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Lagrangian analysis of the Feynman paradox
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It is shown that the direct use of the Lagrange equations allows us to analyze the entire process involved in the Feynman paradox, without
having to speak of the angular momentum of the electromagnetic field.
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1. Introduction

The Feynman paradox deals with the apparent violation of
the law of conservation of angular momentum in a system
formed by a coil and a set of electric charges (see,e.g.,
Refs. [1, 2]). One begins by considering an insulating disc
that can rotate without friction about the axis passing through
its center, perpendicular to the plane of the disc. Mounted on
the disc there is a coil, whose axis coincides with the rota-
tion axis, and some electric charges evenly spaced on a circle
concentric with the disc. Initially there is some current cir-
culating in the coil and the disc is at rest; later, the current is
stopped. The application of Faraday’s law of induction leads
to the conclusion that, as the current ceases, there appears
an electric field pushing the charges and the disc acquires
angular momentum, giving the impression that the angular
momentum is not conserved.

The paradox can be solved by considering that the initial
electromagnetic field, though static, possesses angular mo-
mentum (see,e.g., Refs. [2,3]). Alternatively, we can see that
the angular momentum of the charges is conserved if it is ap-
propriately defined [4], without the need of speaking of the
angular momentum of the electromagnetic field.

In this paper we give a simplified analysis of the entire
process based on the direct application of the Lagrange equa-
tions. We show that the Lagrange equations lead to a con-
served quantity that reduces to the component of the usual
angular momentum along the axis of the disc when the elec-
tromagnetic field is absent. The procedure presented here
stresses the fact that one can have constants of motion that
may depend explicitly on the time (but their total derivative
with respect to the time is equal to zero).

It is assumed that the reader is acquainted with the ele-
mentary notions of Lagrangian mechanics and electrodynam-
ics.

2. The Lagrangian and the constant of motion

The standard Lagrangian for a charged particle in a given
electromagnetic field (in the framework of non-relativistic

mechanics), in terms of the circular cylindrical coordinates,
(ρ, φ, z), is given by

L =
m

2
(ρ̇2+ρ2φ̇2+ ż2)+

q

c
(Aρρ̇+ρAφφ̇+Az ż)−qϕ, (1)

wherem andq are the mass and the electric charge of the
particle, respectively,Aρ, Aφ, Az are the components of the
vector potential of the electromagnetic field with respect to
the orthonormal basis{ρ̂, φ̂, ẑ} defined by the cylindrical co-
ordinates, andϕ is the scalar potential. (The electromag-
netic potentials appearing in the Lagrangian (1) correspond
to the given electromagnetic field, only excluding the field
produced by the chargeq itself, which, as usual, is consid-
ered as a test charge. Hence, the fields corresponding to these
potentials must obey the Maxwell equations∇ · B = 0 and
∇×E = −(1/c) ∂B/∂t.)

We shall restrict ourselves to axially symmetric magnetic
fields that may depend on the time. Taking thez-axis as the
symmetry axis, this means that the componentsBρ, Bφ, Bz

of the magnetic field are independent of the angleφ. Since

0 = ∇ ·B =
1
ρ

∂(ρBρ)
∂ρ

+
1
ρ

∂Bφ

∂φ
+

∂Bz

∂z
,

the condition∂Bφ/∂φ = 0, implies that

∂(ρBz)
∂z

= −∂(ρBρ)
∂ρ

, (2)

which in turn implies the existence of a functionΛ(ρ, z, t)
such that

ρBz =
∂Λ
∂ρ

, ρBρ = −∂Λ
∂z

. (3)

According to Faraday’s law, a time-dependent magnetic
field must be accompanied by an electric field, and we shall
assume that there is an electric field present which is also
invariant under the rotations about thez-axis. Hence, the
componentsEρ, Eφ, Ez of the electric field are independent
of φ and the components alonĝρ and ẑ of the equation
∇×E = −(1/c) ∂B/∂t give

−∂Eφ

∂z
= −1

c

∂Bρ

∂t
and

1
ρ

∂(ρEφ)
∂ρ

= −1
c

∂Bz

∂t
,
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respectively. These equations together with (3) lead to

∂

∂z

(
ρEφ +

1
c

∂Λ
∂t

)
= 0,

∂

∂ρ

(
ρEφ +

1
c

∂Λ
∂t

)
= 0.

SinceEφ andΛ do not depend onφ this means thatρEφ +
1
c

∂Λ
∂t is a function oft only which can be absorbed intoΛ.

Thus,Λ is defined up to an additive constant by Eqs. (3) and

ρEφ = −1
c

∂Λ
∂t

. (4)

(It should be remarked that the functionΛ is defined up to an
additive constant, which is consistent with the fact that it is
part of the constant of motion (9).)

Theφ-component of Faraday’s law can be written in the
form

1
c

∂Bφ

∂t
+

∂Eρ

∂z
+

∂(−Ez)
∂ρ

= 0,

which has the form of the divergence of a vector field in
Cartesian coordinates. Hence, this equation is locally equiv-
alent to the existence of three functions,f, g, h, of (ρ, z, t)
only such that

Bφ =
∂h

∂z
− ∂g

∂ρ
, Eρ =

∂f

∂ρ
− 1

c

∂h

∂t
,

−Ez =
1
c

∂g

∂t
− ∂f

∂z
. (5)

(The functionsf, g, h are defined up to the “gradient” of a
scalar function of(ρ, z, t) only, but these functions do not
appear in the constant of motion (9).)

Taking into account that the expressionB = ∇ × A
amounts to

Bρ =
1
ρ

∂Az

∂φ
− ∂Aφ

∂z
, Bφ =

∂Aρ

∂z
− ∂Az

∂ρ
,

Bz =
1
ρ

[
∂(ρAφ)

∂ρ
− ∂Aρ

∂φ

]
,

comparison with Eqs. (3) and (5) shows that we can choose
the vector potential in the form

Aρ = h, ρAφ = Λ, Az = g (6)

and
ϕ = −f. (7)

Hence, the Lagrangian (1) becomes

L =
m

2
(ρ̇2 + ρ2φ̇2 + ż2) +

q

c
(hρ̇ + Λφ̇ + gż) + qf, (8)

where we have made use of Eqs. (6) and (7). Sincef, g, h
andΛ are functions of(ρ, z, t) only, φ is an ignorable coor-
dinate and the momentum conjugate toφ must be a constant
of motion:

∂L

∂φ̇
= mρ2φ̇ +

q

c
Λ = const. (9)

Thus, as pointed out at the Introduction, we arrive at a con-
stant of motion that may depend explicitly on the time, due
to the presence ofΛ.

It might seem reasonable that if the electric and magnetic
fields are invariant under rotations about,e.g., thez-axis, then
it should be possible to find potentials sharing this symmetry,
but the things are not so trivial. For instance, in the case of a
uniform electromagnetic field (that is, the Cartesian compo-
nents ofE andB are constant) there do not exist potentials
sharing this symmetry (if the scalar potential and the Carte-
sian components ofA are constant, then the fieldsE andB
would be zero). The symmetry of the equations of motion
need not be shared by the Lagrangian (see,e.g., Ref. [5]).

It is easy to see thatΛ(ρ, z, t) is essentially the magnetic
flux through an imaginary disc centered atρ = 0 on a plane
z = const. In fact, this flux is given by

Φ(ρ, z, t) ≡
∫ 2π

0

[∫ ρ

0

Bz(ρ′, z, t) ρ′dρ′
]

dφ′

then we readily find that

∂Φ
∂ρ

=
∫ 2π

0

Bz(ρ, z, t) ρ dφ′ = 2πρBz(ρ, z, t)

and, making use of Eq. (2),

∂Φ
∂z

= −
∫ 2π

0

[∫ ρ

0

∂
(
ρ′Bρ(ρ′, z, t)

)

∂ρ′
dρ′

]
dφ′

= −2πρBρ(ρ, z, t).

Finally, from the Faraday law in integral form, we have

∂Φ
∂t

= −c

∫ 2π

0

Eφ ρ dφ = −2πcρEφ.

Comparing with Eqs. (3) and (4) it follows that we can
takeΛ = Φ/2π and, from Eq. (9), we have

mρ2φ̇ +
q

2πc
Φ(ρ, z, t) = const (10)

This last equation shows that an arbitrary variation of the
magnetic fluxΦ must be compensated by a variation of
mρ2φ̇, which can be recognized as thez-component of the
usual angular momentum and, therefore, the usual angular
momentum is not conserved (cf. Ref. [4]).

The conclusions obtained up to this point are applicable
for a test charge in an arbitrary electromagnetic field, with
the only condition that the electric and the magnetic fields
be invariant under rotations about thez-axis. Now we shall
make use of the constant of motion (10) in connection with
the Feynman paradox: As described at the Introduction, at
the beginning we havėφ = 0, and the initial value of the
magnetic flux,Φinitial, is different from zero, while the final
value ofΦ is zero. Thus, from equation (10), we have

0 +
q

2πc
Φinitial = mρ2φ̇final + 0

and, therefore, the final value of thez-component of the usual
angular momentum of the entire system isQΦinitial/2πc,
whereQ is the total electric charge (cf. Ref. [2]).
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In the standard methods employed to solve the Feynman
paradox, the initial and final states are separately considered.
As we have shown, such a separation is not necessary; we
can follow the evolution of the system, despite the fact that
the magnetic field is not static.
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