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The antecedent of this contribution is [1], which constructed the harmonic bidimensional expansions for the electrostatic and magnetostatic
potentials, produced by a straight line with uniform charge and uniform current distributions, respectively, in Cartesian, and cylindrical
circular, elliptic and parabolic coordinates. For the successive geometries, the sources are confined in the respective cylinders containing the
source line, plus induced sources in two grounded flat, elliptical and parabolic plates; the potentials are continuous at the source cylinder
and vanish at the grounded plates. In the electrostatic case, the electric intensity field is evaluated as the negative of the gradient of the
potential; in the magnetostatic case, the magnetic induction field is the rotational of the axial potential. Both potential and force fields are
bidimensional, and the equipotential surfaces and force fields are orthogonal. The normal components of the electric field at the source
cylinder show a discontinuity, which according to Gauss’s law is a measure of the surface charge distribution; in contrast, the tangential
components are continuous due to the conservative character of the electrostatic force. The normal components of the induction field are
continuous due to its solenoidad character; its tangential components show a discontinuity which by Ampere’s law is a measure of the linear
current intensity. Figures 1-4 illustrate the equipotentials on the left and electric field lines on the right; and the magnetic field lines on the
left and the equipotentials on the right, exhibiting also their respective orthogonalities. The differences between the electric and magnetic
multipoles are recognized, but we can still ask if there is a connection between them. The answer is given here in terms of the Lorentz
transformations of the four-vector potentials and sources, and of the antisymmetric force field four-tensor.
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1. Introduction

The article in [1] involved the ideal case of sources uni-
formly distributed along an infinite straight line parallel to
the axis of circular, parabolic and elliptic cylinders, with
the consequence that the associated electrostatic or magne-
tostatic potential and force fields are independent of the ax-
ial direction, and bidimensional in the circular, parabolic,
elliptic and Cartesian coordinates, in each transverse plane.
In the Cartesian case there are two flat parallel grounded
plates, and in the cylindrical elliptic and parabolic there are
also grounded plates of the respective shapes. The analysis
starts from the harmonic expansion of the logarithmic po-
tentials Eqs. (19), (21) satisfying the boundary conditions
at the respective plates, and distinguishing between the in-
ner and outer harmonic components in the source circle, el-
lipse, parabola or plane, as well as their continuity at the
same boundary. In the electrostatic case, the electric inten-
sity field is the negative of the gradient of the scalar poten-
tial Eqs. (22E): its normal components at the source bound-
aries are discontinuous by Gauss’s law Eqs. (23E), yielding
the harmonic surface charge densities Eqs. (24E); its tangen-
tial components are continuous due to the conservative char-
acter of the force field. The same boundary conditions and
connections apply for the grounded plates Eqs. (24E). In the
magnetostatic case, the magnetic induction field is the ro-

tational of the axial magnetostatic potential Eqs. (22M): its
normal components at the source boundaries are continuous
due to its solenoidal character; its tangential components are
discontinuous by Ampere’s law Eqs. (23M), yielding the har-
monic linear current densities Eqs. (24M). The same bound-
ary conditions and connections apply at the grounded plates
Eqs. (24M). Figures 1-4 illustrate graphically the above con-
nections for both electrostatic and magnetostatic cases for the
lower multipolaritiesm = 0, 1, 2, 3. In the electrostatic case,
the left side corresponds to cross sections of scalar equipo-
tentials and the right side to electric intensity field lines end-
ing or starting perpendicularly to the grounded plates. In the
magnetostatic case, the left side corresponds to closed mag-
netic induction field lines tangential at the grounded plates,
and the right side to cross sections of vector equipotentials.
Notice in both cases the orthogonality of each pair of Figures,
due to different and complementary reasons. In any case, it
may be ascertained that by crossing the electrostatic (magne-
tostatic) field with the axial unit vector̂k leads to the magne-
tostatic (negative electrostatic) field, and the natural question
is: What is the reason for this?

Electrostatics and Magnetostatics were originally investi-
gated separately. Electromagnetism as discovered and devel-
oped by Oersted, Ampere, Biot and Savart was the first step
to identify their connection. The additional steps by Faraday,
Lenz and Henry describing time dependent magneto-electric
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induction; and by Maxwell on the also time dependent elec-
tromagnetic induction led to the formulation of the Dynam-
ical Theory of the Electromagnetic Field, with its prediction
of the existence of electromagnetic waves [2–6].

On the other hand, Einstein in his 1905 articleOn the
Electrodymamics of Moving Bodies[7] developed the theory
of Special Relativity, recognizing that Maxwell equations are
valid in inertial frames, that the ether hypothesis is superflu-
ous, and the speed of light is the same for all observers in
inertial frames; this allowed him to deduce the space-time
Lorentz transformations, and their kinematic, dynamic and
electrodynamic consequences. In 1907, Minkowski recog-
nized the four- dimensionality of space-time, the four-vector
character of the current and charge densities as sources of the
four-vector (trivector and scalar) electromagnetic potentials,
and the anti-symmetric four-tensor character of the electro-
magnetic force fields, in his articleSpace and Time[8]. See
also [9].

These characteristics and their connections are applica-
ble to electrostatic and magnetostatic sources, potentials and
force fields of the same multipolarity. Correspondingly, in
Sec. 2 the Lorentz transformations of four-vectors and four-
tensors are reviewed. The respective Lorentz transformations
are applied in Sec. 3 to the harmonic bidimensional poten-
tials and sources, and electrostatic and magnetostatic force
fields in Ref. [1], for inertial frames with axial and transverse
motions, illustrating their explicit relativistic connections. In
Sec. 4 the results are discussed following Einstein’s extended
question of How do the electrostatic and magnetostatic fields
look in the inertial frames? The Lorentz invariants are also
identified.

2. Lorentz transformations

This section presents the coordinate and time transformations
of events in the rest frameS and a moving inertial frameS′

with constant velocityv along thex axis, with coinciding ori-
gins and parallel axes at the initial instant of timet′ = t = 0
[2–9]. The same transformations hold for the respective com-
ponents of source densities(I/c, λ) and the four-vector po-
tentials(A,Φ). Their explicit forms are respectively:

x′ = γ(x− vt), y = y′, z = z′,

t′ = γ
(
t− v

c2
x
)

, Ix′ = γ (Ix − vλ) , Iy′ = Iy,

Iz′ = Iz, λ′ = γ
(
λ− v

c2
Ix

)
, Ax′ = γ

(
Ax − v

c
Φ

)
,

Ay′ = Ay, Az′ = Az, Φ′ = γ
(
Φ− v

c
Ax

)
. (1)

whereγ = 1
/√

1− v2/c2 is the time dilation factor.
The transverse components remain the same, while the

longitudinal component is a superposition of the longitudinal
and time components, in the proportion1 : v/c and oppo-
site signs; and the time component is the superposition of the

time and longitudinal components in the same proportion and
opposite signs.

On the other hand, the electric intensity field and the mag-
netic induction fields as the components of the antisymmetric
force field tensor have transverse components as superposi-
tions of their own components and the cross product of the
velocity of the moving inertial frame with respect to the rest
frame and their companion field, and their components along
the velocity remain the same:

Ex′ = Ex, Ey′ = γ
(
Ey − v

c
Bz

)
,

Ez′ = γ
(
Ez +

v

c
By

)
.

Bx′ = Bx, By′ = γ
(
By +

v

c
Ez

)
,

Bz′ = γ
(
Bz − v

c
Ey

)
. (2)

It may be recognized that the cross vector product of the
velocity and the transverse fields connects with the last line
of the first paragraph in the Introduction.

3. The relativistic connections of potentials,
sources and force fields

The application of the Lorentz trasformations to the electro-
static and magnetostatic bidimensional harmonic expansions
in Ref. [1] is straightforward and implemented next. For the
sake of clarity, two changes of notation are made: 1. The
prime index for the source points in the equations in Ref. [1]
is replaced by a sub index zero, and in this way the prime
index in the moving frame for the Lorentz transformations
can be used directly. Additionally 2. for didactic reasons the
presentation follows the order of C) Cartesian, c) circular, e)
elliptic and p) parabolic geometries. Notice that C) and p)
involve open boundaries and the same type of harmonic (ex-
ponential and trigonometric) functions; while c) and e) in-
volve closed boundaries, and the ellipses become circles and
the hyperbolas become their radial asymptotes, in the limit
of a vanishing focal distance. The following subsections il-
lustrate the superpositions of the respective electrostatic and
magnetostatic potentials, sources and force fields for axial
and transverse motions of the S’ inertial frame relative to the
rest frame S in Ref. [1], along the z-axis and y-axis, respec-
tively. While in C) the unit vectors are common in S’ and
S, for the cylindrical coordinates their respective unit vectors
must be projected on the Cartesian ones in order to imple-
ment the respective Lorentz transformations.

3.1. Axial motion along z-axis

Since the vector potential and current density are along the
z-axis, their transverse components in thex-axis andy-axis
vanish in both inertial framesS andS′, and their longitudi-
nal components and the time component scalar potentials in
S′ become the respective superpositions of their counterparts

Rev. Mex. Fis. E20020207



THE RELATIVISTIC CONNECTION BETWEEN HARMONIC BIDIMENSIONAL ELECTROSTATIC AND MAGNETOSTATIC FIELDS 3

in S. Correspondingly, the longitudinal components of the electric intensity and magnetic induction field vanish in both inertial
framesS andS′, and their transverse components inS′ are the superpositions of their own components and the cross product
of the velocity vector and their companion force field. These Lorentz superpositions are shown explicitly for the successive
geometries.

• Cartesian Coordinates

We start with this case because the Lorentz transformations involve the Cartesian components and the time component of
the fields and their sources. Here we take into account the velocity in thez-direction, and Eqs. in A i) and B i) in Ref. [1].

The respective magnetic and electric field sources are:

Ix′ = 0, Iy′ = 0, Iz′ = γ(Iz − vλ), λ′ = γ
(
λ− v

c2
Iz

)
. (3)

The transformed components of the potentials are:

Ax′ = Ax = 0, Ay′ = Ay = 0,

Az′ =
4
c
γ (I − vλ)

∞∑
m=1

1
m

e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

Φ′ = 4γ
(
λ− v

c2
I
) ∞∑

m

1
m

e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
, (4)

wherex< andx> are the major and minor values ofx andx0 respectively.
The electric and magnetic fields are:

Ez′ = 0, Bz′ = 0,

Ex′ =
4π

a
γ

(
λ− v

c2
I
) ∞∑

m=1

(∓) e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

Ey′ =
4π

a
γ

(
λ− v

c2
I
) ∞∑

m=1

(−)e−
mπ(x>−x<)

a sin
mπy0

a
cos

mπy

a
,

Bx′ =
4π

ca
γ (I − vλ)

∞∑
m=1

e−
mπ(x>−x<)

a sin
mπy0

a
cos

mπy

a
,

By′ =
4π

ca
γ (I − vλ)

∞∑
m=1

(∓) e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
. (5)

The difference in signs of the normal components is associated with Gauss’s Law in its boundary condition form.

• Circular Coordinates

Sources:

Ix′ = 0, Iy′ = 0, Iz′ = γ(Iz − vλ), λ′ = γ
(
λ− v

c2
Iz

)
. (6)

Potentials:

Ax′ = Ax = 0, Ay′ = Ay = 0,

Az′ = γ
(
A0 − v

c
Φ0

)
− 2

c
γ (I − vλ) ln R> +

2
c
γ(I − vλ)

∞∑
m=1

Rm
<

Rm
>

cosm (φ− φ0)
m

,

Φ′ = γ
(
Φ0 − v

c
A0

)
− 2γ

(
λ− v

c2
I
)

ln R> + 2γ
(
λ− v

c2
I
) ∞∑

m=1

Rm
<

Rm
>

cos m (φ− φ0)
m

. (7)
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Force Fields:

Ez′ = 0, Bz′ = 0,

Ex′ = 2γ
(
λ− v

c2
I
) ∞∑

m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) cos φ cos m(φ− φ0)− sin φ sin m(φ− φ0)] ,

Ey′ = 2γ
(
λ− v

c2
I
) ∞∑

m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) sin φ cosm(φ− φ0) + cos φ sin m(φ− φ0)] ,

Bx′ =
2
c
γ (I − vλ)

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(±) sin φ cos m(φ− φ0)− cos φ sin m(φ− φ0)] ,

By′ =
2
c
γ (I − vλ)

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) cos φ cos m(φ− φ0)− sin φ sin m(φ− φ0)] . (8)

• Elliptic Coordinates

Sources:

Ix′ = 0, Iy′ = 0, Iz′ = γ(Iz − vλ), λ′ = γ
(
λ− v

c2
Iz

)
. (9)

Potentials:

Ax′ = Ax = 0, Ay′ = Ay = 0,

Az′ =
2
c
γ (I − vλ)

[
(u2 − u>)(u< − u1)

u2 − u1
+ 2

∞∑
m=1

sinhm(u2 − u>)
sinhm(u2 − u1)

sinhm(u< − u1) cos m(v − v0)
m

]
,

Φ′ = 2γ
(
λ− v

c2
I
) [

(u2 − u>)(u< − u1)
u2 − u1

+ 2
∞∑

m=1

sinhm(u2 − u>)
sinhm(u2 − u1)

sinhm(u< − u1) cos m(v − v0)
m

]
. (10)

Force Fields:

Ez′ = 0, Bz′ = 0

Ex′ = γ
2f

h2
u

(
λ− v

c2
I
){

sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0) + cosh u sin v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

] }
,

Ey′ =− γ
2f

h2
u

(
λ− v

c2
I
) {

sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
cosh u sin v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0)− sinhu cos v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

] }
,

Bx′ = γ
2f

ch2
u

(I − vλ)

{
sinh u cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v sinh

(
m(u− u1)
m(u2 − u)

)
sinm(v − v0)− cosh u sin v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0)

] }
,
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By′ = γ
2f

ch2
u

(I − vλ)

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0) + cosh u sin v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

]}
. (11)

• Parabolic Coordinates

Sources:

Ix′ = 0, Iy′ = 0, Iz′ = γ(Iz − vλ), λ′ = γ
(
λ− v

c2
Iz

)
. (12)

Potentials:

Ax′ = Ax = 0, Ay′ = Ay = 0,

Az′ =
4
c
γ (I − vλ)

∞∑
m=1

1
m

e
−mπ(ξ>−ξ<)

(η1−η2) sin
mπ(η0 − η1)

η2 − η1
sin

mπ(η − η1)
η2 − η1

,

Φ′ = 4γ
(
λ− v

c
I
) ∞∑

m=1

1
m

e
−mπ(ξ>−ξ<)

(η1−η2) sin
mπ(η0 − η1)

η2 − η1
sin

mπ(η − η1)
η2 − η1

. (13)

Force Fields:

Ez′ = 0, Bz′ = 0,

Ex′=γ
(
λ− v

c2
I
) 4π

hξ(η2 − η1)

∞∑
m=1

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

η

hξ
cos

mπ(η − η1)
η2 − η1

− ξ

hξ
sin

mπ(η − η1)
η2 − η1

]
,

Ey′=γ
(
λ− v

c2
I
) 4π

hξ(η2 − η1)

∞∑
m=1

(−)e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

ξ

hξ
cos

mπ(η − η1)
η2 − η1

+
η

hξ
sin

mπ(η − η1)
η2 − η1

]
,

Bx′=γ (I−vλ)
4π

chξ(η2 − η1)

∞∑
m=1

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

ξ

hξ
cos

mπ(η − η1)
η2 − η1

+
η

hξ
sin

mπ(η − η1)
η2 − η1

]
,

By′=γ (I−vλ)
4π

chξ(η2 − η1)

∞∑
m=1

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

η

hξ
cos

mπ(η − η1)
η2 − η1

− ξ

hξ
sin

mπ(η − η1)
η2 − η1

]
. (14)

For the four geometries, the vanishing of the transversex′ andx andy′andy components of sources and potentials, as well
as the Lorentz-transformation mixings of their axial and scalar components, in the first set of equations are common. In turn,
the last set of equations show the common vanishing axial components of the force fields, and the Lorentz-transformations
of their transverse components. The cross product of the axial velocity with the other field connects with the remarks about
the cross product of the axial unit vector at the end of the first paragraph in the Introduction, and at the end of Sec. 2, thus
answering the corresponding question. Notice also the common mixing proportions in the sources appearing in the potentials,
and in the force fields, allowing for the changes in sign associated with the cross products. The transverse force fields in the
axially moving frameS′ share the same distributions as in theS frame, and their magnitudes are determined by the magnitudes
of the Lorentz transformed sourcesIz′ andλ′ for all geometries.

The space-time Lorentz Transformations Eq. (1) being linear are also valid for the three differential displacements and
time. For the axial displacement z. is Lorentz contracted to z.

′ = γz., for t.
′ = 0, simultaneously inS′. The consequences in

the axial current intensity and linear charge sources, and in the respective potentials, as four-vectors are recognized in their
respective Lorentz transformations in the first pair of equations for each geometry. Their transverse components inx andy are
zero inS, and also inS′. The Lorentz transformations of the force fields include: the vanishing of their axialz components
in bothS andS′; and the superposition of their own corresponding components with theγ time dilatation factor and the other
transverse component of the companion field with theγ andv/c factors, as well as the combinations of the current and charge
sources of their respective potentials. Their transverse distributions are the same inS′ and inS, for each component and in the
four geometries, with the primed sources of the first equations for each geometry.
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3.2. Transverse motion along y-axis

We recognize the parity properties under the exchange ofx by - x in the Figures in Ref. [1], which are preserved for the
direction of motion chosen in this Subsection. Consequently, the y component of the vector and the scalar potential, as the
time component in S are superposed in their respective Lorentz transformations, yielding their primed counterparts inS′;
additionally,Az′ = Az andAx′ = Ax = 0. The same holds for the respective components of the four-vector current-charge
densities, includingIz′ = Iz andIx′ = Ix = 0. On the other hand, for the force fields their components in the direction of
motion remain the sameEy′ = Ey andBx′ = Bx, while their transverse components become the superpositions of themselves
and the cross products ofv in thex-direction and their companion force field. The corresponding results are also obtained for
the successive geometries.

• Cartesian Coordinates

Sources:

Ix′ = 0, Iy′ = −γvλ, Iz
′ = Iz, λ′ = γλ. (15)

Potentials:

Ax′ = 0,

Ay′ = −γ
v

c
4λ

∞∑
m=1

1
m

e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

Az′ =
4I

c

∞∑
m=1

1
m

e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

Φ′ = γ4λ

∞∑
m

1
m

e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
. (16)

Force Fields:

Ey′ =
4πλ

a

∞∑
m=1

(−)e−
mπ(x>−x<)

a sin
mπy0

a
cos

mπy

a
,

Ez′ = γ
v

c

4πI

ca

∞∑
m=1

(−)e−
mπ(x>−x<)

a sin
mπy0

a
cos

mπy

a
,

Ex′ = γ
4πλ

a

∞∑
m=1

(∓)e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

By′ =
4πI

ca

∞∑
m=1

(∓)e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

Bz′ = γ
v

c

4πλ

a

∞∑
m=1

(∓)e−
mπ(x>−x<)

a sin
mπy0

a
sin

mπy

a
,

Bx′ = γ
4πI

ca

∞∑
m=1

e−
mπ(x>−x<)

a sin
mπy0

a
cos

mπy

a
. (17)

• Circular Coordinates

Sources:

Ix′ = 0, Iy′ = −γvλ, Iz′ = Iz, λ′ = γλ. (18)
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Potentials:

Ax′ = 0,

Ay′ = −γ
v

c

[
Φ0 − 2λ ln R> + 2λ

∞∑
m=1

Rm
<

Rm
>

cos m (φ− φ′)
m

]
,

Az′ = γ

[
A0 − 2I

c

(
ln R> +

∞∑
m=1

Rm
<

Rm
>

cos m (φ− φ0)
m

)]
,

Φ′ = γ

[
Φ0 − 2λ

(
ln R> +

∞∑
m=1

Rm
<

Rm
>

cos m (φ− φ0)
m

)]
. (19)

Force Fields:

Ey′ = 2λ

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) sin φ cosm(φ− φ0) + cos φ sin (φ− φ0)] ,

Ez′ = γ
2Iv

c2

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) sin φ sin m(φ− φ0) + cos φ cos m(φ− φ0)] ,

Ex′ = γ2λ

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) cos φ cos m(φ− φ0)− sin φ sin m(φ− φ0)] ,

By′ =
2I

c

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) cos φ cos m(φ− φ0)− sin φ sin m(φ− φ0)] ,

Bz′ = γ
2v

c2
λ

∞∑
m=1

(
Rm−1/Rm

0

Rm
0 /Rm+1

)
[(∓) cos φ cosm(φ− φ0)− sin φ sin m(φ− φ0)] ,

Bx′ = γ
2I

c

∞∑
m=1

(−)
(

Rm−1/Rm
0

Rm
0 /Rm+1

)
[(∓) sin φ sin m(φ− φ0) + cos φ cos m(φ− φ0)] . (20)

• Elliptic Coordinates

Sources:

Ix′ = 0, Iy′ = −γvλ, Iz′ = Iz, λ′ = γλ. (21)

Potentials:

Ax′ = 0,

Ay′ = −2γ
v

c
λ

[
(u2 − u>)(u< − u1)

u2 − u1
+ 2

∞∑
m=1

sinhm(u2 − u>)
sinhm(u2 − u1)

sinh m(u< − u1) cos m(v − v0)
m

]
,

Az′ =
2I

c

[
(u2 − u>)(u< − u1)

u2 − u1
+ 2

∞∑
m=1

sinhm(u2 − u>)
sinhm(u2 − u1)

sinhm(u< − u1) cos m(v − v0)
m

]
,

Φ′ = γ2λ

[
(u2 − u>)(u< − u1)

u2 − u1
+ 2

∞∑
m=1

sinhm(u2 − u>)
sinhm(u2 − u1)

sinhm(u< − u1) cos m(v − v0)
m

]
. (22)

Force Fields:

Ey′ =
2λf

h2
u

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinh m(u2 − u1)

×
[
cosh u sin v cosh

(
m(u− u1)
m(u2 − u)

)
cosm(v − v0)− sinhu cos v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

] }
,
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Ez′ = γ
v

c

2If

ch2
u

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0) + cosh u sin v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0)

] }
,

Ex′ = −γ
2λf

h2
u

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0) + cosh u sin v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

] }
,

By′ =
2If

ch2
u

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0) + cosh u sin v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

] }
,

Bz′ = γ
v

c

2λf

h2
u

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos v cosh

(
m(u− u1)
m(u2 − u)

)
cos m(v − v0) + cosh u sin v sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0)

] }
,

Bx′ = γ
2If

ch2
u

{
sinhu cos v

(−(u2 − u0)
u0 − u1

)

u2 − u1
+ 2

∞∑
m=1

sinh
(

m(u2 − u0)
m(u0 − u1)

)

sinhm(u2 − u1)

×
[
sinhu cos sinh

(
m(u− u1)
m(u2 − u)

)
sin m(v − v0) + cosh u sin v cosh

(
m(u− u1)
m(u2 − u)

)
cosm(v − v0)

]}
. (23)

• Parabolic Coordinates

Sources:

Ix′ = 0, Iy′ = −γvλ, Iz′ = Iz, λ′ = γλ. (24)

Potentials:

Ax′ = 0,

Ay′ = −γ
v

c
4λ

∞∑
m=1

1
m

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ (η′ − η1)

η2 − η1
sin

mπ (η − η1)
η2 − η1

,

Az′ =
4I

c

∞∑
m=1

1
m

e
−mπ(ξ>−ξ<)

(η1−η2) sin
mπ(η0 − η1)

η2 − η1
sin

mπ(η − η1)
η2 − η1

,

Φ′ = γ4λ

∞∑
m=1

1
m

e
−mπ(ξ>−ξ<)

(η1−η2) sin
mπ(η0 − η1)

η2 − η1
sin

mπ(η − η1)
η2 − η1

. (25)
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Force Fields:

Ey′ =
4πλ

hξ(η2 − η1)

∞∑
m=1

(−)e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
η

hξ
cos

mπ(η − η1)
η2 − η1

(∓)
ξ

hξ
sin

mπ(η − η1)
η2 − η1

]
,

Ez′ = γ
v

c2

4πI

hξ(η2 − η1)

∞∑
m=1

(−)e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
η

hξ
cos

mπ(η − η1)
η2 − η1

(∓)
ξ

hξ
sin

mπ(η − η1)
η2 − η1

]
,

Ex′ = γ
4πλ

hξ(η2 − η1)

∞∑
m=1

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

η

hξ
sin

mπ(η − η1)
η2 − η1

− ξ

hξ
cos

mπ(η − η1)
η2 − η1

]
,

By′ =
4πI

chξ(η2 − η1)

∞∑
m=1

e
−mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

η

hξ
sin

mπ(η − η1)
η2 − η1

− ξ

hξ
cos

mπ(η − η1)
η2 − η1

]
,

Bz′ = γ
v

c

4πλ

hξ(η2 − η1)

∞∑
m=1

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
(∓)

η

hξ
sin

mπ(η − η1)
η2 − η1

− ξ

hξ
cos

mπ(η − η1)
η2 − η1

]
,

Bx′ = γ
4πI

chξ(η2 − η1)

∞∑
m=1

e−
mπ(ξ>−ξ<)

η2−η1 sin
mπ(η0 − η)

η2 − η1

[
η

hξ
cos

mπ(η − η1)
η2 − η1

(∓)
ξ

hξ
sin

mπ(η − η1)
η2 − η1

]
. (26)

For the motion in the transverse directiony of S′ relative
to S, thex′ andz′ components of the current and vector po-
tential remain as their counterparts inS, the first one being
zero. They components are also zero, and they′ compo-
nent of the current is−γvλ, and theλ′ is γλ , the first equa-
tion for each geometry; and likewise for they′ component
of the vector potential and the scalar potential. For the force
fields theiry′ andy components are the same, and theirx and
z components are mixed in their Lorentz transformations in
their primed components; since theirz components are zero,
Ez′ = −γ v

c Bx, Ex′ = γEx, Bz′ = γ v
c Ex, Bx′ = γBx.

In the last set of equations for each geometry, the respec-
tive primed sources can be identified, as well as the primed
sources of the companion field due to the motion ofS′ rela-
tive toSwith velocityv in they direction.

4. Discussion

In the Introduction a comparison of the electrostatic and mag-
netostatic harmonic bidimensional fields of [1] was made,
with emphasis in their differences and complementarities,
leading to the question about their connection. Recognizing
the connections of the electric intensity and magnetic induc-
tion fields under the cross product with the unit axial vector,
and asking about its reasons. Naturally, the titles of the Ar-
ticle and of Sec. 2 emphasize that the Lorentz transforma-
tions of Special Relativity provide the connections between
the space and time components of the electromagnetic poten-
tials, sources and force fields, including the electrostatic and
magnetostatic ones.

Section 3 illustrates the explicit forms of such connec-
tions for the fields in the successive geometries and boundary
conditions for 1. Axial motion along thez-axis, and 2. Trans-
verse motion along they-axis. In the case of axial motion, the
Lorentz Transformations contain directly the reasons for the

connections among the components of the force fields in-
cluding the differences in their signs. It is also appropriate to
point out that the connections between the electric intensity
field and the magnetic induction field are provided, in gen-
eral, by Faraday’s magnetoelectric induction and Maxwell’s
electromagnetic induction laws, including the difference in
signs and their orthogonality. The physical interpretation of
the superpositions of the longitudinal and time components
of potentials and sources, and of the transverse components
of the fields is straightforward for axial motion, preserving
the same transverse distributions as in the rest frame in each
geometry; and with the common superposition coefficients
combining the products of the coefficients in the Lorentz
transformation and the source intensities:γ(I − vλ), γ(λ−
(v/c2)I) for potentials and sources, and the same ones with
the appropriate changes in sign for the force fields. In the
case of transverse motion along the y-axis the transformed
components of sources potentials and force fields are:

Ix′ = 0, Iy′ = −γvλ, Iz′ = Iz, λ′ = γλ,

Ax′ = 0, Ay′ = −γ
v

c
Φ, Az′ = Az, Φ′ = γΦ,

Ey′ = Ey, Ez′ = −γ
v

c
Bx, Ex′ = γEx.

By′ = By, B′
z = γ

v

c
Ex, Bx′ = γBx. (27)

There was no currentIx andIy′ is due to the motion of
the line of charge from the point of view ofS′, and likewise
for the respective components of the potentials. The respec-
tive components of the sources are also identified in the last
set of equations for each geometry. Since the vector potential
is axial inS and transverse and to the motion, it remains the
same inS′. The scalar potential inS′ is γ times the scalar
potential inS. Since the force fields are transverse in the
x− y plane inS, theiry′-components remain the same as in
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S, and theirz′ andx′ components are the superpositions of
their counterparts inS with vanishingz-components. This is
the difference of the transverse transformations compared to
the axial ones.

The orthogonality of the electric intensity and magnetic
induction field is also associated with the Lorentz invariant:

E · B = E′ · B′. (28)

which has the value zero in this case.
The other invariant is proportional to the Lagrangian den-

sity of the electromagnetic field:

B · B− E · E = B′ · B′ − E′ · E′, (29)

which is positive for the magnetostatic field, negative for
the electrostatic field and zero for the radiation field. Equa-
tions (28) and (29) may be proven by using the Lorentz trans-
formations of the respective fields, or for any of the explicit
harmonic bidimensional fields in the successive geometries.

In Sec. 3 we have focused on the Lorentz transformations
between the respective potentials, sources and force fields,
leaving them in terms of the space coordinates in the rest
frame. The task can be completed by taking the additional
step of including the Lorentz transformation from the mov-
ing frame to the rest frame:

x = x′, y = y′,

z = γ(z′ + vt′), t = γ
(
t′ +

v

c2
z′

)
,

y = γ(y′ + vt′), z = z′,

x = x′, t = γ
(
t′ +

v

c2
y′

)
, (30)

for axial and transverse motions, respectively. The most im-
portant consequence is to recognize that the electrostatic and
magnetostatic fields in the rest frame become time dependent
in the moving inertial frame, because the sources are moving
away. This is a familiar situation for the Coulomb field.

The force fields components can be obtained from the
derivatives of the potentials. The electric intensity field is
the negative gradient of the scalar potential and the negative
partial derivative of the vector potential ; and the magnetic
induction field is the rotational of the vector potential.

From the respective components of the four vector po-
tentials: the rotational of its space component leads to the
primed magnetic induction field, and the negative gradient of
the time component minus the time derivative of the space
component leads to the primed electric intensity field, lead-
ing to the same results as in Sec. 3. This is also an example
of the covariance of the Maxwell equations in any inertial
frame.

In conclusion, this contribution exhibits explicitly the rel-
ativistic connection of the bidimensional harmonic electro-
static and magnetostatic sources, potentials and force fields,
in inertial frames with axial and transverse motions, in four
different geometries.
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