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1. Introduction

In 1990, the first Physics forum was held in Tabascoi, with
the participation of Marcos Moshinskyii, who gave one of
his famous outreach talks “Las Tres Caras de la Mecánica”
from which the authors of the present work were inspired. In
such talks, Moshinsky mentioned that there are various the-
ories in Physics that are circumscribed to the different scales
of speedsv and actionsS, in comparison with the speed of
light in the vacuumc and Planck’s constanth respectively.
To understand this, the diagram shown in Fig. 1 graphically
illustrates an extension of such idea, adding a new descrip-
tion axis in which General Relativity appears. This diagram
is interpreted as follows:

• When velocities are small compared to the speed of
light (c) and actions are large compared to the Planck
constant (h), Classical Mechanics provides a valid de-
scription.

• In the regime of large velocities compared toc and
large actions compared toh, Relativistic Mechanics or
Special Relativity is applicable.

• When velocities are small compared toc and actions
are on the order ofh, the effects of Quantum Mechan-
ics become evident.

• At high velocities compared toc and actions on the
order ofh, the study pertains to Relativistic Quantum
Mechanics.

• Additionally, the curvature of space-time, character-
ized by the Ricci scalarR derived from the Riemann
Tensor, becomes relevant, giving rise to General Rela-
tivity. WhenR is considered null, the first four theories

described above, applicable to flat space-time, are re-
covered.

One of the most basic and fundamental concepts in
Physics is that of free fall phenomenon, which occurs when
an object is in a state of motion under the influence of gravity
alone. Such phenomenon provides an ideal example to study
the behavior of a particle across distinct physical approaches.
In this work, we examine the free fall of a particle within
three Physics theories: Classical Mechanics, Relativistic Me-
chanics, and Quantum Mechanics.

It is worth noting that previous studies have already ex-
plored the relationship between classical and quantum sys-
tems, with a particular focus on the quantum bouncer [2],
which is a simple quantum system that mimics the behavior
of a classical particle bouncing against a potential wall. In
this analysis, the surface on which the particle bounces is as-
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FIGURE 1. Qualitative diagram of the different theories in Physics
depending on the size of the action(S), the velocity(v), and cur-
vature(R).
sumed to be ideally reflective, resulting in a perfectly elastic
collision. However, the present study does not consider the
rebound of the particle after collision.

We delve into the concept of classical probability density
and its application to Classical Mechanics and Relativistic
Mechanics, which are the main focus of this study. The anal-
ysis also confirms the Bohr-Heisenberg correspondence prin-
ciple in the quantum case, which asserts that “Quantum Me-
chanics reproduces Classical Mechanics in the limit of large
quantum numbers” [3].

We also specifically examine the independence of the
mass of the particle on the probability density per unit length.
While this observation can be seen as a necessary condi-
tion for the weak equivalence principle, which states that
“all point-like particles fall along the same path within a
gravitational field, regardless of frictional effects” based on
Galileo’s pioneering ideas [4], it’s important to note that we
do not provide a formal proof or verification of the principle
itself for each theory addressed.

The main aim of this work is to deepen students’ under-
standing at the undergraduate level of these three theories by
exploring their behavior in a simple and shared scenario. The
example of free fall highlights both the differences and the
similarities between the theories, particularly in their depic-
tion of the probability density function.

2. Probability density: Concepts

The probability differentialdP of a particle is defined as the
product of the probability density per unit lengthρ(y) and the
position differentialdy. This differential is proportional to
the time differentialdt divided by the total travel timeT [5]:

dP = ρ (y) dy ∝ dt

T
. (1)

Solvingρ(y), the expression is obtained to calculate the prob-
ability density per unit length, given by the expression:

ρ (y) =
dP

dy
=

1
T |v(y)| , (2)

wherev (y) is the velocity expressed in terms of the position
of the particle. This probability density represents the ran-
domly selected portion of events within a specific position
intervaldy when an experiment or phenomenon, such as free
fall, is repeated numerous times. It is important to note that
this classical definition of probability density differs mathe-
matically from the definition in Quantum Mechanics, where
it is calculated as the squared norm of the wave functionψ.
The wave function provides information about the physical
state of the particle within the system. In the classical con-
text, the analog of this function would be the square root of
the probability density (2). Therefore, the expression for the

probability differential is as follows:

dP = ρ (y) dy =
1

T |v(y)|dy. (3)

For the probability density definition given above to be phys-
ically valid, it must satisfy the normalization condition:

P (Ω) =
∫

Ω

dP = 1. (4)

Then, if we consider a regionA ⊂ Ω , whereΩ is a region at
position space. So, the probability of locating the particle in
such zone is calculated by:

P (A) =
∫

A
dP , (5)

where clearly:0 < P (A) < 1 . Additionally, the probability
density per unit momentum is defined [5]:

ρ (p) =
dP

dp
=

1
T |F (p)| . (6)

ConsideringF (p) as the force expressed in terms of particle
momentum. Then, the probability density (6) analogously
represents the portion of randomly selected events within a
given momentum intervaldp. The analysis related to this
probability density will focus on calculating the expected val-
ues of momentum.

3. Expected values: Position and momentum

Given the classical probability density, it is possible to cal-
culate the expected value, which represents the average of all
possible outcomes of an experiment related to a specific ob-
servable, such as position or any other observable expressed
in those terms [6]. Specifically, the expected value for posi-
tion is calculated from the probability density per unit length:

< y >=
∫

Ω

ρ (y) ydy. (7)

Similarly, the expected value for momentum is calculated
from the probability density per unit momentum:

< p >=
∫

Ω

ρ (p) pdp. (8)

ConsideringΩ′ as a region defined in momentum space.
The following sections explore the analysis of the free fall

phenomenon, specifically focusing on the discussion of prob-
ability density associated with each theory utilized to study
this phenomenon.

4. Classical case

Let’s consider a particle with massm that starts falling from
rest att = 0 from an initial heightH. The particle is uni-
formly accelerated under the influence of the terrestrial gravi-
tational field, neglecting any effects of air friction. The initial
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conditions forv(t) andy(t) in this problem can be stated as
follows:

v (0) = 0, y(0) = H. (9)

Starting from Newton’s second law [7] and considering the
force due to the gravitational field, it follows that the value
of the acceleration is given by the terrestrial standard gravity
g. Since the motion is one-dimensional and vertical, it can be
analyzed using a single vector component.

By solving the corresponding differential equations using
the initial condition provided in (9), we obtain the kinematic
equations for the functionsv(t) andy(t):

v(t) = −gt, (10)

y(t) = H − 1
2
gt2. (11)

Combining (10) and (11) gives the velocity in terms of the
positiony:

v (y) = −
√

2g(H − y), (12)

where the maximum velocity occurs at the instant just before
the particle reaches the ground, which corresponds to when
y → 0. Evaluating (12) at this point, we can determine the
maximum speed:

vmax = −
√

2gH. (13)

In addition, the total fall timeT is obtained just at the instant
in which the particle reaches the surface and coincides with
its maximum velocity:

Tcl =

√
2H

g
. (14)

Considering the knowledge of the functionv(y), the period
T , and the region of space in which the trajectory is defined,
denoted asΩ : 0 < y ≤ H, we can calculate the probability
density per unit length.

To derive the expression, we substitute (12) and (14) into
(2), resulting in the following expression:

ρcl (y) =
1

2
√

H
√

H − y
. (15)

Moreover, by referring to (6) and following the procedure
outlined in Ref. [5], specifically considering the regionΩ′ :
−m

√
2gH < p ≤ 0, wherep (y) = mv(y) , we can obtain

the probability density per unit momentum:

ρcl (p) =
1

m
√

2gH
. (16)

FIGURE 2. Graph illustrating the behavior of the classical proba-
bility density per unit length as the height approaches the critical
valueH.

Observing the obtained probability density per unit momen-
tum, we note that it exhibits a constant flat behavior. To pro-
vide further clarification on this result, Ref. [5] offers an in-
teresting graphical projection technique.iii

Figure 2 depicts a strictly increasing curve resembling
a “half-parable” shape for the probability density per unit
length. The probability density diverges nearH and remains
zero above the initial height.

Drawingiv on this reasoning, it can be intuited that the
probability of finding the particle in the upper half of the
falling space is greater than the probability of locating it in
the lower half. To verify this, we resort to (5) for each of the
aforementioned regions:

P (0 < y ≤ H/2) =
2−√2

2
, (17)

P (H/2 < y ≤ H) =
√

2
2

. (18)

Furthermore, the expected values of the position and momen-
tum are calculated using (7) and (8), respectively:

< ycl > =
2H

3
. (19)

It is noteworthy that the calculated average value for the po-
sition of the particle lies above the midpoint of the trajectory,
specifically exceedingH/2. This observation aligns with the
intuition that the particle spends more time in that region of
the trajectory. Similarly, the average value of momentump is
also determined:

< pcl > =
mvmax

2
. (20)

The obtained results, as shown above, are independent of the
object’s mass (except for the probability density per unit mo-
mentum), which agree with the expected behavior based on
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the weak equivalence principle. This principle establishes an
equivalence between the inertial mass and the passive gravi-
tational mass of the particle. It is important to note the dis-
tinction between passive gravitational mass, which measures
the gravitational force acting on a body in a given gravita-
tional field, and active gravitational mass, which measures
the strength of a body as a source of gravitational field [8].

To experimentally verify the weak equivalence princi-
ple with significant accuracy, a series of experiments known
as Ëotvös experiments have been conducted. These experi-
ments involve a torsion balance comprising two different ma-
terials at each end, subject to ideal conditions to minimize
temperature gradients and air currents [8]. However, earlier
tests by Newton, Galileo, and Bessel employed pendulums
with less precision compared to the Eötvös experiments [9].
Over time, these test experiments have been refined, with the
most recent being the MICROSCOPE mission. The MICRO-
SCOPE mission utilizes a mechanism with two successive
differential accelerometers, achieving higher accuracy than
its predecessors [10].

5. Relativistic Case

Consider a particle with relativistic massm undergoing free
fall under the same initial conditions as classical free fall.
However, in this scenario, the particle requires an initial
heightH that is sufficiently large to attain relativistic speeds,
approaching the speed of light in a vacuum denoted asc. The
experimental conditions ensure that the particle’s motion is
constrained to the vertical direction, with the only force act-
ing on it being gravitational:

F = mg, (21)

Defining the relativistic mass of the particle asm = γ m0,
whereγ = [1− (v/c)]−1/2 represents the Lorentz factor and
m0 denotes the rest mass. To incorporate the effects of rel-
ativity, we employ the relativistic form of Newton’s second
law as derived in the Ref. [11]:

ma = F − (F · v)
c2

v. (22)

By solving the resulting differential equation in the direc-
tion of the gravitational field, incorporating the substitution
of (21) into (22), and taking into account the initial condi-
tions stated in (9), we can derive the kinematic equations for
velocityv(t) and positiony(t):

v(t) = −c tanh
(

gt

c

)
, (23)

y(t) = H − c2

g
ln

(
cosh

[
gt

c

])
. (24)

FIGURE 3. Graphics showing the comparison of the position be-
havior between classical approximation (orange line) and relativis-
tic case (blue line).

The verification of the approximation to classical kinematic
expressions can be accomplished by utilizing the Taylor se-
ries expansions presented in (A.2) and (A.3), along with con-
dition (29).

By employing the derived kinematic equations for veloc-
ity (23) and position (24), we can determine the total fall time
Trel:

Trel =
c

g
arc cosh [exp (α)], (25)

where we introduce the parameterα = gH/c2. This dimen-
sionless parameter is useful to analyze the system’s behavior,
allowing us to study its characteristics based on the relative
magnitude ofα.

To facilitate the analysis, it is advantageous to express ve-
locity in terms of position. By combining the expressions for
(23) and (24), we obtain:

v (y) = −c

√
1− exp

[
2g (y −H)

c2

]
. (26)

Following this expression, we obtain the relativistic momen-
tum [12], in terms ofy:

p(y) = −m0c

√
exp

[
2g (H − y)

c2

]
− 1 . (27)

By substituting (25) and (26) into (2), we can derive the ex-
pression for the probability density per unit length in the rel-
ativistic case as follows:

ρrel (y)=
g

c2arc cosh [exp (α)]
√

1−exp
[

2g(y−H)
c2

] , (28)

It is reasonable to consider that these results closely resem-
ble the classical case when the fall timeTrel or initial height
H are sufficiently small. The key question is how small these
quantities need to be in comparison to the other involved con-
stantsg andc.
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To investigate the classical approximation, we observe
that the timet must satisfy the following condition:

gt

c
¿ 1. (29)

This guarantees that the particle moves at very small veloci-
ties compared toc, just as it happens for the classical case.

In the same way,H must satisfy the condition of being
small enough compared tog/c2, such that the particle has
sufficiently small fall times, and consequently its maximum
speed at the instant it reaches the ground, remains small com-
pared toc, consequently:

α → 0. (30)

It is worth noting that when the initial heights are signifi-
cantly larger thang/c2, we can deduce that:

eα À 1. (31)

This condition implies that the speeds under consideration
are extremely close to the limit of the speed of lightc.

When analyzing the system in the limit of low speeds, as
indicated by condition (30), the probability density behavior
in the relativistic case approximates that of the classical case.
This approximation can be analytically verified by utilizing
the results obtained from the Taylor series expansions shown
in (A.1), (A.3), and (A.4).

These results enable us to derive the classical approxima-
tion for both the total fall timeT(A.1) and the velocityv(y),
as showed below:

Trel ≈
√

2H

g
= Tcl, (32)

v (y) ≈ −
√

2g (H − y). (33)

Replacing in (2) verifies the classical approximation:

ρrel (y) ≈ 1
2
√

H
√

H − y
= ρcl (y) , (34)

Figure 4 illustrates the behavior of the probability density per
unit length in the relativistic case for different values ofα.
As α → 0, the probability density approximates the classi-
cal case shown in Fig. 2, providing graphical confirmation of
the approximation (34). On the other hand, asα increases
towards larger values, corresponding to speeds close to the
speed of lightc, the probability density exhibits a distinct be-
havior. It resembles that of a particle moving at a constant
velocity along a straight trajectory of lengthH. Notably, the
probability density sharply tends towards infinity when ap-
proaching a point nearH from the left.

Figure 4 also reveals an interesting observation for a par-
ticle with a velocity close toc. The probabilityP (0 < y ≤
H/2) is nearly equal toP (H/2 < y ≤ H) which approx-
imates to1/2, being slightly higher the probability value in
the upper region, as anticipated in the previous case.

FIGURE 4. Graph for the relativistic probability density per unit
length. The blue line corresponds to the case of velocities close to
c. The magenta line to the case of small velocities compared with
c. As can be seen, this one approaches to the classical case (red
dashed line).

Regarding the expected values of position and momen-
tum, we can derive them for the relativistic case using (7) and
(8). Specifically, we start with the expression for< yrel >
deducted in (C.6), which yields:

< yrel >= H lim
n→∞

[
1
2n

+
ξ (α, n)

n

]
, (35)

where the functionξ(α, n) is expressed as:

ξ (α, n) =
n−1∑

j=1

arc cosh[exp (αj/n)]
arc cosh[exp (α)]

. (36)

To compute< yrel >, we employed the composite trape-
zoidal rule from (B.5). Subsequently, by starting from (35),
we can deduce the limit when the particle moves at speeds
very close toc. By applying L’Hôpital’s rule to (36) under
the condition (31), we obtain the following expression:

ξ (n) ≈ 1
n

n−1∑

j=1

j =
(n− 1)

2
, (37)

and consequently, it is obtained:

< yrel >→ H

2
. (38)

Likewise, in the case of velocities that are small compared to
c, we once again apply L’Ĥopital’s rule under the condition
(30), resulting in the expression forξ (n) as follows:

ξ (n) ≈ 1
n1/2

n−1∑

j=1

j1/2 =
H−1/2(n− 1)

n1/2
, (39)
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whereH−1/2(n − 1) is the generalized harmonic number of
ordern− 1 of −1/2 represented in (D.7). Obtaining thus the
classical approximation by resorting (D.10):

< yrel > ≈ 2H

3
= < ycl > . (40)

Furthermore, by consideringΩ
′
: −m0c[exp (2α) − 1]1/2

<
p ≤ 0, we calculate the probability density per unit momen-
tum for the relativistic case using a similar procedure as
described in the previous case and detailed in Ref. [5]. This
involves utilizing (6) and substituting the expression of the
relativistic momentum from (27):

ρrel (p) =
1

arc cosh[exp(α)]
√

(m0c)
2 + p2

. (41)

This result is slightly more complex compared to its classi-
cal counterpart, as the probability density in the relativistic
case is not constant as in the previous case. Moreover, it
reaches its maximum value whenp = 0, which corresponds
to the particle being at the initial point of the trajectory at
y = H. In the limit of low speeds, wherep ¿ m0c and√

(m0c)2 + p2 ≈ m0c, we obtain the classical approxima-
tion for this probability density by referring to (25) and (32):

ρrel (p) ≈ 1
m0

√
2gH

= ρcl (p) . (42)

Meanwhile, by utilizing (8) and (37), we can determine the
average value of the relativistic momentum in the relativistic
case as follows:

< prel > =
−m0c [exp(α) − 1]
arc cosh [exp(α)]

. (43)

It is important to observe that in the case of velocities very
close toc, the average value< prel > exhibits a divergent be-
havior of orderO (exp (α) /α) around values ofα that sat-
isfy the condition (31).

On the other hand, in the case of small velocities com-
pared toc, whereα satisfies the condition (30), we can ob-
serve the classical approximation by considering (25), (32),
and (A.4):

< prel > ≈ m0vmax

2
= < pcl >, (44)

Additionally, it is important to note that the behavior of the
particle in this context is purely kinematic, which means that
the probability differentialdP is independent of the relativis-
tic mass and does not depend on the particle’s own mass ei-
ther. As in the classical case, it is important to note that this
analysis does not serve as a proof or verification of the weak
equivalence principle. However, the fact that the motion ex-
hibits these characteristics aligns with the flat geometry in-
herent to Minkowski space, upon which Special Relativity is
built upon [13].

Given the preceding discussion, one might question the
validity of the obtained results for free fall in the framework

of Special Relativity, considering the inclusion of gravita-
tional fields inherent in such an analysis. Therefore, it is
essential to clarify that Special Relativity serves as an ap-
proximation to General Relativity specifically when dealing
with weak gravitational fields [13].

6. Quantum case

Let’s consider a particle under the influence of a gravita-
tional field. In this scenario, the potential can be defined as
follows:v

V (y) =
{

mgy, y ≥ 0
∞, y < 0 . (45)

Such particle is considered to be confined within the region
defined byΩ : 0 < y < ∞.

Taking into consideration the time-independent
Schr̈odinger equation provided in Ref. [16] and replacing
the potential given in (45), we have that:

Eψ = − ~
2

2m

∂2ψ

∂y2
+ mgyψ. (46)

Upon solving the differential equation as shown in Ref. [17],
we obtain the eigenfunctions solution:

ψn (y) = A

(
Ai

[
1
lg

{
y − E

mg

}])
, (47)

where the Airy function is denoted asAivi and the princi-
pal quantum number of the particle is denoted asn. The
lengthlg, defined aslg =

(
~2/2m2g

)1/3
, is referred to as the

“gravitational length” or “characteristic length” [18]. This
length has significant value specifically for objects with very
small mass. For instance, in the case of the Hydrogen atom,
lg = 5.87 µm, and for lighter particles such as the electron,
lg = 0.88 mm.

According to the boundary condition for the wave func-
tion given byψn (0) = 0, considering the ground as a re-
flecting surfacevii, we can obtain the energy eigenvalues of
the particle asEn = −mglgan whenan represents then-
th zero of the Airy function. Notably, the zeros of the Airy
function are quantized, confirming the quantization of the
energy spectrum. Denoting−lgan = Hn as the quantized
heights of fall of the object, the energy can be expressed as
En = mgHn. Then, we can rewrite (47) in a simplified form:

ψn (y) = A

(
Ai

[
y

lg
+ an

])
, (48)

and by means of the normalizing condition:

A2




∞∫

0

Ai2
[

y

lg
+ an

]
dy


 = 1, (49)
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Computing the integral by using (E.13) and solving for
A, we have that:

ψn (y) =
1√
lg

Ai
(

y
lg

+ an

)

Ai′ (an)
. (50)

We can also express the probability density per unit length
associated with the particle as:

ρqm
n (y) =


 1√

lg

Ai
(

y
lg

+ an

)

Ai′ (an)




2

, (51)

Unlike the previous cases, this probability density does not
vanish for position values aboveHn. Then, we can get the
probability for finding the particle in such region by resorting
(E.14), thus:

P (y > Hn) =
∫ ∞

Hn

ρqm
n (y)dy =

[
Ai′ (0)
Ai′ (an)

]2

, (52)

It can also be observed through differentiation that the prob-
ability density decreases fory > Hn. As a result, we can
anticipate an evanescent behavior of the wave function as
we move away fromHn. This behavior is supported by the
properties of the Airy functions given in (E.16) and (E.17),
where bothAi(y) andAi′(y) tend to zero asy → ∞. Con-
sequently, the probability density also tends to zero. In the
asymptotic case, as expressed in (E.17), it can be verified
that Ai′2(an) ≈ √−an/π for n À 1. Thus, it is evident
that the probability (52) approaches this value in the asymp-
totic regime:

P (y > Hn) ≈ γ√−an
. (53)

Here, we haveγ = πAi′2(0) ≈ 0.21. Consequently, it can be
observed that asn increases, the probability given by (53) de-
creases. In the case wheren À 1, the probability approaches
zero, a result predicted by Classical Mechanics.

When analyzing the probability density corresponding
to the quantum case, we can also verify the classical ap-
proximation for this result. However, the process for ver-
ifying this approximation in the current case is more com-
plex than the relativistic case. According to the methodology
outlined in Ref. [19], which demonstrates its application to
the particle in a box and the harmonic oscillator problems,
the probability density can be transformed into momentum
space using a Fourier transform. This transformation allows
for the application of a correspondence principle, which ex-
tends the Bohr-Heisenberg principle. The effectiveness of
this method has also been demonstrated in the study con-
ducted in Ref. [20], where it was successfully applied to the
quantum analogue of Kepler’s problem.

Regardless, in the specific case we are considering, per-
forming the calculation using standard integration techniques
is not feasible since the result cannot be expressed in terms
of elementary functions. Therefore, we resort to Albright’s
method provided in Ref. [21], which is explained in more de-
tail in Refs. [14,15], to obtain the Fourier transform:

ρqm
n (p) ≈ e−iQ

2π~

√
π

2Q

[
C

(√
2Q

π

)

+ iS

(√
2Q

π

) ]
+ ρ(1)

n (p) , (54)

Let Q ≡ pHn/~. Additionally,C(x) andS(x) represent
the Fresnel integrals [22]. It is important to note that there ex-
ists a first-order correction term in the approximation denoted
asρ

(1)
n (p), whose expression is provided in Ref. [15]. This

correction term can be expressed as a power series, given by
the following:

ρ(1)
n (p) =

e−iQ

4π~a3
n

∞∑

j=0

[
(−iQ)jj(j − 1)(j − 2)

j!(2j + 1)(2j − 5)

]
, (55)

On the other hand, the quotient between Planck’s constant
and the classical action can be calculated. The result is

~
Scl

=
~

mgH
√

2H
g

=
~√

2m2gH3
.

Furthermore, forn À 1, it is satisfied that

1

a
3/2
n

=
~√

2m2gH3
.

Analyzing the correction term (55), it can be verified that this
is a quadratic order term in the quotient of the Planck’s con-
stant and the classical action:

ρ(1)
n (p) ∼ O

(
1
a3

n

)
= O

(
~

Scl

)2

, (56)

Observe that this quotient depends on the mass of the parti-
cle, raising the possibility that the weak equivalence principle
could be violated in the quantum case of free fall.

Then, by calculating the inverse Fourier transform for the
first term (54), the classical approximation for the probability
density is obtained, as shown in Refs. [14,15], under the con-
dition n À 1 and thereforeHn → H, whereH represents
the classical height:

ρqm
n (y) ∼ 1

2
√

H
√

H − y
= ρcl(y), (57)

The second term of the approximation must provide quantum
corrections at the macroscopic level:

ρ(1)
n (y) =

1
2π~

∫ ∞

0

ρ(1)
n (p)e

ipy
~ dp, (58)

This integral cannot be easily calculated, but numerical ap-
proximations can be made.
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FIGURE 5. Graph for the quantum probability density (green line)
and classical probability density (red dashed line), for the case of
n = 2 (bottom) and the case ofn = 10 (top). Turning point is
represented with the black dashed line.

Figure 5 illustrates the classical and quantum probability
density graphs for the cases withn = 2 andn = 10. It can
be observed that asn increases, the quantum probability den-
sity becomes more similar to the classical probability density
on average. Moreover, it is noted that the quantum probabil-
ity densityρqm

n (y) exponentially decays beyond the height
Hn. While the probability of finding the particle aboveHn

is not zero, the exponential decay becomes more pronounced
with larger values ofn, eventually recovering the expected
behavior of the classical case. In the classical case, it can be
crudely stated that “particles do not fall upwards” in contrast
to the quantum case studied.

In addition to the theory proposed by Ref. [14], this work
analyzes the expected values of position and momentum ob-
servables in the quantum case, calculated using the following
expressions [23]:

< yqm > =
∫

Ω

yψ∗n (y) ψn(y) dy, (59)

< pqm > = −i~
∫

Ω

ψ∗n (y)
∂

∂y
ψn(y) dy, (60)

The expected value of the position can be calculated using
(59). To obtain this value, we apply integration by parts,
utilizing Albright’s method. The result of this calculation is
shown in (E.15). By evaluating this expression in the appro-
priate region, we obtain the following result:

< yqm > =
2Hn

3
. (61)

As mentioned earlier, in the limit of high energies, the height
Hn approaches the classical heightH, leading to the classical
approach:

< yqm > ≈ 2H

3
= < ycl > . (62)

Using (60) and resorting (E.14), the expected value of the
momentum is calculated as:

< pqm > = 0, (63)

The average value of the momentum implies that it can point
both away from the surface and towards it. Additionally, the
result (63) can be easily obtained using Ehrenfest’s theorem.
By applying the theorem, we find that since< yqm > is in-
dependent of time, its time derivative is zero, leading to

< pqm >

m
=

d < yqm >

dt
= 0.

It is worth noting that Ehrenfest’s theorem is applicable in
this particular case, as the force applied on the particle is con-
stant [24]. These results align with the findings of Ref. [25],
which provides a more detailed calculation of the expected
values in the quantum case, including higher-order terms.

As stated in Ref. [15], the expected values obtained for
each of these physical observables should closely approxi-
mate their corresponding values in Classical Mechanics. The
article outlines a systematic approach for determining the
classical limit of periodic quantum systems, and demon-
strates its successful application to the quantum bouncer
problem. It is important to note that in this discussion, the
classical problem of the rebounding particle (bouncer) is as-
sumed as the correct classical approximation for the quantum
case. However, in the present work, as mentioned before, the
classical analysis is limited to considering only the trajectory
of the falling particle, excluding the subsequent rebound.
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FIGURE 6. Diagram illustrating the relationship between the three
theories. The arrows represent the connections between them,
showcasing the role of probability densityρ(y) in bridging them.

7. Conclusions

It can be observed that, in general, the probability densities
for the relativistic and quantum cases differ from those ob-
tained in the classical case. However, in the second and third
cases, the probability densities closely approximate the clas-
sical result when the speed is much less than the speed of
light in a vacuum and when the actions are much greater than
the value of Planck’s constant, respectively. Similarly, the ex-
pected values of position and momentum observables in the
relativistic and quantum theories approximate those found in
the classical case. Therefore, the probability density serves as
a connection between these three different theories, despite
being expressed differently. This relationship is illustrated in
Fig. 6.

The discussion on the validity of the weak equivalence
principle in each theory examined in this paper was briefly
touched upon from a non-rigorous perspective. Additionally,
a more in-depth analysis is required for the quantum the-
ory, and it is suggested that future works consider calculating
higher-order quantum corrections for the probability density,
as well as the corresponding inverse Fourier transform.

This work holds pedagogical value in comparing and dis-
cussing the phenomenon of free fall across Classical Mechan-
ics, Relativistic Mechanics, and Quantum Mechanics using
the concept of probability density.

The approach presented in this work also introduces a va-
riety of mathematical methods for analyzing and understand-
ing the phenomenon from each theory aforementioned.

One of these methods is the graphical projection tech-
nique, as detailed in Ref. [5], which involves sketching prob-
ability density graphics based on known position and velocity
graphics. This technique allows students to visually repre-
sent the probability distribution associated with the system
and explore the probabilistic nature of other mechanical phe-
nomena.

Taylor series expansions are a fundamental mathematical
technique widely employed in Physics to approximate and in-
vestigate diverse functions. These expansions play a crucial
role in examining systems near equilibrium or in specific sce-
narios, such as analyzing the thermodynamics of a system at
low temperatures or studying the electromagnetic properties
of a particle by expanding the electrostatic potential around
a particular point. In our research, we applied Taylor series
expansions to analyze the relativistic case at low velocities,
providing insights into the classical limit of the system.

Additionally, we discovered an uncommon application of
generalized harmonic numbers in Physics. The aforemen-
tioned application was supported by deducing its asymptotic
expansion through the utilization of the Euler-Maclaurin for-
mula (D.8). This formula is useful in various physical con-
texts, some examples being calculations of definite integrals,
approximation of sums, and the analysis of statistical me-
chanics systems, such as the computation of some partition
functions.viii

Moreover, Airy functions and the Albright’s method find
extensive and diverse applications in Physics, as provided
in Ref. [26]. These functions were originally introduced by
G.B. Airy for calculating light intensity near caustics in Op-
tics. They also find utility in Fluid Mechanics, particularly in
the analysis of stability properties using the Orr-Sommerfeld
equation. Furthermore, in Quantum Mechanics, Airy func-
tions are used in the computation of the one-dimensional
Wigner semiclassical distribution.

The method outlined in Ref. [19] offers students a sys-
tematic approach to verify the convergence of Quantum Me-
chanics to Classical Mechanics in the high-energy asymp-
totic regime, as predicted by the Bohr-Heisenberg correspon-
dence principle. This serves as an invitation for students to
delve deeper into the references provided [19, 20] in which
this method has been successfully applied and explore addi-
tional quantum systems, such as the circular potential well
and spherical harmonic oscillator.

Through the application of these methods, students not
only develop the ability to analyze the phenomenon of free
fall but also acquire valuable skills in solving Physics prob-
lems using mathematical techniques. This work encourages
students to explore additional physical applications where
these mathematical methods can be effectively employed.

It is worth noting that the analysis and discussion of the
relativistic case presented in this paper are rarely found in the
literature.

Appendix

A. Taylor series

The following expansions are used to compute some classical
approximations [27]:

cosh(x) = 1 +
x2

2
+ O(x4), (A.1)

tanh(x) = x + O(x3), (A.2)

ln[cosh(x)] =
x2

2
+ O(x4), (A.3)

exp(x) = 1 + x + O(x2). (A.4)
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B. Composite trapezoidal rule

When grid spacing is uniform, the approximation integral is
given by [28]:

∫ b

a

f(x) dx ≈ b− a

n

[
f(a) + f(b)

2

+
n−1∑

j=1

f

(
a + j

b− a

n

) ]
. (B.1)

C. Deduction of< yrel >

< yrel > =
g

c2

∫ H

0

ydy

arccosh[exp(α)]
√

1− exp
(

2g(y−H)
c2

) ,

Integrating by parts [27]:

< yrel > = −y arc cosh[exp( g(H−y)
c2 )]

arc cosh[exp(α)]

∣∣∣∣
H

0

+
∫ H

0

arc cosh[exp( g(H−y)
c2 )] dy

arc cosh[exp(α)]
,

Notice that the first term vanishes. Then, let the substitution
u = 1− (y/H), so we have:

< yrel >= H

∫ 1

0

arc cosh[exp(αu)]
arc cosh[exp(α)]

du, (C.1)

D. Generalized harmonic number

The generalized harmonic number can be expressed by the
following sum [29]:

Hm(n) =
n∑

j=1

j−m. (D.1)

To showcase the expansion of the generalized harmonic num-
ber, we can begin by utilizing the Euler-Maclaurin summa-
tion formula [30]:

n∑

j=1

f(j) =
∫ n

1

f(x) dx +
1
2
[f(n) + f(1)]

+
bp/2c∑

j=1

B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(1)

]
+ Rp, (D.2)

WhereRp represents a residual term that is typically negli-
gible for appropriate values ofp andB2j the2j-th Bernoulli
number. By choosingf(x) = x−m, we obtain the following
expression:

n∑

j=1

j−m =
∫ n

1

x−m dx +
1
2
[n−m + 1−m]

+
bp/2c∑

j=1

B2j

(2j)!

[
(m + 1)(m + 3) . . .

. . . (m + 2j − 2)n−m−2j+1

− (m + 1)(m + 3) . . . (m + 2j − 2)
]

+ Rp.

Simplifying the expression, we get:
n∑

j=1

j−m =
1

1−m
n1−m +

1
m− 1

+
1
2

+
1
2
n−m

+
bp/2c∑

j=1

B2j

(2j)!

[
(m + 1)(m + 3) . . .

. . . (m + 2j − 2)(n−m−2j+1 − 1)
]

+ Rp.

These can be expressed asymptotically by consolidating the
constants into a single value using the Riemann zeta function,
leading to the following form:

n∑

j=1

j−m ∼ ζ(m) +
1

1−m
n1−m +

1
2
n−m

+
bp/2c∑

j=1

B2j

(2j)!

[
(m + 1)(m + 3) . . .

. . . (m + 2j − 2)n−m−2j+1

]
.

By observing the last term, we can conclude that it is of order
O(n−m−1). Consequently, we finally deduce that:

Hm(n) = ζ(m) +
1

1−m
n1−m

+
1
2
n−m + O(n−m−1). (D.3)

In particular, we have that the expansion forH−1/2(n) is:

H−1/2(n) = ζ

(
−1

2

)
+

2
3
n3/2

+
1
2
n1/2 + O(n−1/2), (D.4)

whereζ(−1/2) = 0.2078862250... is a particular value of
the Riemann zeta function [31]. Notably, the mathematician
Ramanujan established the expression presented in Equation
(D.4) in his work [32], without explicitly indicating the direct
involvement of the evaluated Riemann Zeta function in this
particular result.
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E. Airy functions and notable results

The Airy’s equation [26] appears as:

d2y

dx2
= xy, (E.1)

Its general solution is expressed as:

y = C1Ai(x) + C2Bi(x), (E.2)

To simplify calculations involving the Airy functionsAi(x)
andBi(x), it is possible to use the Albright’s method pro-
vided in Ref. [21]. This method allows us to express any lin-
ear combination (E.2) as a linear combination of their deriva-
tives. Here, we present the integral results particularly for
Ai(x): ∫

Ai2(x) dx = xAi2(x)−Ai′2(x), (E.3)

∫
Ai(x)Ai′(x) dx =

1
2
Ai2(x), (E.4)

∫
xAi2(x) dx =

1
3
[
Ai(x)Ai′(x)

− xAi′2(x) + x2Ai2(x)
]
, (E.5)

It is also useful to have the following asymptotic approxima-
tions [26]:

Ai(x) ∼ 1
2
√

πx1/4
e−

2
3 x3/2

×
(

1 +
∞∑

k=1

(−1)k(2k − 1)!!
(2x)3k/2

)
, (E.6)

Ai′(x) ∼ 1√
π

x1/4e−
2
3 x3/2

×
(
−1

2
+

∞∑

k=1

(−1)k(2k + 1)!!
(2x)3k/2+1

)
, (E.7)

Notice that both expressions vanish asx →∞.
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dro Colina Almaźan and Alejandro González Śanchez also par-
ticiped.

ii. In addition, Moshinsky left us a series of notes compiled in
Ref. [1].

iii. In this work, we do not provide a detailed explanation of the
application of this method. However, we encourage the reader
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