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1. Introduction

As is well known, in some few problems of electrostatics it
is possible to reproduce the effect of the charge induced on a
conductor by means of a few point charges or lines of charge,
called image charges (see,e.g., Refs. [1–9]). In the standard
procedure followed in the textbooks, the appropriate magni-
tudes and positions of the image charges or lines of charge
are proposed from the start, without justification, and then it
is verified that the hypothesis does indeed provide the right
answer (invoking the uniqueness theorem).

The method of images can be presented in the introduc-
tory courses on electromagnetism since it only requires el-
ementary mathematics. However, at an intermediate level,
when the student is becoming familiar with the solution of
boundary value problems, the derivation of the standard re-
sults of the method of images is an illustrative example of the
solution of the problems of electrostatics by a direct approach
(see also Refs. [10,11]).

The aim of this paper is to solve the problems usually
treated by means of the method of images, with the straight-
forward use of the solutions of the Laplace equation. We be-
gin by finding the standard expressions for the axially sym-
metric solutions of the Laplace equation in spherical coor-
dinates and for the translationally invariant solutions of the
Laplace equation in cylindrical coordinates, without even us-
ing the corresponding expression of the Laplacian and with-
out explicitly solving ordinary differential equations.

In Sec. 2, starting from the potential of a point charge,
we derive the generating function of the Legendre polyno-
mials and the form of the axially symmetric solutions of the
Laplace equation in spherical coordinates, which is then em-
ployed in the solution of the problem of a point charge and a
conducting sphere. In Sec. 3 we give a similar treatment start-

ing from the potential of a uniformly charged infinite wire;
we derive the form of the translationally invariant solutions
of the Laplace equation in cylindrical coordinates and apply
it to the problem of a line of charge and an infinitely long
conducting cylinder parallel to the line.

Throughout this paper it is assumed that the reader is ac-
quainted with the basic notions of electrostatics at an inter-
mediate level as presented,e.g., in Refs. [2–4,6–9].

2. The solution of the Laplace equation in
spherical coordinates

In this section we shall derive the generating function of the
Legendre polynomials, finding the general solution of the
Laplace equation in spherical coordinates for problems with
axial symmetry. Then, we make use of this result in the solu-
tion of the usual problem of a conducting sphere and a point
charge.

We begin by considering the electrostatic potential pro-
duced by a static point charge,q (static with respect to some
inertial frame), and we choose Cartesian axes in such a way
that the charge is at the point with coordinates(0, 0, a). Then,
at an arbitrary point, different from(0, 0, a), with spherical
coordinates(r, θ, φ) the potential is given by

ϕ(r, θ, φ) =
q

4πε0

1√
r2 + a2 − 2ar cos θ

(1)

=
q
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r
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, (2)

assuming that the potential vanishes at infinity. With the aid
of the binomial formula we can expand (2) as a power series
in 1/r. Leaving aside the constant factorq/(4πε0), we have
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which is an infinite series such that the coefficient ofan/rn+1 is a polynomial of degreen in the variablecos θ, known as the
Legendre polynomial of ordern and denoted byPn(cos θ). Thus, the potential (1) has the series expansion

q

4πε0

1√
r2 + a2 − 2ar cos θ

=
q

4πε0

∞∑
n=0

an Pn(cos θ)
rn+1

, (4)

which converges forr > |a|. Takingr = 1, the last equation is the standard generating function of the Legendre polynomials.

The potential (4) must satisfy the Laplace equation every-
where except at the point where the point charge is located.
Thus, assuming that the Laplacian of the series (4) is the se-
ries of the Laplacians we have

0 =
q

4πε0

∞∑
n=0

an∇2

(
Pn(cos θ)

rn+1

)
, (5)

which must be valid for all values ofa such that|a| < r.
This means that the coefficient of each power ofa must be
equal to zero, that is∇2[r−n−1Pn(cos θ)] = 0. (In other
words, Eq. (5) is a power series ina and therefore, owing
to the uniqueness of the series expansions, the coefficient of
each power ofa must be equal to zero.)

Noting that the left-hand side of (4) is invariant under the
interchange ofr anda, we conclude that, ifa > 0,

q

4πε0

1√
r2 + a2 − 2ar cos θ

=
q

4πε0

×
∞∑

n=0

1
an+1

rnPn(cos θ), (6)

which converges forr < a. Again, except at the point where
the point charge is located, the last expression must be a so-
lution of the Laplace equation and, using the fact thata is
arbitrary, it follows that∇2[rnPn(cos θ)] = 0.

Equations (4) and (6) look like the standard generating
function of the Legendre polynomials (see,e.g., Refs. [2,
12, 13]), but there is an important difference. The “gen-
erating functions” (4) and (6) do not generate the Legen-
dre polynomials alone, they generate the separablesolutions
r−n−1Pn(cos θ) and rnPn(cos θ) of the Laplace equation
(which depend on two variables). While the standard gener-
ating function generates solutions of an ordinary differential
equation, the generating functions (4) and (6) generate solu-
tions of a partial differential equation (see also the discussion
in Sec. 4). Another important fact is that, in some textbooks,
the Legendre polynomials are defined through their gener-
ating function and then it is shown that they are solutions of

the Legendre equation (which arises in the solution of the
Laplace equation by separation of variables). In our approach
we have no need of writing down the Legendre equation or to
talk about the method of separation of variables. As we have
shown, it is not even necessary to know the expression of
the Laplacian in spherical coordinates in order to conclude
that r−n−1Pn(cos θ) and rnPn(cos θ) are solutions of the
Laplace equation.

By superposing the solutionsrnPn(cos θ) and
r−n−1Pn(cos θ) we arrive at the standard expression for
the most general axially symmetric solution of the Laplace
equation in spherical coordinates

∞∑
n=0

(
Anrn +

Bn

rn+1

)
Pn(cos θ), (7)

where the constantsAn andBn are determined by the bound-
ary conditions. In order to show that (7) is indeed the most
general axially symmetric solution of the Laplace equation
we consider any solution of this class,ϕ, in a neighborhood
of the origin, and expand it in a Taylor series:

ϕ(x, y, z) = ϕ(0, 0, 0) + a1x + a2y + a3z + a11x
2 + a22y

2

+ a33z
2 + 2a12xy + 2a23yz + 2a13xz + · · · .

Owing to the independence of the coordinatesx, y, z, the set
of terms of each possible degree must satisfy separately the
Laplace equation. Recalling the relation between the Carte-
sian and the spherical coordinates we see thatϕ is indepen-
dent of the azimuthal angleφ if and only if the Cartesian
coordinatesx andy appear in this expansion only through
the combinationx2 + y2. This implies, for instance, that
a1 = a2 = 0, leaving just one term of first degree inx, y, z,
containing only one arbitrary constant,a3. Similarly, the al-
lowed terms of second degree in this expansion are of the
formα(x2+y2)+βz2, whereα andβ are two constants. The
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condition0 = ∇2[α(x2+y2)+βz2] = 2α+2α+2β implies
thatβ = −2α and therefore, also in this case there is only one
arbitrary coefficient. The third-degree terms allowed by the
symmetry are of the formγ(x2 + y2)z + δz3 and the condi-
tion 0 = ∇2[γ(x2 + y2)z + δz3] = 2γz + 2γz + 6δz gives
γ = −3δ/2, showing that there is only one arbitrary con-
stant. The result is that there is exactly one arbitrary constant
for each degree, which is precisely what we have in (7).

It may be remarked that the solution (7) has been de-
rived by calculating the effect of translating a point charge
along thez-axis by an arbitrary distance. The more involved
problem of finding the effect of translating the charge from
the origin by an arbitrary distance in an arbitrary direction
must produce the general solution containing the spherical
harmonics.

2.1. A conducting sphere and a point charge

We now consider the standard example of a conducting
sphere in the electric field produced by a point charge,q,
placed at a distanced from the center of the sphere. In order
to apply the results derived above, it is convenient to choose
the origin of a set of Cartesian axes at the center of the sphere
and thez-axis in such a way that the point charge is at the
point with Cartesian coordinates(0, 0, d). In that way, the
system is invariant under rotations about thez-axis or, equiv-
alently, the potential cannot depend on the azimuthal angle
φ.

Assuming thatd is greater than the radius of the sphere,
denoted bya, at the points of the region witha < r < d (that
is, outside the sphere), the potential must be of the form

ϕ =
q

4πε0

∞∑
n=0

1
dn+1

rnPn(cos θ) +
∞∑

n=0

An
Pn(cos θ)

rn+1
, (8)

whereA0, A1, A2, . . . are constants to be determined. The
first series in (8) is the potential produced by the point charge

[see Eq. (6)], while the second series is the potential pro-
duced by the charge on the surface of the conducting sphere
(including the induced charge, which is not known by now).
Note that the second series does not include terms of the form
rnPn(cos θ) since they would tend to infinity whenr tends
to infinity. The first series in (8) does not have this problem
because it is not applicable forr > d.

Since the electric field in a conductor must be equal to
zero, at all points of the surface of the sphere the potential
must have the same value (unspecified by now). In other
words, if we evaluate the right-hand side of (8) at r = a
we must obtain a constant value,ϕ0 say, that cannot depend
onθ:

q

4πε0

∞∑
n=0

1
dn+1

anPn(cos θ) +
∞∑

n=0

An
Pn(cos θ)

an+1

= ϕ0 = ϕ0 P0(cos θ), (9)

where we have made use of the fact thatP0(cos θ) = 1 [see
Eq. (3)]. Since Eq. (9) must hold for all values ofθ and the
set of all the Legendre polynomials is linearly independent
(the Legendre polynomialPn(x), being a polynomial inx
of degreen, cannot be expressed as a linear combination of
the Legendre polynomials of lower orders), the coefficients
of Pn(cos θ) on each side of the equation must coincide for
n = 0, 1, 2, . . . . Thus,

q

4πε0

an

dn+1
+

An

an+1
= 0, for n = 1, 2, . . . (10)

and, taking into account separately the coefficients of
P0(cos θ) on both sides of (9),

q

4πε0

1
d

+
A0

a
= ϕ0. (11)

Equations (10) trivially give

An = − q

4πε0

a2n+1

dn+1
=

(−qa/d)
4πε0

(
a2

d

)n

, for n = 1, 2, . . . , (12)

while, from (11),

A0 = − q

4πε0

a

d
+ aϕ0 =

(−qa/d)
4πε0

+ aϕ0. (13)

Substituting (12) and (13) into Eq. (8) we obtain

ϕ =
q

4πε0

∞∑
n=0

1
dn+1

rnPn(cos θ) +
(−qa/d)

4πε0

∞∑
n=0

(
a2

d

)n
Pn(cos θ)

rn+1
+

aϕ0

r
. (14)

By comparing with (4) we see that the second series in (14) is the potential produced by a point charge of magnitude−qa/d at
the point with Cartesian coordinates(0, 0, a2/d), which is inside the conducting sphere. Similarly, the last term in (14) is the
potential produced by a point charge of magnitude4πε0 aϕ0 at the center of the sphere.

By comparison with Eqs. (4) and (6) we can write down the sums of the series in Eq. (14), namely

ϕ =
q

4πε0

[
1√

r2 + d2 − 2dr cos θ
− 1√

a2 + (dr/a)2 − 2dr cos θ

]
+

aϕ0

r
.
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This expression is valid at all points withr > a and clearly
shows thatr = a is an equipotential surface.

Thus, the electric field (or the potential) produced by the
charge on the conductor (including the induced one), at the
points outside the sphere, isexactlythat of two point charges:
one of magnitude−qa/d at the point with Cartesian coor-
dinates(0, 0, a2/d), and one of magnitude4πε0 aϕ0 at the
center of the sphere.

2.2. An infinite conducting plane and a point charge

The case of an infinite conducting plane, which is usually the
first example of the method of images considered in the text-
books, can be viewed as a limiting case of the problem of the
sphere treated above, when the radius of the sphere tends to
infinity. To this end, it is convenient to use the distance of the
point charge to the surface of the sphere,d−a, which will be
denoted bys, instead of the parameterd, that is

s ≡ d− a.

The distance of the image charge to the surface of the sphere
is then

a− a2

d
= a

d− a

d
=

as

s + a
,

which tends tos whena tends to infinity. Similarly, the mag-
nitude of the image charge,

−q
a

d
= −q

a

s + a
,

tends to−q whena tends to infinity.
Thus, assuming that the potential of the plane is zero,

only one image charge, of magnitude−q, is necessary, which
is situated symmetrically with respect to the plane (that is, the
real and the image charges are at the same distance from the
plane on a line perpendicular to the plane).

3. The solution of the Laplace equation in
cylindrical coordinates

In this section, following a procedure similar to that em-
ployed in the previous section, among other things, we shall

obtain the form of the solutions of the Laplace equation in
cylindrical coordinates that do not depend on thez coordi-
nate.

The electrostatic potential produced by an infinitely long
uniformly charged wire with a longitudinal charge densityλ,
expressed in the circular cylindrical coordinates(r, θ, z), can
be taken as

ϕ(r, θ, z) = − λ

2πε0
ln r, (15)

if the z-axis coincides with the charged wire (see,e.g., Refs.
[2,14]). Hence, if the wire is parallel to thez-axis and passes
through the point of cylindrical coordinates(d, φ, 0), the po-
tential (15) becomes

ϕ(r, θ, z) = − λ

2πε0
ln

√
r2 + d2 − 2rd cos(θ − φ) (16)

[cf. Eq. (1)]. Taking advantage of the fact that (16) does not
depend onz, we can suppress the coordinatez in what fol-
lows and note that (15) is the real part of the complex-valued
function

f(z) = − λ

2πε0
(ln r+iθ) = − λ

2πε0
ln(reiθ) = − λ

2πε0
ln z,

where nowz is the complex variablex + iy = reiθ. (Note
that the modulus,r, and the argument,θ, of z coincide with
the coordinatesr andθ of the cylindrical coordinates, respec-
tively.)

Thus, if the charged wire is translated to the point of the
complex planedeiφ, with the aid of the well-known series
expansion

ln(1− z) = −
∞∑

n=1

zn

n
, |z| < 1

(which can be readily verified by differentiating both sides
with respect toz, using the fact that the sum of the geometric
series,

∑∞
n=0 zn, is 1/(1− z) and thatln 1 = 0), the electro-

static potential (16) must be the real part of

f(z) = − λ

2πε0
ln

(
z − deiφ

)
= − λ

2πε0
ln

(
reiθ − deiφ

)
= − λ

2πε0
ln

{
reiθ

[
1− d

r
ei(φ−θ)

]}

= − λ

2πε0

{
ln

(
reiθ

)
+ ln

[
1− d

r
ei(φ−θ)

]}
= − λ

2πε0

[
ln

(
reiθ

)−
∞∑

n=1

1
n

dn

rn
ein(φ−θ)

]

= − λ

2πε0

{
ln r + iθ −

∞∑
n=1

1
n

dn

rn

[
cosn(θ − φ)− i sin n(θ − φ)

]
}

,

that is, (16) has the series expansion

− λ

2πε0
ln

√
r2 + d2 − 2rd cos(θ − φ) = − λ

2πε0

{
ln r −

∞∑
n=1

1
n

dn

rn

[
cos n(θ − φ)

]
}

, (17)
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which converges forr > d (cf. Ref. [15]).
Since the expression (16) is invariant under the interchange ofr andd (if d > 0), from (17) we obtain the series

− λ

2πε0
ln

√
r2 + d2 − 2rd cos(θ − φ) = − λ

2πε0

{
ln d−

∞∑
n=1

1
n

rn

dn

[
cos n(θ − φ)

]
}

, (18)

which converges forr < d. The functions (17) and (18) must be solutions of the Laplace equation (except at the points on
the wire) and they are series formed with the separable functionsr±n cos nθ, r±n sin nθ andln r (recall thatcosn(θ − φ) =
cos nφ cosnθ+sin nφ sin nθ) which, making use of the same argument as in Sec. 2, owing to the fact thatd andφ are arbitrary,
must be separately solutions of the Laplace equation.

By superposing the solutionsr±n cos nθ, r±n sin nθ andln r we obtain the most general translationally symmetric solution
of the Laplace equation in cylindrical coordinates:

∞∑
n=1

(
Anrn cos nθ + Bnrn sin nθ + Cnr−n cosnθ + Dnr−n sin nθ

)
+ E ln r + F, (19)

whereAn, Bn, Cn, Dn, E, F are constants determined by the boundary conditions. One can convince oneself, on physical
grounds, that (19) is the most general solution of the Laplace equation independent ofz: the charge producing an electrostatic
potential independent ofz must be a collection of infinite uniformly charged lines parallel to thez-axis, as the one considered
above (in much the same way as an arbitrary charge distribution can be viewed as a collection of point charges), hence, the
potential is a superposition of expressions of the form (17) and (18), which is of the form (19).

The form of the solution (19) has been obtained thanks to the availability of the two arbitrary parametersd andφ appearing
in Eqs. (17) and (18); the general solution of the Laplace equation in cylindrical coordinates would be obtained by including
rotations of the wire by an arbitrary angle about an axis perpendicular to the wire.

3.1. An infinitely long conducting cylinder and a line of charge

Now we shall apply the foregoing results to the standard problem of an infinitely long conducting cylinder parallel to a line of
charge. As we shall see, it is convenient to place the origin of a set of Cartesian axes at some point of the axis of the cylinder
and the line of charge passing through the point with Cartesian coordinates(d, 0, 0), that is, we are settingφ = 0. Denoting by
a the radius of the cylinder, for points satisfyinga < r < d, the potential must have the form [see Eq. (18)]

ϕ = − λ

2πε0

(
ln d−

∞∑
n=1

1
n

rn

dn
cos nθ

)
+

∞∑
n=1

An
1
rn

cosnθ + B ln r + C, (20)

whereB, C, A1, A2, . . . are unknown constants [cf. Eq. (8)]. The sum of the last three terms is the potential produced by the
charge on the cylinder (including the induced one, which is unknown at the start):

ϕcyl ≡
∞∑

n=1

An
1
rn

cosnθ + B ln r + C. (21)

The potential at the surface of the cylinder must be some constant,ϕ0 say (independent ofθ), that is, evaluating (20) at
r = a,

− λ

2πε0

(
ln d−

∞∑
n=1

1
n

an

dn
cosnθ

)
+

∞∑
n=1

An
1
an

cosnθ + B ln a + C = ϕ0

and, making use of the linear independence of the set{1, cos θ, cos 2θ, . . .}, it follows that

λ

2πε0

1
n

an

dn
+ An

1
an

= 0, for n = 1, 2, . . . ,

and
− λ

2πε0
ln d + B ln a + C = ϕ0.

Hence,

An = − λ

2πε0

1
n

a2n

dn
=

−λ

2πε0

1
n

(
a2

d

)n

, for n = 1, 2, . . . , (22)
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and

C = ϕ0 +
λ

2πε0
ln d−B ln a. (23)

Substituting (22) and (23) into Eq. (21) we obtain

ϕcyl =
∞∑

n=1

(−λ)
2πε0

1
n

(
a2

d

)n 1
rn

cosnθ + B ln r + ϕ0 +
λ

2πε0
ln d−B ln a

= − (−λ)
2πε0

[
ln r −

∞∑
n=1

1
n

(a2/d)n

rn
cos nθ

]
− λ− 2πε0B

2πε0
ln r + ϕ0 +

λ

2πε0
ln d−B ln a, (24)

which is the potential produced by a line of charge with linear
density−λ parallel to thez-axis passing through the point
with Cartesian coordinates(a2/d, 0, 0) [see Eq. (17)] and a
line of charge with linear densityλ−2πε0B passing through
the origin (that is, coincident with thez-axis) [see Eq. (15)].

Hence, the potential (and the electric field) produced by
the charge on the conducting cylinder is exactly that of a pair
of lines of charge inside the region enclosed by the cylinder,
one at a distancea2/d from the axis of the cylinder and, pos-
sibly, one on this axis).

There are two interesting particular cases: ifB = 0
then the net charge on the cylinder is equal to zero, and if
B = λ/2πε0 then the net linear density of charge on the
cylinder is equal toλ.

4. Concluding remarks

The procedure followed in Secs. 2 and 3 to find the well-
known solutions of the Laplace equation in spherical and
cylindrical coordinates can be applied with other coordinate

systems. The presence of a free parameter [such as the pa-
rametersa, d andφ contained in (1) and (16)] allows us to
get an infinite set of solutions of the Laplace equation but, by
contrast with the results derived above, such solutions need
not be separable, which, however, does not change the fact
that they are solutions of the Laplace equation; the separa-
bility is only the condition usually imposed in order to find
the solutions of the Laplace equation through the solution of
ordinary differential equations.

It should be pointed out that the reason behind the fact
that we are getting solutions of the Laplace equation starting
from simple solutions is that this equation is invariant un-
der the rigid translations in the three-dimensional Euclidean
space. More complicated solutions are obtained with the aid
of rotations, which would lead to the spherical harmonics and
the Bessel functions.
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