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∗e-mail: rquintero@fata.unam.mx

Received 19 January 2023; accepted 20 February 2023

Max Planck (1858-1947) is one of the most renowned scientists in physics. He is even a commonplace character in humanities courses since
he was one of the European scientists who most influenced the opinion and perspective of European society. This work intends to present
a pedagogical introduction to the quantization of energy, Planck’s most valuable contribution to science. This is an important topic that
is frequently included in physics and engineering curricula but is often presented in a vague and forced manner. This work seeks a more
intuitive introduction to the quantization of energy by presenting Planck’s law and the Casimir force, along with a practical activity that
students can perform to directly measure Planck’s constant and achieve a more cohesive understanding of the concepts.
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1. Introduction

Undoubtedly, Planck’s lifetime was an epoch of deep-
reaching changes in the field of science [1]. His findings
heralded the birth of quantum mechanics and provided the
foundation for understanding phenomena, which later had
important technological implications. The Casimir force, for
example, became essential to the construction of microelec-
tromechanical and nanoelectromechanical systems [2-4]. In-
terestingly, his doctoral dissertation focused on the second
law of thermodynamics. He sought to clarify its meaning and
consequences. It was until the fourth decade of his life that
Planck focused on the problem of thermal electromagnetic ra-
diation emitted by an opaque, non-reflective body,i.e. a black
body. After experiments by Rubens-Kurlbaum and Lummer-
Pringsheim [5] where the energy leaving the body and the
temperature of this idealized black body was measured as a
function of the wavelength for different temperatures, Planck
derived the distribution law for black-body radiation, which
fitted all measurements perfectly. In his formula, he used the
fact that light was emitted and absorbed in energy units. This
was the first time that the concept of energy quanta appeared
[6,7].

The absorption and emission of radiation are tangible in-
tuitive processes to early learners as they are closely related to
the sense of sight, it is also said that we only know the light
by the phenomena of its production and destruction. These
complementary phenomena of absorption and emission of ra-
diation are presented to students from an early age [8] and
science museums make a great effort to describe them in
an accessible manner. Pedagogical experiments often show
the emission of a gas lamp with a prism revealing unique

color lines depending on the gas used. Additionally, passing
a spectrally continuous radiation source through a gas cell
reveals the disappearance of absorption gas lines that coinci-
dentally match the energies of the emission lines, if the same
gas is used. One becomes familiar with the idea of emission
and absorption lines for dilute gases and continuous regions
in the case of solid materials such as glowing hot metals. An
intermediate case that is becoming more familiar is that of
LED devices that for the reciprocity between emission and
absorption, emit radiation and can also be used as radiation
detectors.

The black body refers to the radiation of an ideal body
that emits all kinds of electromagnetic waves, as a function
of the body’s temperature. Of course, at 0 K it is a perfect ab-
sorber. On the other hand, the LED is a simple semiconduc-
tor device that can emit radiation of a different color for each
material; from the infrared, which is used in remote controls,
to the ultraviolet, which is used in sterilization processes.
The absorption process in a semiconductor is called the in-
ternal photoelectric effect or generation of carriers, and the
emission process is referred to as recombination. A forward-
polarized LED uses recombination in the semiconductor to
generate light, a reverse-polarized LED uses generation to
convert light in excess current.

This paper presents a pedagogical introduction to en-
ergy quantization. We use a framework that outlines scien-
tific concepts from a chronologically-accurate perspective.
In other words, it seeks to present the ideas proposed at a
given point in time by justifying and supporting them only
with concepts that were known at that point in time. This pa-
per is divided into the following sections: first, Planck’s law
discusses discrete values of energy as essential justification
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to replace equipartition for Bose-Einstein statistics. Next,
Casimir’s force extends the need of energy discrete values
to explore the zero-point energy whose fluctuation is the pre-
cursor of the uncertainty principle, and finally, an estimation
of Planck’s constant with ubiquitous components guides the
interest to evaluate the Planck’s constant. It is our hope that
this work will provide an alternative pedagogical pathway to
introduce students to the concept of energy quantization in a
more intuitive and cohesive manner.

2. Planck’s law

In Professor Steven Weinberg’s quantum mechanics classes
[9], it is discussed that, at the end of the 19th century,
there existed an experimentally measurable function called
the volumetric energy density of the electromagnetic fieldU
[Jm−3], whose change over time was defined by the energy
flux across its surface and by the energy dissipated per unit
volume [10], as seen in Eq. (1).

∂U

∂t
= −∇ · ( ~E × ~H)− ~J · ~E, (1)

where ~J , ~E, and ~H are the current density, the electric field
strength, and the magnetic field strength. In such a way that
a cavity of volumeV at temperatureT emits du(ν, T ) ≡
ρ(ν, T )dν in the frequency range defined by the filter be-
tween(ν, ν + dν). This spectral energy, explicit in Eq. (11)
was determined to be a universal function, that is, no matter
where or how it was measured the result would be the same,
as illustrated in Fig. 1.

Equation (2) presents the energy density of the electro-
magnetic fieldU as the sum of the filtered spectral energy
density slicesρ(ν, T )dν for every available frequency.

U(T ) =

∞∫

0

ρ(ν, T )dν. (2)

FIGURE 1. The increase in temperature of a black body moves the
peak of radiation towards higher frequencies. A black body only
appears black atT = 0 K.

FIGURE 2. Modes in an electromagnetic wave between perfectly
conduction boundaries separated by distanced.

It is important to remember that visible light is an electro-
magnetic wave, and therefore it is commonly represented by
several variables, such as the wavelengthλ related to the spa-
tial distance between two peaks of the wave, the wave number
k associated with the spatial frequency of the wave, the lin-
ear frequencyν that represents the temporal frequency of the
wave, the angular frequencyω that evokes the circular motion
of the linear frequencyω = 2πν, and the energyE that char-
acterizes the wave. Note thatλ andk depend on the medium
where the electromagnetic wave propagates. To simplify cal-
culations, we will assume that waves exist or propagate in a
vacuum, so the propagation relations are:

c = λ0ν =
2π

k0
ν = λ0

ω

2π
= λ0

E

h
, (3)

wherec is the speed of light andh is Planck’s constant.
It was also known that the spectral composition of waves

as described by Fourier may be composed of many har-
monic waves. Here, it was recognized that electromagnetic
waves, like mechanical waves, could exist in modes defined
by boundaries, see Fig. 2 for an illustration and Eq. (4) for its
description.

The state of the wave will be defined by an integerm, of
half wavelengths, as seen in Fig. 2, which can be written as:

mi
λi

2
= di, (4)

where the total lengthdi sets the boundaries of the wave,i is
any direction and in three dimensions a box is a convenient
image for the modes of electromagnetic waves.

Since the electromagnetic modes can be a very large num-
ber, it is not convenient to try to count them directly. As with
any problem with an intractable number of components, the
solution lies in employing statistical methods. In this case,
we want to know the energy contributed by the modes. For
this, we must determine the distribution of wave modesρ(ξ)
and the energy associated with eachE(ξ), both for the same
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variable of interestξ. With these, it will be possible to obtain
the volumetric energy density of the electromagnetic waves
in the system, described by:

U(T ) =

∞∫

0

ρ(ξ, T )E(ξ, T )dξ

[
J

m3

]
. (5)

In the integral, the nature of the variable is not specified
because electromagnetic waves can be represented by differ-
ent variables.

Many authors point to Planck’s contribution as a fitting
to experimental values, but others emphasize that Planck’s
contribution went far beyond fitting variables and explaining
thermal radiation. It gave rise to one of the pillars of modern
science, the quantization of energy.

At that time, it was believed that in nature everything is
continuous, that waves and particles were isolated phenom-
ena, and that everything is independent and local unless the
influence is pass on by something physical like a wave or a
particle. Due to theoretical work of the early twentieth cen-
tury and modern experimental evidence, today it is accepted
that energy is quantized, and that the behavior of waves and
particles can be manifested by the same object (see hypoth-
esis of the Duc de Broglie [11], page 49), and most surpris-
ing of all, that not everything is independent or local (see the
principle of uncertainty and entanglement [11]).

To determine the volumetric energy of electromagnetic
waves, it is necessary to know the distribution of the modes,
and this is obtained by the derivative of the cavity’s number
of modes per unit volume as is presented by Eq. (6)

ρ(ξ) =
d

dξ

(
N(ξ)m

Vc

)
, (6)

whereN(ξ)m andVc are the modes measured in the volume
of ξ and the volume of the cavity, respectively. And the num-
ber of modes is determined with Eq. (7) by the modes con-
tained in the volume of the variableξ.

N(ξ)m = 2
(

1
8

)(
4
3
π(m(ξ))3

)
. (7)

The number two corresponds to the independent polariza-
tion, the eighth is due to the fact that the mode numbers are
all positive, so they include only one eighth of the sphere,
and the third parenthesis refers to the modes in the com-
plete sphere of variableξ, the function of the different vari-
ables that represent the waves which are explicitly included
in Eq. (8), wherei represents every considered axes.

m(ξ) =
2di

λ
=

kdi

π
=

2νdi

c
=

2Edi

ch
=

ωdi

πc
. (8)

The cavity volume isVc = dxdydz, finally, the distribu-
tion of states is presented in Eq. (9) for all variables describ-
ing the waves.

ρ(ξ) =
d

dλ

(
8π

3λ3

)
=

d

dk

(
k3

3π2

)
=

d

dν

(
8πν3

3c3

)

=
d

dE

(
8πE3

3c3h3

)
=

d

dω

(
ω3

3π2c3

)
. (9)

As an example, if we set the variableξ to represent lin-
ear frequency, one obtains that the mode distribution for the
cavity in vacuum has the expression in Eq. (10), the expres-
sion after that corresponds to the case where the variableξ
describes the wavelength.

ρ(ξ → ν) =
d

dν

(
8πν3

3c3

)
=

8πν2

c3
,

ρ(ξ → λ) =
d

dλ

(
8π

3λ3

)
=

8π

λ4
. (10)

To this distribution of states, it is necessary to include
the energy associated with the occupation of the states as in-
dicated in Eq. (5), and this will be determined by assigning
a thermal distribution of energy, this implies that the occu-
pation of a state of higher energy is less likely than one of
lower energy, a property described by the Boltzmann factor
N(E +∆E) = N(E)e−∆E/kT . Once again, the explicit ex-
pression for energy can be replaced for any of the variables in
the Eq. (3). We have that the energy can be divided accord-
ing to 〈E〉 = kT , in the case of assuming that all values of
the energy are allowed (continuous case) or it is distributed
as 〈E〉 = E/(e−E/kT − 1), in the case of assuming that
only discrete values of the energy are accessible, as Planck
proposed. Referral details can be found in Appendix A.

With Eq. (3), E = hν = hω/2π = hc/λ0 = hck0/2π
one of the expressions for the representation of the volumet-
ric energy of the electromagnetic waves, written as a function
of linear frequency and temperature, called Planck’s law is:

ρ(ν, T )dν =
(

8πν2

c3

)(
hν

ehν/kT − 1

)
dν

=
8πhν3

c3

dν

ehν/kT − 1
. (11)

And the integral over all the linear frequencies, the energy
density of the electromagnetic field from Eq. (2) is:
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U(T ) =

∞∫

0

(
8πν2

c3

)(
hν

ehν/kT − 1

)
dν

=
8πh

c3

∞∫

0

nu3dν

ehν/kT − 1

=
8πh

c3

(
kT

h

)4
∞∫

0

x3dν

ex − 1
, (12)

=
8πk4T 4

c3h3

(
π4

15

)
=

8π5k4

15c3h3
T 4

= aT 4 =
4σ

c
T 4. (13)

This expression is known as the Stefan-Boltzmann law,
a is the radiation density constant andσ is the Stefan-
Boltzmann constant, the factorc/4 is explained in the next
paragraph.

Planck’s law as a function of the wavelength can be de-
rived following the same steps as for the linear frequency:

ρ(λ, T )dλ =
(

8π

λ4

)(
hc/λ

ehc/λkT − 1

)
dλ

=
8πhc

λ5

dλ

ehc/λkT − 1
.

It is important to notice the equations so far are for energy
densityU , if one wishes to know the surface power density
R leaving the box from the areaA, it is enough to multiply
the expressions by c/4. Surface power density multiplied by
the area and the time unit is equal to the energy density times
the volume produced by the time unit (V = A ∗ ct), which
meansRAt = UctA or R = Uc. The average of the exit
anglecos2(θ) equals one-half, and since we are calculating
the power density emitted on one side of the surface, the total
surface power is half of that,i.e. c/4.

The passage of time makes it impossible to know the de-
tails of how the events happened, Planck could well have ar-
rived at his equation as a desperate act to reconcile an equa-
tion with the spectral radiation of a black body, but the se-
quence that was described allows Planck to be presented with
a deep physical intuition and confidence in mathematical lan-
guage to find such an equation. In the next section, we will
discuss another important physical conception that is cred-
ited to another scientist, but the fundamental idea is also at-
tributable to Planck.

Note: In the Eq. (12), the result of the integral that uses
the Euler-Riemann zeta function and the gamma function,

∞∫

0

xs−1dx

ex − 1
= ζ(s)Γ(s)

was used, the Euler-Riemann zeta function and the gamma
function fors = 4, and they are respectively:ζ(4) = π4/90;

Γ(4) = 3!. And to illustrate the time of these achieve-
ments, Leonhard Euler (1707-1783) was a Swiss polymath,
Georg Friedrich Bernhard Riemann (1826-1866) was a Ger-
man mathematician and the gamma function was derived by
Daniel Bernoulli (1700-1782) a German physicist.

3. Casimir’s force

They say that Hendrik Brugt Gerhard Casimir (1909-2000),
a Dutch physicist, in 1947 working at Philips on the theory
of Van der Waals forces, after a conversation with Niels Bohr
was inspired to study the effect of zero-point energy on the
force between perfectly conducting parallel plates. The cav-
ity between such plates cannot withstand all modes of the
electromagnetic field. In particular, wavelengths compara-
ble to the plate separation and longer are excluded from the
internal region between the plates. This fact leads to the situ-
ation that there is a zero-point radiation overpressure outside
the plates which acts to push them together. This attractive
force between plates can be thought of as analogous to the
attraction of clips by surface tension, it is recommended to
avoid the myth of using the ship attraction equivalent that ap-
pears to be unfounded [12], and the resulting effect is now
called the Casimir force. It has the property of increasing
in strength with the inverse of the fourth power of the plate
separation [13]. The force ceases when the elements of the
plates come into contact. The smoothness of the surface of
the plates is a limiting factor, or when the plates are so close
together that the corresponding wavelengths of zero-point ra-
diation no longer “see” a perfectly conducting surface. The
actual discontinuous nature of the plates, as opposed to the
true surface and molecular nature of the materials, becomes
an important factor for very short distances.

Zero-point energy is a concept that Planck proposed in
1911 and that can be visualized by statistical arguments, in
which the lowest value of energy is no longer zero, and its
fluctuations are described by the uncertainty principle. These
fluctuations in the energy minimum are sufficient to explain
the attraction or repulsion between perfectly conducting par-
allel plates and the emission or absorption of radiation by
displacing one of them.

In the previous section, the mean harmonic energy cal-
culated by Planck was〈E〉 = hν/(e−hν/kT − 1), the uncer-
tainty principle corrects it to〈E〉 = hν/2+hν/(e−hν/kT−1)
and the first term is the so-called zero-point energy.

Therefore, the zero-point energy for harmonic oscillator
modes is:

H0 =
∑
m

hνm

2
. (14)

With what we learned in the previous section for the
modes of electromagnetic waves in a box, the energy of the
zero-point is defined by the modesm that it contains, see
Fig. 3:
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FIGURE 3. Geometry of two conducting plates separated by a dis-
tancea.

νm =
c |k|
2π

=
c

2π

√
k2

x + k2
y + k2

z

=
c

2π

√(
mxπ

dx

)2

+
(

myπ

dy

)2

+
(

mzπ

dz

)2

=
c

2

√(mx

a

)2

+
(my

L

)2

+
(mz

L

)2

, (15)

and

Hbox
0 =

∑
m

hνm

2

=
hc

4

∑

pol

∞∑
mx=0

∞∑
my=0

∞∑
mz=0

η(mx,my,mz), (16)

where

η(mx, my,mz) =

√(mx

a

)2

+
(my

L

)2

+
(mz

L

)2

.

For a resonant box, the sum over the polarization (pol) ac-
counts for the identical orthogonal modes fixed by the walls,
wherea ¿ L, the modes alongx will be discretely added
and the modes alongy and z will be part of a continuous
integration.

Hbox
0 =

∑
m

hνm

2

=
hc

4

∑

pol

∞∑
mx=0

∞∫

0

∞∫

0

η(mx,my,mz)dmzdmy

=
hc

4a

∑

pol

∞∑
mx=0

∞∫

0

∞∫

0

η∗(mx,my,mz)dmzdmy,

(17)

where

η∗(mx,my,mz) =

√
(mx)2 +

(
m2

y + m2
z

) ( a

L

)2

.

With the change of variablesξy = mya/L andζz = mza/L,
the equation looks cleaner,

Hbox
0 =

hcL2

4a3

∑

pol

∞∑
mx=0

×
∞∫

0

∞∫

0

√
m2

x + ξ2
y + ζ2

zdζzdξy. (18)

Switching from Cartesian to polar coordinates, with the
change:ξy =

√
u cos ϕ and ζz =

√
u sin ϕ, and with the

result

∞∫

0

∞∫

0

dξydζz =

∞∫

0

π/2∫

0

d
√

u
√

udϕ

=
1
2

∞∫

0

π/2∫

0

dudϕ =
π

4

∞∫

0

du,

the equation is transformed to the next expression:

Hbox
0 =

hcπL2

16a3

∑

pol

∞∑
mx=0

∞∫

0

√
m2

x + udu. (19)

With only one polarization form = 0, and two polariza-
tion for the rest of the modes, the sum inx can be separated
into two groups:

Hbox
0 =

hcπL2

16a3

×


∞∫

0

√
udu + 2

∞∑
mx=1

∞∫

0

√
m2

x + udu


 . (20)

Contrasted to the zero-point energy of free space(a À
L), where now all modes will be part of a continuous inte-
gration,

Hvac
0 =

hc

4a

∑

pol

×
∞∫

0

∞∫

0

∞∫

0

η∗(mx,my, mz)dmzdmydmx. (21)

With the same simplifications used for the case of a small
box, Eq. (21) will be transformed in the following expression:

Hvac
0 =

hcπL2

16a3
2

∞∫

0

∞∫

0

√
m2

x + ududmx. (22)
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And the difference between the two energies, small box
and large box (vacuum) is:

V =
1
L2

[
Hbox

0 −Hvacuum
0

]
=

hcπ

8a3
D, (23)

where the variableD explicitly is:

D =
1
2

∞∫

0

√
udu +

∞∑
m=1

∞∫

0

√
m2 + udu

−
∞∫

0

∞∫

0

√
m2 + ududm. (24)

Defining the divergent function that will simplify the in-
finite integrals

I(m) =

∞∫

0

√
m2 + udu =

∞∫

0

√
νdν,

we have that,

D =
1
2
I(0) +

∞∑
m=1

I(m)−
∞∫

0

I(m)dm. (25)

With the Euler-Maclaurin formula [14] used to assess the
difference between the discrete addition and continuous inte-
gral associated with the same function, independently discov-
ered by Euler and the Scottish mathematician Colin Maclau-
rin (1698-1746):

j∑

m=i+1

f(m)−
j∫

i

f(m)dm =
f(j)− f(i)

2

+
p/2∑

k=1

B2k

(2k)!
(
f2k−1(j)− f2k−1(i)

)
+ Rp. (26)

With i = 0 and j = ∞, the explicit expression forD
takes the following form:

D =
1
2
I(0) +

I(∞)− I(0)
2

+
B2

2!

(
dI(∞)

dm
− dI(0)

dm

)

+
B4

4!

(
d3I(∞)

dm3
− d3I(0)

dm3

)
+ . . . (27)

simplified by removing the first couple ofI(0),

D =
1
2
I(∞) +

B2

2!

(
dI(∞)

dm
− dI(0)

dm

)

+
B4

4!

(
d3I(∞)

dm3
− d3I(0)

dm3

)
+ . . . . (28)

And using the Bernoulli numbersB2 = 1/6, andB4 =
−1/30, evaluating the integralI(m) in the limits m, j one

will have I(m) = (2j2/3/3) − (2m3/3), moreover with
I(∞) = 0. For the derivatives ofI(M) only two sur-
vive, dI(m)/dm = −2m2, d3I(m)/dm3 = −4, and finally
djI(m)/dmj = 0, for anyj ≥ 4, it is possible to see:

D = − 1
2!

(
1
6

)
(0)− 1

4!

(
− 1

30

)
(−4) = − 1

180
. (29)

With this value, Eq. (23) will end up as:

V =
hcπ

8a3

(
− 1

180

)
. (30)

We can now compute the attractive force, also known as
the Casimir force per unit area:

F (a) = −dV

da
= − hcπ

480a4
. (31)

The importance of the Casimir force is relevant in the
technology of submicroscopic mechanisms. His conception
is not particularly intuitive, but the systematic work of the
zero point energy and its effect on near boundaries is essen-
tial to understand the origin of the force produced by geom-
etry and defined by the quantization of energy. Much work
must be done to assess the effects of surfaces that are not flat,
nor perfect conductors, but it seems that Planck’s hypothesis
is sufficient to account for the essence of the real effects.

Until now Planck’s constant has appeared as a constant
of smallness indicating the subtlety of quantization effects.
However, an exploration of photonic devices can provide an
approximation to their quantification. In the following sec-
tion, a guide is presented, which can be simplified with the
available experimental resources, to explore how electronic
devices work and their underlying fundamental concepts, in-
cluding Planck’s constant.

4. Estimation of Planck’s constant

One potentially valuable pedagogical approach to discussing
Planck’s contribution is by having students directly measur-
ing his constant by relating optical wavelength or frequency
with photon energy. This can be easily accomplished by per-
forming electrical and optical measurements of various com-
mercial light-emitting diodes (LEDs) of different colors.

A set of LEDs were purchased of a range of colors and
semiconductor materials and their spectral emission curves
were measured, see Fig. 4, at the shorter wavelengths we
have the UV, violet, and blue colors, and at the longest wave-
lengths are red and IR. Moreover, we do not need the spectral
response of the light, only the peak emission of the LED will
be related to the voltage used.

Electrically, the curve of voltage vs current of a LED is an
exponential function and in forward bias, it is expected that
a current of 10 to 20 mA is necessary to shine without being
damaged. The voltage is almost constant and unique for each
LED color. On the other hand, the emission color is defined
by the semiconductor material used. In the mentioned current
range, the spectral response of the light can be measured and
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FIGURE 4. Normalized curves of LEDs when biased forward with
10 mA.

FIGURE 5. Current vs forward voltage for the assortment of LEDs.
As a reference, a rectifying IN4007 diode is presented at the ex-
treme left.

the peak emission of the LED can be related to the voltage
used.

Figure 5 presents the electrical behavior of the devices, IR
is closer to ideal performance (exponential function parallel
to a rectifying diode IN4007, presented at the far left). Visi-
ble LEDs have mixed results due to the different technologies
to produce them and the UV LED at the far right is the most
distant from ideal action. The curvature at high currents of
some LEDs is due to serial resistance.

It is important to understand the correlation of the current
and the voltage in the device, with the optical power and the
Planck measurement respectively. The electrical power (cur-
rent times voltage) and optical power (brightness) in a LED
are correlated, and because the voltage changes in the LED
are small, the optical power is proportional to the current.

On the other hand, the voltage at some level of current
(10 mA), will be used to estimate the Planck constant. Iden-
tifying the electrical energy in units of eV as the measured
voltage.

Some details are intentionally ignored; the applied volt-
age in the active device is smaller than the band gap of the
semiconductor involved, only a fraction of the electrical cur-
rent produces radiative recombination or light, the serial re-
sistance is ignored, the technology used to produce the LED

FIGURE 6. Relation between the voltage at 10 mA in the LED
and the inverse of the peak emission. Using the light dispersion in
vacuum, the Planck’s constant was determined from the slope.

and hence the color may include same semiconductor with
impurities that change the color. This might explain some of
the scatter in the experimental values measured deviating the
results from a perfectly straight line in Fig. 6.

Light emission in an LED is inherently different from
black-body radiation. Its physical process rather resembles
the opposite of the photoelectric effect, where the energy of
the electron when recombining is transformed into radiation.
The efficiency of this process is not 100 %, consequently,
some of the energy of the electric current is transformed into
heat resulting in an increase in temperature. Keeping the
LED cold with a thermoelectric cooler will improve the re-
sults, but even so, it is considered a cold emission source, un-
like black-body radiation, where the temperature is the gov-
erning parameter for the emission.

The electrical current that passes through the LED is pro-
portional to the electron charge, the efficiency, and the optical
power divided by the photon emission energy [15], but if we
use constant current and assume the same efficiency, one can
assume that the photon energy will be proportional only to
the applied voltage and mostly independent of the current.
The electrostatic potential energy of the electron is equal to
the voltage multiplied by the charge of the electron, and the
voltage applied to the LED can be related to the wavelength
peak emission:

E = eV =
hc

λ
, V =

hc

e

1
λ

,

and from least squares, see Fig. 6, we get a slope of 1232
×10−9 [Vm], this value is produced forcing the fitting to
cross the origin. Findingh from this equation one obtains,

h =
e(slope)

c
=

(1.6× 10−19)(1232× 10−9)
(3× 108)

= 6.6× 10−34[Js]. (32)

The most accepted value for Planck’s constanth =
6.62607004× 10−34 [Js].

It is our hope that placing Planck’s concepts in the his-
torical context of the time can lead to a greater appreciation
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of his contribution to energy quantization. We have outlined
Planck’s concepts justified by mathematical arguments and
supported his work by fellow mathematicians and physicists.
Finally, we have presented a simple experiment that can al-
low learners to directly compute Planck’s constant to better
understand these concepts.

Appendix

A. The expected value of the energy

For the case of assuming that the energy is a continuous
function, the mean is determined in a common way and is
achieved by doing the complete integral:

〈E〉 =

∞∫
0

Ee−E/kT dE

∞∫
0

e−E/kT dE

=

∞∫
0

xe−axdx

∞∫
0

e−axdx

=
1
a2

1
a

=
k2T 2

kT
= kT. (A.1)

In the case of accepting that the energy is a discrete func-
tion, the mean is achieved by making the complete sum:

〈E〉 =
∑∞

n=0 nEe−nE/kT

∑∞
n=0 e−nE/kT

=
0 + Ee−E/kT + 2Ee−2E/kT + . . .

1 + e−E/kT + 2e−2E/kT + . . .
. (A.2)

With the change of variablex = e−E/kT , to improve its
appearance:

〈E〉 =
xE + 2x2E + 3x3E + . . .

1 + x + x2 + x3 + . . .

=
E(x + 2x2 + 3x3 + . . . )
1 + x + x2 + x3 + . . .

. (A.3)

Using the result of the infinite geometric series with an
argument less than one:

1 + x + x2 + x3 + . . . |x<1 =
1

1− x
, (A.4)

and the auxiliary result

s = x + 2x2 + 3x3 + 4x4 + . . .

xs = x2 + 2x3 + 3x4 + 4x5 + . . .

s− xs = x + x2 + x3 + x4 + . . .

s− xs = x(1 + x + x2 + x3 + . . . ).

You can see from the last relation the following result:

s =
x

(
1

1−x

)

1− x
=

x

(1− x)2
. (A.5)

Which yields the Planck result for the case of discrete
states for the electromagnetic waves:

〈E〉 =
E

(
x

(1−x)2

)

1
1−x

=
Ex

1− x

=
E

1
x − 1

=
E

eE/kT − 1
. (A.6)
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