x′2

)
cosh Ωt− 2e

rt
2 xx′

])
, (13)

wherex′′ = x, x′ = x′, t′′ = t andt′ = 0.
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3. Schwinger method for an inverted Caldirola-Kanai oscillator

The Heisenberg’s equations of the operatorsih̄(dx̂(t)/dt) = [x̂(t), Ĥ(t)] andih̄(dp̂(t)/dt) = [p̂(t), Ĥ(t)] are solved in order
to get the position operator̂x(t) and the momentum operatorp̂(t) as

x̂(t) = e−
rt
2

(
coshΩt +

r

2Ω
sinhΩt

)
x̂(0) +

e−
rt
2

mΩ
sinhΩtp̂(0), (14)

and

p̂(t) =
mω2

Ω
e

rt
2 sinhΩtx̂(0) + e

rt
2

(
cosh Ωt− r sinhΩt

2Ω

)
p̂(0), (15)

wherex̂(0)=x̂(t = 0), andp̂(0)=p̂(t = 0), and

Ĥ(t) = e−rt p̂
2(t)
2m

− 1
2
mertω2x̂2(t). (16)

By removingp̂(0) from (15) with the aid of (14), the momentum operator̂p(t) can be expressed in terms ofx̂(t) andx̂(0) as:

p̂(t) = mert
(
Ωcoth Ωt− r

2

)
x̂(t)− mΩe

rt
2

sinhΩt
x̂(0). (17)

The Hamiltonian operator is then rewritten in time ordered by substituting (14) and (17) into (16) in such a way that, for
each term ofĤ(t), the operator̂x(t) must write on the left and the operatorx̂(0) must write on the right, assisted by the
commutator[x̂(0), x̂(t)] = (ih̄ sinh Ωt/mΩ)e−(rt/2) as

Ĥord(t) =
mert

2

(
Ω2 csch2Ωt− rΩcoth Ωt +

r2

2

)
x̂2(t)−mΩe

rt
2

(
Ω cschΩt coth Ωt− r

2
cschΩt

)

× x̂(t)x̂(0) +
1
2
mΩ2 csch2Ωtx̂2(0)− ih̄

2

(
Ωcoth Ωt− r

2

)
. (18)

The propagator can be determined using the equation

K(x, x′; t) = C(x, x′) exp

(
− i

h̄

∫ t

0

< x(t)|Ĥord(t)|x′(0) >

< x(t)|x′(0) >
dt

)
= C(x, x

′
) exp

(
− i

h̄

∫ t

0

[
1
2
mert

(
Ω2 csch2Ωt

− rΩcoth Ωt +
r2

2

)
x2 +

1
2
mΩ2 csch2Ωtx

′2 −mΩe
rt
2

(
ΩcschΩt cothΩt− r

2
cschΩt

)
xx

′

− ih̄

2

(
Ωcoth Ωt− r

2

))
dt

]
, (19)

whereC(x, x
′
) is an arbitrary integration constant. This equation was provided by S. Pepore and B. Sukbot [10].

The following step is to integrate each term of (19). It is simple to determine how to integrate the first term of (19) across
time by using the equation

− im

2h̄
x2

∫ t

0

ert

(
Ω2 csch2Ωt− rΩcoth Ωt +

r2

2

)
dt =

imΩ
2h̄

ert coth Ωtx2 − imr

4h̄
ertx2. (20)

It is possible to integrate the second term of (19) as

− imΩ2

2h̄
x
′2

∫ t

0

csch2Ωtdt =
imΩ
2h̄

cothΩtx
′2

. (21)

In order to assess the third term of (19), the following relation can be used:

imΩ
h̄

xx
′
∫ t

0

e
rt
2

(
Ω cschΩt cothΩt− r

2
cschΩt

)
dt = − imΩ

h̄
e

rt
2 cschΩtxx

′
. (22)

Last but not least, the integration of the final term in Eq. (19) over time can be expressed as

−
∫ t

0

(
Ω
2

cothΩt− r

4

)
dt = −1

2
ln(sinh Ωt) +

rt

4
. (23)
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If we insert (20)-(23) into (19), the required propagator has the form:

K(x, x
′
; t) = C(x, x

′
)

√
e

rt
2

ih̄ sinhΩt
exp

(
− imr

4
ertx2

)
exp

[
imΩ

2h̄ sinhΩt
(ert coshΩtx2 + cos hΩtx′2 − 2e

rt
2 xx

′
)
]

. (24)

The application of

ih̄
∂K(x, x

′
, t)

∂x′
=< x(t)|p̂(0)|x′(0) >, (25)

with the aid of (14) we must, however, recast the operatorsp̂(0) in terms of the operatorŝx(t) andx̂(0) as

p̂(0) =
mΩe

rt
2

sinhΩt
x̂(t)−mΩ

(
cothΩt +

r

2Ω

)
x̂(0). (26)

Then, by replacing (24) and (26) into (25), it is simple to demonstrate that

ih̄
∂C(x, x′)

∂x′
= −mr

2
x′C(x, x′). (27)

It is possible to solve Eq. (27) to obtain

C(x, x′) = C(x) exp
(

imr

4h̄
x′2

)
. (28)

If we replace (28) with (24), the propagator can be express as

K(x, x
′
; t) = C(x)

√
e

rt
2

ih̄ sinhΩt
exp

(
− imr

4h̄
(ertx2 − x′2)

)
exp

[
imΩ

2h̄ sinhΩt
(ertx2 + x′2) coshΩt− 2e

rt
2 xx′)

]
. (29)

By applying the relation

−ih̄
∂K(x, x′; t)

∂x
=< x(t)|p̂(t)|x′(0)) >, (30)

one can derive the arbitrary constant of integrationC(x).
Similar to this, we found that∂C(x)/∂x = 0 by inserting (29) into (30), which suggests thatC(x) is constant. The

propagator’s initial condition,

lim
t→0+

K(x, x
′
; t) = δ(x− x

′
), (31)

can be used to determine the constantC(x).
The constantC(x) can be expressed as

C =

√
mΩ
2πih̄

. (32)

if we apply (31) to (29).
We can get the propagator for an inverted Caldirola-Kanai oscillator that has the same form as calculated via the Feynman

path integral by putting (32) into (29).

4. Integrals of the motion for an inverted Caldirola-Kanai oscillator

In order to start using this method, first determine the integrals of the motion, which were defined as

dÎ

dt
=

∂Î

∂t
+

1
ih̄

[Ĥ, Î] = 0, (33)

whereÎ are integrals of the motion operator.
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The integrals of the motion̂x(0) andp̂(0) that matched the Hamiltonian operator in Eq. (16) can therefore be expressed as

x̂(0) =
(
ert coshΩt− r

2Ω
e

rt
2 sinhΩt

)
x̂(t)−

(
e−

rt
2

mΩ
sinh Ωt

)
p̂(t), (34)

and

p̂(0) =
(

mω2

Ω
e

rt
2 sinhΩt

)
x̂(t) +

(
e−

rt
2 coshΩt +

e−
rt
2

2Ω
sinh Ωt

)
p̂(t). (35)

The Green function, also known as the propagator, is the eigenfunction of the integrals of motionx̂(0) andp̂(0), which fulfill
the equations

x̂(0)K(x, x′; t) = x′K(x, x′; t), (36)

and

p̂(0)K(x, x′; t) = ih̄
∂K(x, x′; t)

∂x′
. (37)

In coordinate representation of numbers (36) and (37) can be written clearly as
(

x
(
e

rt
2 cosh Ωt− r

2Ω
e

rt
2 sinhΩt

)
+

ih̄

mΩ
e−

rt
2 sinh Ωt

∂

∂x

)
K(x, x′; t) = x′K(x, x′; t), (38)

and
(

x

(
mω2

Ω
e

rt
2 sinhΩt

)
− ih̄(e−

rt
2 coshΩt +

re−
rt
2

2Ω
sinhΩt)

∂

∂x

)
K(x, x′; t) = ih̄

∂K(x, x′; t)
∂x′

. (39)

To make (38) and (39) easier to compute, we rewrite them in terms of

∂K(x, x′; t)
∂x

= − imΩ
h̄

[
e rt

2

sinhΩt
x′ −

(
ert cothΩt− rert

2Ω

)
x

]
K(x, x′; t), (40)

and

∂K(x, x′; t)
∂x′

= − i

h̄

[
mΩ

e rt
2

sinhΩt
x−

(
mΩcothΩt +

mr

2

)
x′

]
K(x, x′; t). (41)

If we integrate (40) with respect to the variablex, the outcome can be expressed as

K(x, x′; t) = C(x′, t) exp
(

i

h̄

[{
mΩ
2

ert cothΩt− mr

4
ert

}
x2 − mΩ

sinhΩt
e

rt
2 xx′

])
, (42)

whereC(x′, t) is an arbitrary constant of integration.
The formula forC(x′, t) in Eq. (42), can be obtained substituting in Eq. (41) with the result being:

∂C(x′, t)
∂x′

=
i

h̄

(
mΩcoth Ωt +

mr

2

)
x′C(x′, t). (43)

The answer to problem (43) can be expressed as

C(x′, t) = C(t) exp
(

i

h̄

[
mΩ
2

cothΩt +
mr

2

]
x′2

)
, (44)

whereC(t) is a freely chosen integration constant.
We get the propagator in the form of

K(x, x′; t) = C(t) exp

(
i

h̄

[(
mΩ
2

ert cothΩt− mr

4
ert

)
x2 +

(
mΩ
2

cothΩt +
mr

4

)
x′2 − mΩe

rt
2

sinhΩt
xx′

])
. (45)
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The propagator from Eq. (45) is substituted into the Schrödinger equation

ih̄
∂K(x, x′; t)

∂t
=

h̄2

2m
e−rt ∂

2K(x, x′; t)
∂x2

− 1
2
mertω2x2K(x, x′; t), (46)

to calculateC(t).
Following the aforementioned procedure, we arrive at

dC(t)
dt

= C(t)
(

r

4
− Ωcoth Ωt

2

)
. (47)

The answer to the problem (47) can be expressed as

C(t) =
C√

sinhΩt
e

rt
4 , (48)

whereC is an arbitrary integration constant.
The constantC can be represented by the expression

C =

√
mΩ
2πih̄

, (49)

if we assume the initial condition of propagator

K(x, x′; t = 0) = δ(x− x′). (50)

We derive the propagator that agrees with the outcome determined by the Schwinger method and Feynman path integral by
substituting (48) and (49) into (45).

5. Conclusions

We have successfully calculated the exact propagator for
the inverted Caldilora-Kanai oscillator using three different
methods. For a quadratic Lagrangian, we suggested here that
Feynman path integral is the simplest technique because it
only requires substituting the classical action in the semiclas-
sical approximation formula in Eq. (10). However, for non-
quadratic Lagrangian, the calculation of the pre-exponential
function of the propagator is very difficult even deriving the
simple harmonic oscillator propagator [20-22]. The sec-
ond method formulated by Schwinger is normally applied to
quantum field theory but is appropriated for non-relativistic
quantum mechanics. However, the calculation of integration
with respect to time in Eq. (19) is not easy. The third method
has the difficulty in modifying (38)-(39) to (40)-(41).

The connection between classical mechanics and quan-
tum mechanics of Feynman path integral is explicitly shown
in (10) by the classical actionScl(x′′, t′′; x′, t′). The pre-
exponential function in Eq. (10) comes from the sum of all
historical paths that present the wave-particle duality and

Heisenberg uncertainty principle. In Schwinger’s formula-
tion, the pre-exponential factor appears from the commuta-
tion relation of[x̂(0), x̂(t)] that is calculated in Eq. (23). This
demostrates the different nature between classical mechanics
and quantum mechanics. In classical mechanics, the physi-
cal observables are complex numbers that can commute. But
in quantum mechanics, the physical observables are opera-
tors and cannot commute, which shows the importance of
the ordering of measurements. The integrals of the motion,
which are linear functions of the coordinate and momentum
operators, specify the initial point on the classical trajectory.
The pre-exponential function of this method can be obtained
by substituting (45) into Schr̈odinger’s equation in Eq. (46),
which implies that the transition probability amplitude can
appear from the wave equation of Schrödinger.

Finally, we conclude here that the presentation of these
three methods will help students and teachers compare the
advantage and difficulties of each of them. We also recom-
mend here that these three methods are powerful methods in
the calculation of the propagator for non-relativistic and rel-
ativistic quantum systems.
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