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Image charges from boundary value problems
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The examples usually solved by means of the method of images are revisited solving directly the Laplace equation. We also give a simple
derivation of the axially symmetric solutions of the Laplace equation in spherical coordinates and of the translationally symmetric solutions
of the Laplace equation in cylindrical coordinates.
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1. Introduction ing from the potential of a uniformly charged infinite wire;
we derive the form of the translationally invariant solutions

As is well known, in some few problems of electrostatics it Of the Laplace equation in cylindrical coordinates and apply
is possible to reproduce the effect of the charge induced on % t© the problem of a line of charge and an infinitely long
conductor by means of a few point charges or lines of chargefonducting cylinder parallel to the line. _
called image charges (seeg, Refs. [1-9]). In the standard _Throughout this paper |t.|s assumed that the readerlls ac-
procedure followed in the textbooks, the appropriate magniquamted with the basic notions of electrostatics at an inter-
tudes and positions of the image charges or lines of charg&ediate level as presenteglg, in Refs. [2-4,6-9].

are proposed from the start, without justification, and then it

is verified that the hypothesis does indeed provide the righ . . .
answer (invoking the uniqueness theorem). é The §0Iut|on o_f the Laplace equation in

The method of images can be presented in the introduc- ~ SPherical coordinates
tory courses on electromagnetism since it only requires el-
ementary mathematics. However, at an intermediate leveln this section we shall derive the generating function of the
when the student is becoming familiar with the solution ofLegendre polynomials, finding the general solution of the
boundary value problems, the derivation of the standard rekaplace equation in spherical coordinates for problems with
sults of the method of images is an illustrative example of theaxial symmetry. Then, we make use of this result in the solu-
solution of the problems of electrostatics by a direct approaction of the usual problem of a conducting sphere and a point
(see also Refs. [10, 11]). charge.

The aim of this paper is to solve the problems usually ~We begin by considering the electrostatic potential pro-
treated by means of the method of images, with the straightduced by a static point chargg(static with respect to some
forward use of the solutions of the Laplace equation. We beinertial frame), and we choose Cartesian axes in such a way
gin by finding the standard expressions for the axially symihat the charge is at the point with coordinates), a). Then,
metric solutions of the Laplace equation in spherical coorat an arbitrary point, different frorto, 0, a), with spherical
dinates and for the translationally invariant solutions of thecoordinategr, 6, ¢) the potential is given by
Laplace equation in cylindrical coordinates, without even us-

ing the corresponding expression of the Laplacian and with-  ¢(r, 6, ¢) = 1 ! 1)
out explicitly solving ordinary differential equations. dmeo v/r? + a® — 2ar cos f

In Sec. 2, starting from the potential of a point charge, g 1 a2 a -1/2
we derive the generating function of the Legendre polyno- = Ineor ( + -5 — 2 cos 9) N )

mials and the form of the axially symmetric solutions of the

Laplace equation in spherical coordinates, which is then emassuming that the potential vanishes at infinity. With the aid
ployed in the solution of the problem of a point charge and aof the binomial formula we can expar)@s a power series
conducting sphere. In Sec. 3 we give a similar treatment startn 1/r. Leaving aside the constant factgf(4weg), we have
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which is an infinite series such that the coefficientbfr"*! is a polynomial of degree in the variablecos §, known as the
Legendre polynomial of order and denoted by, (cos 8). Thus, the potentiallj has the series expansion

q 1

oo

q n Pn(cos0)

4meg /12 + a2 — 2arcosf

4
dmeg prtl 7 “)

which converges for > |a|. Takingr = 1, the last equation is the standard generating function of the Legendre polynomials.

The potential4) must satisfy the Laplace equation every-

where except at the point where the point charge is locatedthe Legendre equation (which arises in the solution of the

Thus, assuming that the Laplacian of the sei#sq the se-
ries of the Laplacians we have

q . (Pn(cos 6) > 7

Tn-&-l (5)
which must be valid for all values of such thatja| < r.

This means that the coefficient of each powerafiust be
equal to zero, that i&2[r~""1P,(cosf)] = 0. (In other
words, Eqg. %) is a power series i and therefore, owing

Laplace equation by separation of variables). In our approach
we have no need of writing down the Legendre equation or to
talk about the method of separation of variables. As we have
shown, it is not even necessary to know the expression of
the Laplacian in spherical coordinates in order to conclude
thatr—"~1P,(cos#) andr™ P, (cosf) are solutions of the
Laplace equation.

By superposing the solutionsr™P,(cosf) and
r~"='P,(cosf) we arrive at the standard expression for

to the uniqueness of the series expansions, the coefficient 1€ most general axially symmetric solution of the Laplace

each power ofi must be equal to zero.)
Noting that the left-hand side odl) is invariant under the
interchange of anda, we conclude that, i& > 0,

q L _ 4
dmeg /12 + a2 — 2arcosf  4meg

— 1
X Z Wr"Pn(cos 0), (6)

n=0

which converges for < a. Again, except at the point where

equation in spherical coordinates

- n Bn
Z (Anr + 7=n+1) P, (cosb),

n=0

()

where the constant$,, andB,, are determined by the bound-
ary conditions. In order to show thaf)(is indeed the most
general axially symmetric solution of the Laplace equation
we consider any solution of this class, in a neighborhood

of the origin, and expand it in a Taylor series:

the point charge is located, the last expression must be a so-

lution of the Laplace equation and, using the fact thas
arbitrary, it follows thatv?[r" P, (cos §)] = 0.

Equations!4) and 6) look like the standard generating
function of the Legendre polynomials (semg, Refs. [2,

o(z,y,2) = ©(0,0,0) + a1z + asy + azz + ay12* + azy?
+ assz? + 2a192y + 2a93y2 + 2a13x2 + - - - .

12, 13]), but there is an important difference. The “gen-Owing to the independence of the coordinates, z, the set

erating functions”4) and 6) do not generate the Legen-

dre polynomials alone, they generate the separsdilgtions
r~"=1P,(cosf) and r" P, (cos ) of the Laplace equation

of terms of each possible degree must satisfy separately the
Laplace equation. Recalling the relation between the Carte-
sian and the spherical coordinates we see ¢higtindepen-

(which depend on two variables). While the standard generdent of the azimuthal angle if and only if the Cartesian
ating function generates solutions of an ordinary differentialcoordinatesr and y appear in this expansion only through

equation, the generating functior) &nd 6) generate solu-

the combinationz? + y2. This implies, for instance, that

tions of a partial differential equation (see also the discussion; = ay = 0, leaving just one term of first degree:iny, z,

in Sec. 4). Another important fact is that, in some textbooksgcontaining only one arbitrary constaat,. Similarly, the al-

the Legendre polynomials are defined through their genetowed terms of second degree in this expansion are of the
ating function and then it is shown that they are solutions of form a/(z%+%?)+ 322, wherea andg are two constants. The
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condition0 = V?[a(2? +y?)+ (2% = 2a+2a+2@implies  [see Eqg./6)], while the second series is the potential pro-
thats = —2« and therefore, also in this case there is only oneduced by the charge on the surface of the conducting sphere
arbitrary coefficient. The third-degree terms allowed by the(including the induced charge, which is not known by now).
symmetry are of the formy(z? + y2)z + 62% and the condi-  Note that the second series does not include terms of the form
tion 0 = V2[y(z? + y?)z + 62%] = 27z + 2yz + 662 gives 7" P,(cos #) since they would tend to infinity whentends

v = —34/2, showing that there is only one arbitrary con- to infinity. The first series ing) does not have this problem
stant. The result is that there is exactly one arbitrary constartecause it is not applicable foer> d.

for each degree, which is precisely what we havéZ)n ( Since the electric field in a conductor must be equal to
It may be remarked that the solutioi) (has been de- zero, at all points of the surface of the sphere the potential

rived by calculating the effect of translating a point chargémust have the same value (unspecified by now). In other

along thez-axis by an arbitrary distance. The more involved yords, if we evaluate the right-hand side @) @tr = a

the origin by an arbitrary distance in an arbitrary directiongp, g-

must produce the general solution containing the spherical

harmonics. (cos 9
_ , 47r5 Z dn+1 a” Py, (cos 0) + ZA
2.1. A conducting sphere and a point charge 0
We now consider the standard example of a conducting = %o = o Po(cos ), ©)

sphere in the electric field produced by a point charge,

placed at a distanaéfrom the center of the sphere. In order Where we have made use of the fact tRiafcos ) = 1 [see

to apply the results derived above, it is convenient to choos&d. @)]. Since Eq.9) must hold for all values of and the
the origin of a set of Cartesian axes at the center of the sphegegt of all the Legendre polynomials is linearly independent
and thez-axis in such a way that the point charge is at the(the Legendre polynomiab,(z), being a polynomial in:
point with Cartesian coordinaté®, 0,d). In that way, the of degreen, cannot be expressed as a linear combination of
system is invariant under rotations about thaxis or, equiv-  the Legendre polynomials of lower orders), the coefficients
alently, the potential cannot depend on the azimuthal anglef P, (cos ) on each side of the equation must coincide for

é. n=20,1,2,.... Thus,
Assuming thati is greater than the radius of the sphere,
denoted by, at the points of the region with < r < d (that qg a" Ay, —0. forn—1.2 (10)
is, outside the sphere) the potential must be of the form dmeg dntl T gntl ’ o
9 L -
Z r" P, (cosf) + Z Ap———= (cos , (8) and, taking into account separately the coefficients of
47760 dn+1 : b
Py(cos 8) on both sides of9),
wherer,Al,AQ, ... are constants to be determined. The
first series ini) is the potential produced by the point charge qg 1 A
| ~+— = 0. (11)
dmeg d a
Equations/10) trivially give
2n+1 2\ "
q a (—qa/d) (a
A, =— = — f =1,2,... 12
" 4meg dnti deg d ’ orn B ’ ( )
while, from (11),
—qa/d
Ay =— 1 g+a<,00:m+acpo. (13)
dmeg d 4dmeg
Substitutingl12) and (L3) into Eq. 8) we obtain
(—qa/d) = (a*\" Pn(cos) apg
r" P, 0) + ——~7>~~2 — ) =+ . 14
47‘1’60 nzo d”+1 (cos ) + 4meg ng() d pntl + r (14)

By comparing with'4) we see that the second seriesid)(is the potential produced by a point charge of magnitude/d at
the point with Cartesian coordinaté® 0, a2/d), which is inside the conducting sphere. Similarly, the last terrid4) is the
potential produced by a point charge of magnitdde, ap at the center of the sphere.

By comparison with Eqsi4) and 6) we can write down the sums of the series in Bdl){ namely

_ 4 1 1 i
4w \/r2+d2—2drcose \/a2 + (dr/a)? — 2dr cos ro
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This expression is valid at all points with> « and clearly ~ obtain the form of the solutions of the Laplace equation in

shows that- = a is an equipotential surface. cylindrical coordinates that do not depend on theoordi-
Thus, the electric field (or the potential) produced by thenate.

charge on the conductor (including the induced one), at the The electrostatic potential produced by an infinitely long

points outside the sphere @gactlythat of two point charges: uniformly charged wire with a longitudinal charge density

one of magnitude-qa/d at the point with Cartesian coor- expressed in the circular cylindrical coordinates), =), can

dinates(0, 0,a?/d), and one of magnitudéreg apo at the  be taken as

center of the sphere.

o(r,0,z) = — Inr, (15)

2.2. Aninfinite conducting plane and a point charge 2meg
The case of an infinite conducting plane, which is usually thef the z-axis coincides with the charged wire (segg, Refs.
first example of the method of images considered in the textf2, 14]). Hence, if the wire is parallel to theaxis and passes
books, can be viewed as a limiting case of the problem of théhrough the point of cylindrical coordinatés, ¢, 0), the po-
sphere treated above, when the radius of the sphere tendstgntial (L5) becomes

infinity. To this end, it is convenient to use the distance of the

point charge to the surface of the sphete,a, which will be o(r,0,z) = — In\/72 + d2 — 2rdcos(0 — ¢) (16)
denoted by, instead of the parametdy that is 2meg
s=d-—a. [cf. Eg. (1)]. Taking advantage of the fact thit6) does not

depend or, we can suppress the coordinaté what fol-

The distance of the image charge to the surface of the sphergws and note thatl) is the real part of the complex-valued

's then a2 d—a as function
TUTd T st+a A
. Lo . - o\ i\
which tends tas whena tends to infinity. Similarly, the mag- f(z) = — (Inr+if) = — In(re") = — In z,
. . 27T€() 27‘(80 271’50
nitude of the image charge,
_qﬂ - ¢ a ’ where nowz is the complex variable + iy = rel’. (Note
d sta that the modulusy, and the argument, of z coincide with
tends to—q whena tends to infinity. the coordinates andé of the cylindrical coordinates, respec-
Thus, assuming that the potential of the plane is zerotively.)
only one image charge, of magnitueg, is necessary, which Thus, if the charged wire is translated to the point of the

is situated symmetrically with respect to the plane (thatis, the&omplex planede?, with the aid of the well-known series
real and the image charges are at the same distance from tBgpansion

plane on a line perpendicular to the plane).

o0 Zn
. . . In(l-2)=->» —, <1
3. The solution of the Laplace equation in n(1=2) 2 n 1

n=1
cylindrical coordinates
(which can be readily verified by differentiating both sides
In this section, following a procedure similar to that em- with respect to:, using the fact that the sum of the geometric
ployed in the previous section, among other things, we shallseries,y"° /2™, is1/(1 — z) and thain 1 = 0), the electro-
| static potential16) must be the real part of

A .
— _ 1 _ Jel®) — _
f(Z) 27’(‘60 . (Z de ) 271'60

A i0 di —0 A i0 G 1d" in(¢—0
—— {ln(re )+1n[1_re<¢ >]}:_2mo [ln(re ) =3 2 Deinie)

n=1

In (7‘619 — dei¢) =—g— )\6 In {reia {1 — dei(‘b_e)} }
TEQ

r

{lnTJriQ Z %%[COS”(Q*@ isinn(@@sﬂ},

2meg 1
n=

that is, [L6) has the series expansion

In \/7"2 +d? —2rdcos(0 — ¢) = —

{lnr— 3 1?:[00571(9—@}}, a7

271'60
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which converges for > d (cf. Ref. [15]).
Since the expressiod§) is invariant under the interchangesoéndd (if d > 0), from (17) we obtain the series

{ Zi ~ cosn9 ¢)]} (18)

_ 2 2 _ _ _
Sty In /72 + d2 — 2rdcos(d — ¢) =
which converges for < d. The functions/17) and (L8) must be solutions of the Laplace equation (except at the points on
the wire) and they are series formed with the separable functi®hsos nd, r*" sin nd andin r (recall thatcos n(f — ¢) =
cos n¢ cos nf +sin n¢ sin nd) which, making use of the same argument as in Sec. 2, owing to the fadtahdt are arbitrary,
must be separately solutions of the Laplace equation.

By superposing the solutiom&™ cos nf, r*" sin nf andln r we obtain the most general translationally symmetric solution
of the Laplace equation in cylindrical coordinates:

Z (Anr" cosnb + B,r" sinnf + Cpr~" cosnd + D,r~ " sin n9) + Elnr + F, (29)
n=1

whereA,,, B,,C,, D,, E, F are constants determined by the boundary conditions. One can convince oneself, on physical
grounds, that19) is the most general solution of the Laplace equation independentloé charge producing an electrostatic
potential independent af must be a collection of infinite uniformly charged lines parallel totkexis, as the one considered
above (in much the same way as an arbitrary charge distribution can be viewed as a collection of point charges), hence, the
potential is a superposition of expressions of the fatid) &nd (L8), which is of the form(19).

The form of the solutionX9) has been obtained thanks to the availability of the two arbitrary paramkdeicdy appearing
in Egs. L7) and (18); the general solution of the Laplace equation in cylindrical coordinates would be obtained by including
rotations of the wire by an arbitrary angle about an axis perpendicular to the wire.

3.1. Aninfinitely long conducting cylinder and a line of charge

Now we shall apply the foregoing results to the standard problem of an infinitely long conducting cylinder parallel to a line of
charge. As we shall see, it is convenient to place the origin of a set of Cartesian axes at some point of the axis of the cylinder
and the line of charge passing through the point with Cartesian coordiate®), that is, we are setting = 0. Denoting by

a the radius of the cylinder, for points satisfying< r < d, the potential must have the form [see ELB){

A =1 = 1
=— Ind — —— A, — Bl 2
© e (nd an cosm?) +Z o cosnf + Blnr + C, (20)

n=1 n=1

whereB, C, Ay, Ao, ... are unknown constantsf[ Eq. (8)]. The sum of the last three terms is the potential produced by the
charge on the cylinder (including the induced one, which is unknown at the start):

-, 1
Doyl = Z Anr—n cosnfd + Blnr + C. (21)

n=1

The potential at the surface of the cylinder must be some constgrsiay (independent df), that is, evaluating20) at
r=a,

- —— 0 A, 0+ Bl
71_60( Z cosn)—&—z —cosnf + Blna+ C = ¢

and, making use of the linear independence of thé Betos 6, cos 20, . . .}, it follows that

A la” 1
—— 4+ A,— =0, f =1,2,...,

2mweg N d™ an orn

and
Ind+ Blna+ C = gyq.
TED

Hence,

A la®™ X1 "

A, =— — , T =12,..., 22
2reg n d™ 27r50n (d) orm (22)
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and

A
C=¢po+-—Ind—Blna. (23)
27‘(80

Substituting/22) and 23) into Eq. 21) we obtain

(=N 1 fa®\" 1 A
@Cylzg ( )(a) —ncosne—l—Blnr—&—cpo—l——lnd—Blna
r

—~ 2meg n \ d 2meg
-2 = 1 (a?/d)" A\ — 270 B A
:—( ) lnr—zf(a/ ) cosnf —77T5()1117"+4p0+—1nd—31na, (24)
2me —n rn 2me 2meg

whichis the potential produced by a line of charge with linear
density —\ parallel to thez-axis passing through the point 'systems. The presence of a free parameter [such as the pa-
with Cartesian coordinatg&?/d, 0,0) [see Eq.[L7)] and a  rametersa, d and¢ contained in/) and {L6)] allows us to
line of charge with linear density — 27 B passing through get an infinite set of solutions of the Laplace equation but, by
the origin (that is, coincident with the-axis) [see Eq.15)]. contrast with the results derived above, such solutions need
Hence, the potential (and the electric field) produced bynot be separable, which, however, does not change the fact
the charge on the conducting cylinder is exactly that of a paithat they are solutions of the Laplace equation; the separa-
of lines of charge inside the region enclosed by the cylinderbility is only the condition usually imposed in order to find
one at a distance? /d from the axis of the cylinder and, pos- the solutions of the Laplace equation through the solution of
sibly, one on this axis). ordinary differential equations.
There are two interesting particu'ar cases:Bif= 0 It should be pOinted out that the reason behind the fact
then the net charge on the cylinder is equal to zero, and ithat we are getting solutions of the Laplace equation starting

B = \/2me, then the net linear density of charge on thefrom simple solutions is that this equation is invariant un-
cylinder is equal to\. der the rigid translations in the three-dimensional Euclidean

space. More complicated solutions are obtained with the aid
of rotations, which would lead to the spherical harmonics and

4. Concluding remarks the Bessel functions.

The procedure followed in Secs. 2 and 3 to find the We"'AcnowIedgement
known solutions of the Laplace equation in spherical and
cylindrical coordinates can be applied with other coordinateThe author wishes to thank the referee for useful remarks.
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