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The antecedent of this contribution is [1], which constructed the harmonic bidimensional expansions for the electrostatic and magnetostatic
potentials, produced by a straight line with uniform charge and uniform current distributions, respectively, in Cartesian, and cylindrical
circular, elliptic and parabolic coordinates. For the successive geometries, the sources are confined in the respective cylinders containing th
source line, plus induced sources in two grounded flat, elliptical and parabolic plates; the potentials are continuous at the source cylinder
and vanish at the grounded plates. In the electrostatic case, the electric intensity field is evaluated as the negative of the gradient of the
potential; in the magnetostatic case, the magnetic induction field is the rotational of the axial potential. Both potential and force fields are
bidimensional, and the equipotential surfaces and force fields are orthogonal. The normal components of the electric field at the source
cylinder show a discontinuity, which according to Gauss’s law is a measure of the surface charge distribution; in contrast, the tangential
components are continuous due to the conservative character of the electrostatic force. The normal components of the induction field are
continuous due to its solenoidad character; its tangential components show a discontinuity which by Ampere’s law is a measure of the linear
current intensity. Figures 1-4 illustrate the equipotentials on the left and electric field lines on the right; and the magnetic field lines on the
left and the equipotentials on the right, exhibiting also their respective orthogonalities. The differences between the electric and magnetic
multipoles are recognized, but we can still ask if there is a connection between them. The answer is given here in terms of the Lorentz
transformations of the four-vector potentials and sources, and of the antisymmetric force field four-tensor.
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1. Introduction tational of the axial magnetostatic potential Egs. (22M): its
normal components at the source boundaries are continuous
due to its solenoidal character; its tangential components are
discontinuous by Ampere’s law Egs. (23M), yielding the har-

. X . e ) ..~ monic linear current densities Egs. (24M). The same bound-
the axis of circular, parabolic a_nd elliptic cylmd_ers, with ary conditions and connections apply at the grounded plates
the consequence that the associated electrostatic or magness (24M). Figures 1-4 illustrate graphically the above con-

Fostapc p_otent|al an_d .force flelds are mde_pendent of the Bections for both electrostatic and magnetostatic cases for the
ial direction, and bidimensional in the circular, parabohc,lower multipolaritiesm = 0, 1, 2, 3. In the electrostatic case

F"'E:'C gndt Cartesian Cct)ﬁ rdmates,t n ef?c;h tranlfvlerse plzn e left side corresponds to cross sections of scalar equipo-
n the Lartesian case there are two Tal paraliel groundefy, a5 and the right side to electric intensity field lines end-
plates, and in the cylindrical elliptic and parabolic there are

I ded olat th . h h | ing or starting perpendicularly to the grounded plates. In the
a'so grounded piates of the respective shapes. he analy agnetostatic case, the left side corresponds to closed mag-
starts from the harmonic expansion of the logarithmic po-

. A ~ " netic induction field lines tangential at the grounded plates,
tentials Egs. (19), (21) satisfying the boundary Cond't'on_sand the right side to cross sections of vector equipotentials.

at the (;esptecn;l/e platgs, and dlstlntgqlsw]ng betweep tlhe "—Lﬂotice in both cases the orthogonality of each pair of Figures,
Nerand outer harmonic Components in th€ SOUTce CIrcle, €y,,q 14 gifferent and complementary reasons. In any case, it
lipse, parabola or plane, as well as their continuity at th

emay be ascertained that by crossing the electrostatic (magne-

same bogndary. In the eIectrostaUq case, the electric InterE()static) field with the axial unit vectdr leads to the magne-
sity field is the negative of the gradient of the scalar poten-

. : tostatic (negative electrostatic) field, and the natural question
tial Egs. (22E): its normal components at the source boundi- ) ; ;

) . . , ~- 1S What is the reason for this?
aries are discontinuous by Gauss'’s law Egs. (23E), yielding
the harmonic surface charge densities Egs. (24E); its tangen- Electrostatics and Magnetostatics were originally investi-
tial components are continuous due to the conservative chagated separately. Electromagnetism as discovered and devel-
acter of the force field. The same boundary conditions an@ped by Oersted, Ampere, Biot and Savart was the first step
connections apply for the grounded plates Egs. (24E). In théo identify their connection. The additional steps by Faraday,

magnetostatic case, the magnetic induction field is the rokenz and Henry describing time dependent magneto-electric

The article in [1] involved the ideal case of sources uni-
formly distributed along an infinite straight line parallel to
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induction; and by Maxwell on the also time dependent electime and longitudinal components in the same proportion and

tromagnetic induction led to the formulation of the Dynam- opposite signs.

ical Theory of the Electromagnetic Field, with its prediction On the other hand, the electric intensity field and the mag-

of the existence of electromagnetic waves [2—6]. netic induction fields as the components of the antisymmetric
On the other hand, Einstein in his 1905 arti@& the force field tensor have transverse components as superposi-

Electrodymamics of Moving Bodi§g] developed the theory tions of their own components and the cross product of the

of Special Relativity, recognizing that Maxwell equations arevelocity of the moving inertial frame with respect to the rest

valid in inertial frames, that the ether hypothesis is superfluframe and their companion field, and their components along

ous, and the speed of light is the same for all observers ithe velocity remain the same:

inertial frames; this allowed him to deduce the space-time

Lorentz transformations, and their kinematic, dynamic and Ey=E;,, Ey=v (Ey - %Bz> ,
electrodynamic consequences. In 1907, Minkowski recog- v

nized the four- dimensionality of space-time, the four-vector B, = (EZ + fo) .

character of the current and charge densities as sources of the ¢

four-vector (trivector and scalar) electromagnetic potentials, By =B,, By=v (By + EEz) ,

and the anti-symmetric four-tensor character of the electro- ¢

magnetic force fields, in his articepace and Timg8]. See B, =~ <Bz _ BEy) ) 2)
also [9]. ¢

These characteristics and their connections are applica- It may be recognized that the cross vector product of the
ble to electrostatic and magnetostatic sources, potentials amglocity and the transverse fields connects with the last line
force fields of the same multipolarity. Correspondingly, in of the first paragraph in the Introduction.

Sec. 2 the Lorentz transformations of four-vectors and four-

tensors are r_ewewed. The respectwe_Lor_er_]tz transformaﬂor*ss. The relativistic connections of potentials,
are applied in Sec. 3 to the harmonic bidimensional poten- .

tials and sources, and electrostatic and magnetostatic force sources and force fields

fields in Ref. [1], for inertial frames with axial and transverse o application of the Lorentz trasformations to the electro-

motlonsr,llllustralltlng th§_|r eXp|IC(Ijth’el||atl\{IStIC _conn_e(,:tlons. Ig static and magnetostatic bidimensional harmonic expansions
Sec. 4 the results are discussed following Einstein's extendegl po¢ (1] js straightforward and implemented next. For the

guestion of How do the electrostatic and magnetostatic ﬁeld§ake of clarity, two changes of notation are made: 1. The

look in the inertial frames? The Lorentz invariants are alsoprime index for the source points in the equations in Ref. [1]

identified. is replaced by a sub index zero, and in this way the prime
index in the moving frame for the Lorentz transformations
can be used directly. Additionally 2. for didactic reasons the
presentation follows the order of C) Cartesian, c) circular, €)
This section presents the coordinate and time transformatiorfdliPtic and p) parabolic geometries. Notice that C) and p)
of events in the rest framé and a moving inertial framg’  involve open boundaries and the same type of harmonic (ex-
with constant velocity along ther axis, with coinciding ori- ~ Ponential and trigonometric) functions; while c) and e) in-
gins and parallel axes at the initial instant of tite= ¢ = 0 volve closed boundaries, and the ellipses become circles and
[2-9]. The same transformations hold for the respective comth€ hyperbolas become their radial asymptotes, in the limit
ponents of source densiti¢/c, \) and the four-vector po- of a vanishing focal distance. The following subsections il-

2. Lorentz transformations

tentials(A, ®). Their explicit forms are respectively: lustrate the superpositions of the respective electrostatic and
) . N . . . .
magnetostatic potentials, sources and force fields for axial
7 =~(z — vt), y=1, r =2, and transverse motions of the S’ inertial frame relative to the
rest frame S in Ref. [1], along the z-axis and y-axis, respec-
t =~ (t — C%x) , Ly =~ —v\), I,=1I, tively. While in C) the unit vectors are common in S’ and

S, for the cylindrical coordinates their respective unit vectors
Lo=1, N=n~ ()\ _ %&) L Ay =~ (Ax _ Eq)) . must be projected on the Cartesian ones in order to imple-
¢ ¢ ment the respective Lorentz transformations.

A?j’ = 141/7 AZ’ = A2’7 @l — fy ((I) — EA;E) . (l) . . .
k : c 3.1. Axial motion along z-axis
wherey = 1/,/1 — v2/c? is the time dilation factor. Since the vector potential and current density are along the

The transverse components remain the same, while the-axis, their transverse components in thaxis andy-axis
longitudinal component is a superposition of the longitudinalvanish in both inertial frame$§ and.S’, and their longitudi-
and time components, in the proportidn: v/c and oppo- nal components and the time component scalar potentials in
site signs; and the time component is the superposition of ths” become the respective superpositions of their counterparts

Rev. Mex. Fis. E20020207



THE RELATIVISTIC CONNECTION BETWEEN HARMONIC BIDIMENSIONAL ELECTROSTATIC AND MAGNETOSTATIC FIELDS 3

in S. Correspondingly, the longitudinal components of the electric intensity and magnetic induction field vanish in both inertial
framesS andS’, and their transverse componentsSinare the superpositions of their own components and the cross product

of the velocity vector and their companion force field. These Lorentz superpositions are shown explicitly for the successive
geometries.

e Cartesian Coordinates

We start with this case because the Lorentz transformations involve the Cartesian components and the time component o
the fields and their sources. Here we take into account the velocity mrdivection, and Egs. in A i) and B i) in Ref. [1].
The respective magnetic and electric field sources are:

v
Iy=0, I,=0, Lo=~I—-v\, XN=nr ()\ _ glz) . 3)

The transformed components of the potentials are:

Ay =A, =0, Ay =A,=0,

4 1 mr(ese)
Ay = E’y([—@)\) Z E(f O sin@sin %7
m=1
P 1 ma(es—=c)
& = 4y (/\ - %1) Y e i T Y (4)
c — m a a

wherez . andz~. are the major and minor valuesofandzx, respectively.
The electric and magnetic fields are:

E, =0, B,=0,

a7 v = _mr(es—eg) oMWYy . MY
Ex/:a'y()\—czl>ﬂ;(:|:)e o sin — == sin —=,
47 v Sl _mr(zs—og) | MTYg mmy
E, = -7 ()\ — 0—21) mzzjl(—)e a sin — == cos ——,
4 _mr(z>—eg) | MTYg mmy
By = —~ (I —v\) e a sin —— cos ——,
ca el a a
4 = _mr(zs—2c) | mmYyg . MY
By = —~ (I —v) a — sin —= 5
== v>m2=1<q:>e sin T2 sin 2 (5)
The difference in signs of the normal components is associated with Gauss’s Law in its boundary condition form.
e Circular Coordinates
Sources
v
Iy =0, I, =0, L. =v(I, —v)\), X' =~ ()\ - ?Iz) . (6)
Potentials:
Ay = A, =0, Ay =A4,=0,
B v 2 2 >~ R™ cosm (¢ — ¢o)
AZ’ =7 (AO — Eq)o) — E')/ (I — UA) 1DR> + E’Y([ — ’U)\)’mZ:1 ET7
o0 Rm _
@’:7(%—3,40)—27 (A—%I) In Ro + 2y (A—%I) Z—;M. @)
c c ¢t/ ~ RY m
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Force Fields:
Ez’ = 07 r = 07
i m—1/pm
By =2y (A= 51) m; (gm / Rﬁﬁa) [(F) cos ¢ cosm(d — do) — sin dsinm(é — o)),
> m—1 m
B =2 (3= 1) X (Gt ) 1) simeosm(6 — ) + cossinm( ol
— (R™ /Ry . .
By ==y (I —v)) R /R [(£) sin g cosm(p — ¢g) — cos psinm(¢p — ¢g)],
m=1
—~ (R™ /R o
By = 21— o) 3 (o s ) () coscosm(o — én) — sin gsinmn(é — dn). ®)
m=1
e Elliptic Coordinates
Sources:
v
Ih=0, I,=0, L=~y —-v\), XN=n </\ - C—le) . )
Potentials:
Ay = A, =0, Ay =4,=0,
A= 27 (I —v)) (ug — us ) (ue —uqp) 5 i si‘nhm(ug —us) sinhm(ue —uy) cosm(v — vg) 7
c Uy — U — sinh m(ug — uy) m
;o v (ug — us)(ue — sinhm(ug — us) sinh m(uc — uq) cosm(v — vy)
=2y </\ cZI) l Uy — Uq 22 sinhm(ug — uy) m ' (10)
Force Fields:
E. =0, B.=0

E,

ﬁ ()\— C%I) {sinhucosv(

/ h2
u
u—u1

X {sinh U COS v cosh (

Ey =—

i]; ()\f —I) {smhucosv

U*Ul

X {cosh u sin v cosh (

B, = ’y% (I —v\) { sinhucosv~——%— (

X {sinh 1 cos v sinh (

2—u

(u2 — o)
ug — U1

)
C

~ sinh (m(w - “0))

m(ug — uq)
+2 -
mZ=1 sinh m(ug — uq)

Up — Uy
m(ug — u)

o sini (1012 )
0 — 1
+2 .
mz=1 sinh m(ug — uq)

m(ug — u)

EL 2 —uuo > o sinh ( (52 N ZOD

0— U1 0— U1
2

Uy — U + Z sinh m(us — uq)
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osm(v — vg) + cosh u sin v sinh (m(u B u1)> sinm(v — vo)] },

(Uz - Uo
Uo — U1

U2 — U1

cosm(v — vg) — sinh u cos v sinh (m(u B u1)> sinm(v — vo)] },

sinm(v — vg) — cosh u sin v cosh (m(u B u1)> cosm(v — vo)] },
m(ug —u)
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(_(UQ N u0)> s sinh <m(“2 - Uo))
B 2/ (I—v)\){sinhucosv Yo~ th +2Z — m(uo — uy)

v = 7@ Ug — U — hm(ug — uq)
X |sinh u cos v cosh m(u - 1) cosm(v — vg) + cosh u sin v sinh m(u =) sinm(v — vo) (11)
m(ug — u) 0 m(ug — u) 0 .
e Parabolic Coordinates
Sources:
Ipy=0, I,=0, L=+l —v\, X=¢ ()\ — %I) . (12)
C
Potentials:
Ay =A, =0, Ay =A4,=0,
4 X1 —mrEs—£) _ _
Av ="y (I=vX) Y —e” - sin mlio = m) g, mr(n = m)
¢ m=1 m M2~ M2 =™
X1 —maEs—€<) — _
O = 4y (A - 31) S ST sin mrno = m) g, mr(n = m) (13)
c m:lm T2 — 1 2 — M
Force Fields:

Ez’ = 07 BZ’ = 07

v 47 . _mra—t0) | mm(ny —1n) mr(n—m) & mm(n —m)
By (A= 0) TS o i T 1) [(:m oM =m) & g nm]
¢ he(n2 —m) 1 2 =1 he N2 — M he N2 — M
v Ar O~ omreeg) m(igo — 1) [ £ mrlp—m) 7n mﬂ(n—m)}
E,= ()\——I) —_— —)e n2-m  gin ——— |(F) —cos ——— + —sin ——=
v h&(nzfm)mz::l( ) N2 —m )h»s N2 =M he N2 =M
4 X mr(es—£<) _ — _
By=v (I-vA S — Z e mem o sin 7m7r(770 n) {(:F) £ cos 7m7r(77 m) + 1 gin 7””(77 771)}
che(nz —m) = N2 = he N2 = he N2 — M
4 P P9 - - -
By=y(I=0A) 3¢ mn sin mr (o — ) {(JF) oM =m) & g m( = m) "1)} . (14)
che(nz — 1) N2 —m he N2 —m he N2 — M

m=1

For the four geometries, the vanishing of the transvefssmdz andy’andy components of sources and potentials, as well
as the Lorentz-transformation mixings of their axial and scalar components, in the first set of equations are common. In turn,
the last set of equations show the common vanishing axial components of the force fields, and the Lorentz-transformations
of their transverse components. The cross product of the axial velocity with the other field connects with the remarks about
the cross product of the axial unit vector at the end of the first paragraph in the Introduction, and at the end of Sec. 2, thus
answering the corresponding question. Notice also the common mixing proportions in the sources appearing in the potentials
and in the force fields, allowing for the changes in sign associated with the cross products. The transverse force fields in the
axially moving frameS’ share the same distributions as in fi#ame, and their magnitudes are determined by the magnitudes
of the Lorentz transformed sourcés and )\’ for all geometries.

The space-time Lorentz Transformations Eq. (1) being linear are also valid for the three differential displacements and
time. For the axial displacementiz Lorentz contracted to' z= ~z, for ' = 0, simultaneously in5’. The consequences in
the axial current intensity and linear charge sources, and in the respective potentials, as four-vectors are recognized in thei
respective Lorentz transformations in the first pair of equations for each geometry. Their transverse comporasrtg are
zero inS, and also inS’. The Lorentz transformations of the force fields include: the vanishing of their axianponents
in both.S' and.S’; and the superposition of their own corresponding components with tinee dilatation factor and the other
transverse component of the companion field with-tlendv/c factors, as well as the combinations of the current and charge
sources of their respective potentials. Their transverse distributions are the séhaahin.S, for each component and in the
four geometries, with the primed sources of the first equations for each geometry.

Rev. Mex. Fis. E20020207
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3.2. Transverse motion along y-axis

We recognize the parity properties under the exchange lof - = in the Figures in Ref. [1], which are preserved for the
direction of motion chosen in this Subsection. Consequently, the y component of the vector and the scalar potential, as the
time component in S are superposed in their respective Lorentz transformations, yielding their primed countefparts in
additionally, A, = A, andA,, = A, = 0. The same holds for the respective components of the four-vector current-charge
densities, includind,, = I, andI,, = I, = 0. On the other hand, for the force fields their components in the direction of
motion remain the sameé,, = £, andB,, = B,, while their transverse components become the superpositions of themselves
and the cross products ofin the z-direction and their companion force field. The corresponding results are also obtained for
the successive geometries.

e Cartesian Coordinates

Sources
I, =0, Iy = —yvl, L'=1, )N =~\ (15)
Potentials:
Ay =0
P 1 ma(es—ec)
Ay = —794/\ Z e T sin Yo sin 7m7ry7
c Afm a a
4[ =1 7m7r(w> ©<) . mmYyy . MY
— Z — sin —=— sin —=,
c m
m=1
X1 mrles-—u
&' = v4) Z —e” 5 sin Y0 iy Y. (16)
—m a a
Force Fields:

B 4T i( ) _mr(es—2g) | mmyo mmy
r=— —)e a sin —— cos —=
Y a a ’

a
m=1
(oo}
vdrl _mres-r) | MTYo mmy
E,=y—— (—)e @ sin cos ——,
¢ ca =~ a a
o0
4T\ _mrles—2g) | MTYy . MAY
E, =~v— E (Fe a sin —— sin ——,
a a a
m=1
o0
47 _mr@s—zl)  MTYy . MTY
By = — E (Fe a sin —— sin —=,
ca a a
m=1

v 4\ i(q:)e,w . MmTYo . MTY

B, =~y—— a sin —=— gin —=,
C a a
m=1
4] mr(zs —z)
By = ”Yi Z e T sin Mo cos mry. (17)
a a
e Circular Coordinates
Sources
I, =0, Iy = —yvA, I, =1, N =\ (18)
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Potentials:
Ay =0
R” cosm (¢ — ¢')
A, = dg — 2A1 2\ _—
y [ 0 n Ry + Z R m )
2 R?
I A0_<1HR>+Z cosm<¢¢o>>]
— RZ m
— R cosm (¢ — o)
P = — S S T I
~y [@0 2\ <1n R- + mzzjl R - (19)
Force Fields:

R™M— 1/Rm . .
E, =2\ Z ( oy Rmﬂ) [(F) sin ¢ cos m(e — o) + cos ¢sin (¢ — do)]

m—1/pm
2Iv (ggn/R/’”R&) [(F) sin @ sinm(é — ¢o) + cos g cosm(¢ — ¢o)]

m—1
B =022 Y (o ) 1) cososm(s o) sinsinm(s — )]

m=1

21 <~ (R™ /Ry o
By = - 2. (R{)"/R/"”Ol) [(F) cos pcosm(¢p — ¢g) — sin psinm(¢p — ¢o)],
2v R™1 Ry . .
B =75\ Z ( 7/ ]{mH) () cos dcos m(g — o) — sin gsinm(o — o)),
2] o R™ /Ry o
B, = Lo Z (-) (RS”/R/'”&) [(F) singsinm(¢p — ¢g) + cos @ cosm(p — ¢g)] - (20)
m=1
e Elliptic Coordinates
Sources
Iz’ = 0’ Iy/ = 7")/’0)\, Iz/ = [z, )\/ = "}/)\ (21)
Potentials:
Ax’ = 07
Ay — —279)\ (ug — us)(ue —ug) i i si‘nhm(ug — us ) sinhm(uc — uq) cosm(v — vg) ,
c Ug — Uy — sinh m(us — uy) m
A= 21 [(UQ —us )(uc — + Z sinhm(us — us) sinhm(u< — uy) cosm(v — vo)] 7
c Uy — UL sinh m(ug — uq) m
' — 2\ l(UQ—U>) Ue — "‘QZ sinh m(uz — us ) sinh m(u <—u1)cosm(v—v0)1 . (22)
Uy — U sinh m(ug — uy) m
Force Fields:

( (uz — uo)) sinh ( m(up — uo))
2\ f U — U1 > m(uo — u1)
E, = ——{ sinh E

Y h2 {sm v Uy — Uy +2 sinh m(us — uq)

X |cosh u sin v cosh m(u—w) cosm(v — vg) — sinh u cos v sinh m(u =) sinm(v —vo)| ¢,
m(ug —u) m(ug — u)

Rev. Mex. Fis. E20020207
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" () | i (e an)
E. = vzt sinhucosvo— Z 0 !
cch? Uy — Uy — sinhm(us — uq)
X [sinhucos vsinh (nmlgz - ullt;) sinm(v — vg) + coshu sin v cosh <
o —
2\ f (_1(1“2 _UUO)) o, sinh (282 _ ZOD
0 — U1 0— U1
By = 2L sinhucoso~—"—— 2 42
v h2 { St cosy Uy — U + 'rnz::l sinh m(us — uq)
X [sinhucosvcosh (ZEZ B u;%) cosm(v — vg) + cosh u sin v sinh (
5 —
21} Caa) | e (i)
By = —%4 sinhucosv———+ o ! +2 Z o !
ch? Uy — Uy sinhm(ug — uq)
X [sinhucosvcosh (ZEZ B u;%) cos m(v — vg) + coshusin v sinh (
5 —
22/ Caa?) | e ()
B, = fyg— sinh u cos v ———%* 1o ! + 2 Z o !
c h? Uy — UL sinh m(us — uy)
o m(u —uy)

{sinh U COS ¥ cosh <
m(us —u)

21

f{ sinhucosv<

- Pychi

X {sinh u cos sinh (m(u N ul))
m(ug — u)

e Parabolic Coordinates

Sources

Iw’ = 07

Potentials:

—(uz — uo)
U — U1
Ug — U

~ sinh

*22.

) cosm(v — vg) + cosh u sin v sinh (
m(ug — UO))

( (uo — 1)

sinhm(ug — uq)

sinm(v — vg) + cosh u sin v cosh (

Iy’ = —YVA, I, =1,

1 _mr(es—¢<)

m(u — uq)
m(us — u)

m(u— uq)

m(ug — u)

m(u—uq)

m(ug — u)

m(u—uq)

m(us — u)

m(u — uq)

m(us — u)

N =\

)cosm(v — )| }
Jsinm(o - o) }
Jsinm(o o) }

Jsinm(o - o) }

/ - —
Ay = ==Y —e T sin T8 (' =m) . mm(n—m)
m=1"" 2 =M N2 — M
> —mr(es —g0) _ _
A,y = 4 Z leW sin mm (1o — M) sin mn(n—n)
Cmm ™ 2= N2 —Mm
= “mr(es —60) _ _
P = y4\ Z LTS i m (1o — ) sin ma (1 7]1)'
= M2 — M N2 — M
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Force Fields:
> mr(es <) — — -
B, - Z Smrased)  mm(no — 1) {77 cog (0 = m) (;)i s M (n 771)}
e(nz —m) ~— n2—m  Lhe N2 —m he M2 —m
Al = _mres—£0) _ _ _
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For the motion in the transverse directigof S’ relative
to S, thez’ andz’ components of the current and vector po-' connections among the components of the force fields in-
tential remain as their counterparts st the first one being cluding the differences in their signs. It is also appropriate to

zero. They components are also zero, and tfiecompo-
nent of the current is-yv\, and the)\’ is v\ , the first equa-
tion for each geometry; and likewise for thy¢ component

point out that the connections between the electric intensity
field and the magnetic induction field are provided, in gen-
eral, by Faraday’s magnetoelectric induction and Maxwell’s

of the vector potential and the scalar potential. For the forcelectromagnetic induction laws, including the difference in

fields theiry’ andy components are the same, and theand

signs and their orthogonality. The physical interpretation of

z components are mixed in their Lorentz transformations inthe superpositions of the longitudinal and time components
their primed components; since theicomponents are zero, of potentials and sources, and of the transverse components
E. = —v¢By, By = vE;, By = v2E,, By = 7B, of the fields is straightforward for axial motion, preserving

In the last set of equations for each geometry, the respedhe same transverse distributions as in the rest frame in each
tive primed sources can be identified, as well as the primedeometry; and with the common superposition coefficients
sources of the companion field due to the motiorfbfela-  combining the products of the coefficients in the Lorentz
tive to Swith velocity vin they direction. transformation and the source intensitieél — vA), y(A —
(v/c)I) for potentials and sources, and the same ones with
the appropriate changes in sign for the force fields. In the
case of transverse motion along the y-axis the transformed
components of sources potentials and force fields are:
In the Introduction a comparison of the electrostatic and mag-

4. Discussion

— 5 = — = / =
netostatic harmonic bidimensional fields of [1] was made, Ly =0, I A L =L, N=9i
W|th.emphaS|s in th_elr dn‘ferencgs and co.mplementarl_tlt_as, Ay =0, Ay = _79@7 Ay = A, @ =~
leading to the question about their connection. Recognizing c
the connections of the electric intensity and magnetic induc- E, =E, E.= —WEBM By = ~E,.
tion fields under the cross product with the unit axial vector, c
and asking about its reasons. Naturally, the titles of the Ar- B ;v B
ticle and of Sec. 2 emphasize that the Lorentz transforma- By =By, B.= VEE'”’ Bor =7Bs (27)

tions of Special Relativity provide the connections between  There was no current, and I, is due to the motion of
the space and time components of the electromagnetic potetire line of charge from the point of view &f, and likewise
tials, sources and force fields, including the electrostatic anbr the respective components of the potentials. The respec-
magnetostatic ones. tive components of the sources are also identified in the last
Section 3 illustrates the explicit forms of such connec-set of equations for each geometry. Since the vector potential
tions for the fields in the successive geometries and boundaiyg axial in.S and transverse and to the motion, it remains the
conditions for 1. Axial motion along the-axis, and 2. Trans- same inS’. The scalar potential i’ is v times the scalar
verse motion along thg-axis. In the case of axial motion, the potential inS. Since the force fields are transverse in the
Lorentz Transformations contain directly the reasons for thex — y plane inS, theiry’-components remain the same as in
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S, and theirz’ andz’ components are the superpositions offor axial and transverse motions, respectively. The most im-
their counterparts ity with vanishingz-components. Thisis portant consequence is to recognize that the electrostatic and
the difference of the transverse transformations compared tmagnetostatic fields in the rest frame become time dependent
the axial ones. in the moving inertial frame, because the sources are moving
The orthogonality of the electric intensity and magneticaway. This is a familiar situation for the Coulomb field.
induction field is also associated with the Lorentz invariant: The force fields components can be obtained from the
derivatives of the potentials. The electric intensity field is

_E.R/
E-B=E-B. (28) the negative gradient of the scalar potential and the negative
which has the value zero in this case. partial derivative of the vector potential ; and the magnetic
The other invariant is proportional to the Lagrangian den-nduction field is the rotational of the vector potential.
sity of the electromagnetic field: From the respective components of the four vector po-
tentials: the rotational of its space component leads to the
B-B_E-E=B-B —FEF, (29) b P

primed magnetic induction field, and the negative gradient of
which is positive for the magnetostatic field, negative forthe time component minus the time derivative of the space
the electrostatic field and zero for the radiation field. Equacomponent leads to the primed electric intensity field, lead-
tions (28) and (29) may be proven by using the Lorentz transing to the same results as in Sec. 3. This is also an example
formations of the respective fields, or for any of the explicitOf the covariance of the Maxwell equations in any inertial
harmonic bidimensional fields in the successive geometriesframe.

In Sec. 3 we have focused on the Lorentz transformations In conclusion, this contribution exhibits explicitly the rel-
between the respective potentials, sources and force fieldstivistic connection of the bidimensional harmonic electro-
leaving them in terms of the space coordinates in the resstatic and magnetostatic sources, potentials and force fields,
frame. The task can be completed by taking the additionain inertial frames with axial and transverse motions, in four
step of including the Lorentz transformation from the mov-different geometries.
ing frame to the rest frame:
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