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Lagrangian analysis of the Feynman paradox
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It is shown that the direct use of the Lagrange equations allows us to analyze the entire process involved in the Feynman paradox, withou
having to speak of the angular momentum of the electromagnetic field.
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1. Introduction mechanics), in terms of the circular cylindrical coordinates,
(p, ¢, 2), is given by

The Feynman paradox deals with the apparent violation of

the law of conservation of angular momentum in a system M,y 9in o 4 . ) )

formed by a coil and a set of electric charges (seg, L= 5 (A" +p"0"+2°)+ (ApptpAsd+A.2) —qp, (1)

Refs. [1, 2]). One begins by considering an insulating disc .

that can rotate without friction about the axis passing througHVhe.rem andg are the mass and the electric charge of the

its center, perpendicular to the plane of the disc. Mounted Orqartlcle, respectivelyd,, Ay, A, are the components of the

the disc there is a coil, whose axis coincides with the rotaY€ct" potential of the electromagnetic field with respect to

tion axis, and some electric charges evenly spaced on a Circ}gzortthonormal pafr';so’ ¢ ZI} deﬁrt]edt.b)l/ th(_al_ﬁy“n?”ial co-
concentric with the disc. Initially there is some current cir- ordinates, andp is the scalar potential. (The electromag-

culating in the coil and the disc is at rest; later, the current idretic potentials appearing in the Lagrangidh ¢orrespond

stopped. The application of Faraday’s law of induction leadd® the given electromagnetic field, only excluding the field

to the conclusion that, as the current ceases, there appeé)rr duced by the chargeitself, Wh'.Ch' as usual, is (_:on5|d-
an electric field pushing the charges and the disc acquire red as a test charge. Hence, the fields corresponding to these

angular momentum, giving the impression that the angula|QOtentIaIS must obey the Maxwell equatiofis B = 0 and
momentum is not conserved. VX E=—(1/c) QB/at') . . .
L I We shall restrict ourselves to axially symmetric magnetic
The paradox can be solved by considering that the |n|t|a]f. . ; .
o . ields that may depend on the time. Taking thaxis as the
electromagnetic field, though static, possesses angular mo- . ;
. Symmetry axis, this means that the compondBysBy, B.
mentum (seee.g, Refs. [2,3]). Alternatively, we can see that of the magnetic field are independent of the angl&ince
the angular momentum of the charges is conserved if it is ap-
propriately defined [4], without the need of speaking of the 0_V.B— 10(pB,) 10By 0B,
angular momentum of the electromagnetic field. Ve ; dp + ; 0 oz’
In this paper we give a simplified analysis of the entire . P
process based on the direct application of the Lagrange equ:[arle conditiord B /0¢ = 0, implies that
tions. We show that the Lagrange equations lead to a con- (pB.) _  9(pB,) @
served quantity that reduces to the component of the usual 9z op
angular momentum along the axis of the disc when the elec- . | L . .
tromagnetic field is absent. The procedure presented het¥hich in tumn implies the existence of a functidr(p, =, 1)
stresses the fact that one can have constants of motion thech that A oA
may depend explicitly on the time (but their total derivative pB. = p’ pB, = T o ®)
with respect to the time is equal to zero).
It is assumed that the reader is acquainted with the el
mentary notions of Lagrangian mechanics and electrodyna

ICS.

According to Faraday’s law, a time-dependent magnetic
ield must be accompanied by an electric field, and we shall
Mhssume that there is an electric field present which is also

invariant under the rotations about theaxis. Hence, the
componentss,,, E,, E, of the electric field are independent
of ¢ and the components along and %2 of the equation
V x E = —(1/c) 9B/0t give

The standard Lagrangian for a charged particle in a given OBy, _ 10B, and 13(0E¢) _ 108B,

electromagnetic field (in the framework of non-relativistic T ¢ ot p Op ¢ ot’

2. The Lagrangian and the constant of motion
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respectively. These equations together w@hléad to

0 10A 0 10A

SinceE4 and A do not depend og this means thapEy +
%% is a function oft only which can be absorbed intb.
Thus, A is defined up to an additive constant by Ei$3.and

_1oA

c ot “)

(It should be remarked that the functians defined up to an

pEs =

It might seem reasonable that if the electric and magnetic
fields are invariant under rotations abag, thez-axis, then
it should be possible to find potentials sharing this symmetry,
but the things are not so trivial. For instance, in the case of a
uniform electromagnetic field (that is, the Cartesian compo-
nents ofE andB are constant) there do not exist potentials
sharing this symmetry (if the scalar potential and the Carte-
sian components oA are constant, then the fiel#andB
would be zero). The symmetry of the equations of motion
need not be shared by the Lagrangian (seg, Ref. [5]).

It is easy to see that(p, z, t) is essentially the magnetic

additive constant, which is consistent with the fact that it isflux through an imaginary disc centeredpat= 0 on a plane

part of the constant of motioi®).)

The ¢-component of Faraday’s law can be written in the

f
orm o(—E.)

dp

108y

0E,
c Ot +

0z

:0)

which has the form of the divergence of a vector field in
Cartesian coordinates. Hence, this equation is locally equiv-

alent to the existence of three functiorfsg, h, of (p, z,t)
only such that

_oh 9y _9f _10h

©T 0z 0p " 0p cot

_ 109 _0f

cot 0z ®)

(The functionsf, g, h are defined up to the “gradient” of a
scalar function of(p, z,t) only, but these functions do not
appear in the constant of motic®)()

Taking into account that the expressith = V x A
amounts to

p - 104: 04y _ 94, 04,
P p 09 0z’ 0z dp’
B :1{30"4@_%]
S opl Op ¢ |’

comparison with Egs\3) and 6) shows that we can choose
the vector potential in the form
Ap = h, IOA¢ = A,

and
p=—F (7)
Hence, the Lagrangiad)becomes

L=Z("+ "3 +2)
where we have made use of Ec8) and 7). Sincef, g, h
andA are functions of p, z, t) only, ¢ is an ignorable coor-
dinate and the momentum conjugateftoust be a constant
of motion:

n %(hp + A+ g2) +aqf, (8)

= mp’ + %A = const. (9)

)

z = const. In fact, this flux is given by

2m P
@(p,z,t)E/ [/ B.(p',2,t) p'dp’| d¢’
0 0

then we readily find that

27

02 _ B.(p,2,t) pd¢’ = 2mpB.(p, z,t)
dp 0

and, making use of Eq2],
0 _ _/2” /p 3(p'Bo(p, 2,1)) ap'| 4
9z 0 0 o'

—2mpB,(p, 2,t).
Finally, from the Faraday law in integral form, we have

a0
ot

2
= fc/ Eypdo = —2mepEy.
0

Comparing with Egs.3) and @) it follows that we can

takeA = ® /27 and, from Eq./9), we have

mp? ¢ + i<I>(p, z,t) = const (10)

2me

This last equation shows that an arbitrary variation of the
magnetic flux® must be compensated by a variation of
mp2$, which can be recognized as theecomponent of the
usual angular momentum and, therefore, the usual angular
momentum is not conservedf(Ref. [4]).

The conclusions obtained up to this point are applicable
for a test charge in an arbitrary electromagnetic field, with
the only condition that the electric and the magnetic fields
be invariant under rotations about thexis. Now we shall
make use of the constant of motiobCf in connection with
the Feynman paradox: As described at the Introduction, at
the beginning we haveé = 0, and the initial value of the
magnetic flux®i,itial, is different from zero, while the final
value of® is zero. Thus, from equatiod@), we have

0+ iq’imtial = mp*Pginal + 0
2me

Thus, as pointed out at the Introduction, we arrive at a conand, therefore, the final value of thecomponent of the usual
stant of motion that may depend explicitly on the time, dueangular momentum of the entire system@sb;yisia1/27c,

to the presence of.

where( is the total electric chargef Ref. [2]).
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In the standard methods employed to solve the FeynmaAcknowledgement
paradox, the initial and final states are separately considered.
As we have shown, such a separation is not necessary; wihe author wishes to acknowledge the referee for helpful re-
can follow the evolution of the system, despite the fact thamarks.
the magnetic field is not static.
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