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On Feynman’s paradox
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We review the Feynman paradox related to the conservation of the angular momentum in systems with an electromagnetic field. We show
that the angular momentum is conserved if it is adequately defined.
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1. Introduction

The famous book [1] presents an interesting example which
is now widely known as the Feynman paradox. In the original
version, one considers an insulating disc that can rotate freely
about an axis (perpendicular to the plane of the disc). Near
the edge of the disc there are several charged spheres, uni-
formly spaced. At the center of the disc there is a coil whose
axis coincides with that of the disc, carrying a steady current,
and the disc is initially at rest (see Fig. 1). If the current is
interrupted there will be a variation of the magnetic flux and,
according to Faraday’s law of induction, there will be a tan-
gential electric field that will produce a force on the charges
and a torque on the disc. In this way, the disc must acquire
some angular velocity and some angular momentum, in spite
of the fact that the initial state is stationary and, therefore, it
would seem that the angular momentum is not conserved.

The paradox can be solved by realizing that there is an-
gular momentum in the static electromagnetic field initially
present [2, 3] (which turns out to be equal to the final angu-
lar momentum of the disc). As is well known, we can assign
a linear momentum density to the electromagnetic field (see,
e.g., Ref. [4]). Specifically, the density of linear momentum
is given byE×B/4πc (in cgs units) and, therefore, one can

FIGURE 1. The disc can rotate without friction about the axis pass-
ing through its center. The charges, represented by the black dots,
are attached to the disc.

calculate the angular momentum of the electromagnetic field
by integrating the densityr× (E×B)/4πc over all the space
(see, however, Ref. [5]). In this example, the integral can be
simplified making use of the vector potential in the Coulomb
gauge (i.e.,∇·A = 0), the Maxwell equations, and the Gauss
theorem [2,3].

Padmanabhan’s book [3] contains another calculation of
the initial angular momentum, making use of the expression
for the canonical momentum of a charged particle in an elec-
tromagnetic field. The standard Lagrangian for a charged par-
ticle in a magnetic field is

Lm =
m

2
v2 +

q

c
A · v

and therefore, employing Cartesian coordinates, their conju-
gate momenta are the components of

P = mv +
q

c
A.

Assuming thatqA/c is a linear momentum of the charge in
a magnetic field and using a gauge in whichA only has tan-
gential component, Padmanabhan calculates an initial angu-
lar momentum, which coincides exactly with the final angular
momentum. The main objection to Padmanabhan’s calcula-
tion (pointed out by Padmanabhan himself) is thatqA/c is
gauge-dependent.

The aim of this paper is to show that making use of the
adequate definition of the angular momentum, the angular
momentum of the disc at the beginning and at the end coin-
cide.

In Sec. 2 we review the usual computation of the final an-
gular momentum of the disc and in Sec. 3 we review the ap-
propriate definition of the angular momentum for a charged
particle in a magnetic field, showing that, with this defini-
tion, the angular momentum is conserved in Feynman’s ex-
ample, without having to compute the angular momentum of
the electromagnetic field. Throughout this paper we make
use of cgs units.
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2. The final angular momentum

As shown,e.g., in Ref. [3], the final angular momentum of
the system can be readily computed. IfL denotes the magni-
tude of the usual angular momentum (that is,L = |r×mv|,
for a particle of massm, with position vectorr and velocity
v), then, taking the origin at the center of the disc and denot-
ing by a the radius of the circle passing through the charged
spheres, we have

dL

dt
= aQE =

Q

2π

∮
E · dl = − Q

2πc

dΦ
dt

, (1)

whereQ is the total charge of the spheres,E is the electric
field acting on the spheres,Φ is the magnetic flux through the
circle, andc is the speed of light in vacuum. The last equality
comes from the application of Faraday’s law. Hence, taking
into account that the initial value ofL is zero and the final
magnetic flux is also equal to zero, from Eq. (1) one finds
that the final value of the usual angular momentum of the
disc must be

L =
Q

2πc
Φinitial. (2)

3. The initial angular momentum

Quantities like energy, linear momentum and angular mo-
mentum are of interest in physics owing to their conservation.
The presence of a magnetic field requires a special treatment
(see,e.g., Refs. [6,7]). Making use of the circular cylindrical
coordinates(ρ, φ, z), a straightforward computation shows
that

Lz ≡ mρ2φ̇−G, (3)

whereG is a function ofρ andz only such that

dG =
q

c
ρ (−Bzdρ + Bρdz), (4)

is a constant of motion for a particle of massm and chargeq
moving in a static, axially symmetric, magnetic fieldB [6,7].
(Hence,G is defined up to an additive constant.) It may be
noticed that in the absence of a magnetic field, the right-hand
side of Eq. (3) reduces to thez-component of the usual an-
gular momentum; we use the customary symbol,Lz, in or-
der to emphasize that Eq. (3) is the appropriate definition of
the angular momentum when there is a magnetic field. This
abuse is similar to the usage of,e.g., p to denote the linear
momentum both in newtonian mechanics and in relativistic
mechanics, despite the difference in their definitions.

Indeed, using the fact that the velocity of a particle is
given byv = ρ̇ ρ̂ + ρφ̇ φ̂ + ż ẑ, where{ρ̂, φ̂, ẑ} is theor-
thonormalbasis induced by the cylindrical coordinates, and
noting that

φ̂ · dv
dt

=
d
dt

(φ̂ · v)− v · dφ̂

dt
=

d(ρφ̇)
dt

+ v · φ̇ρ̂

=
d(ρφ̇)

dt
+ ρ̇φ̇ =

1
ρ

d(ρ2φ̇)
dt

,

multiplying byρφ̂ both sides of the equation of motion

m
dv
dt

=
q

c
v ×B,

with B = Bρρ̂ + Bφφ̂ + Bz ẑ, we obtain

d(mρ2φ̇)
dt

=
q

c
ρ φ̂ · v ×B =

q

c
ρ (żBρ − ρ̇Bz). (5)

The linear differential formρ (Bρdz−Bzdρ) is (locally)
exact as a consequence of the fact that∇ ·B = 0 and the as-
sumption of the independence of the components ofB on the
angleφ. Hence, there exists a functionG satisfying Eq. (4)
(i.e., ∂G/∂z = qρBρ/c and∂G/∂ρ = −qρBz/c) and the
right-hand side of Eq. (5) is equal todG/dt, if the magnetic
field is static, which amounts to say thatdLz/dt = 0 (an-
other derivation, making use of the Lagrangian formalism, is
given in Ref. [7]).

There are some comments to add aboutLz, as defined
by Eq. (3). As pointed out already, when the magnetic field is
equal to zero,Lz coincides with thez-component of the usual
angular momentum; the conservation ofLz is a consequence
of the axial symmetry of the magnetic field and, therefore,Lz

is the useful definition of angular momentum when there is a
magnetic field present, and a very important fact is thatLz is
gauge-independent.

It should be remarked that in the problem under consid-
eration there is an additional force on each sphere, produced
by the disc, which is holding the sphere at a constant distance
from the center of the disc; this force is radial and does not
contribute to the right-hand side of (5).

In order to show that the calculation based on (3) coin-
cides with (2), we have to express the total initial angular
momentum of the spheres and the disc making use of the
definition (3), in terms of the magnetic flux through the circle
containing the spheres. To this end we note that the value of
G at the point with coordinatesρ = a, z = 0 is [see Eq. (4)]

G(a, 0) =
q

c

∫ (a,0)

(0,0)

ρ′ (−Bzdρ′ + Bρdz′).

This is a line integral of an exact differential and therefore it
can be calculated making use ofanycurve joining the points
(0, 0) (which is has been taken arbitrarily as the initial point)
and(a, 0). Integrating along a straight line on the planez = 0
we have

G(a, 0) = −q

c

∫ a

0

Bz ρ′dρ′ = − q

2πc

∫

S

Bz ρ′dρ′dφ′

= − q

2πc
Φ,

whereS is the disc of radiusa concentric with the insulating
disc andΦ is the magnetic flux throughS. Since the initial
value of the angular velocitẏφ is equal to zero, the initial
value ofLz for the entire system coincides with (2) [see Eq.
(3)]. It may be remarked that the derivation presented in this
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section is considerably simpler than the calculations based
on the angular momentum of the electromagnetic field given,
e.g., in Refs. [2,3].

Finally, it may be remarked that the right-hand side of
Eq. (4) is exact even if∇ · B is not zero everywhere. In
the case of a magnetic monopole, with magnetic chargeg,
placed at the origin, we would haveB = gr/|r|3 = g(ρρ̂ +
zẑ)/(ρ2 + z2)3/2 and therefore

q

c
ρ (−Bzdρ + Bρdz) =

qg

c

(− ρzdρ + ρ2dz
)

(ρ2 + z2)3/2

= d
[
qg

c

z

(ρ2 + z2)1/2

]
.

Thus, if the system formed by the electric and mag-
netic charges is static, there is a non-zero angular momen-
tum whosez-component is−(qg/c)(z/|r|) [see Eq. (3)].

Hence, the angular momentum of the system is equal to
−(qg/c)(r/|r|), and its magnitude has the constant value
qg/c (independent of the separation between the charges)
(see the enlightening discussion presented in Ref. [8]).

In summary, the supposed contradiction in Feynman’s
paradox comes from the use of an inadequate definition of
the angular momentum. As shown above, in order to have
a useful definition of the angular momentum one has to take
into account its conservation under the appropriate symme-
try conditions. Similar modifications are also necessary re-
garding the linear momentum in classical [6, 7] as well as in
quantum mechanics [6].
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