
Letters Revista Mexicana de Fı́sica E21010501 1–3 JANUARY–JUNE 2024

On Wien’s peaks
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e-mail: emarinm@ipn.mx

Received 14 March 2023; accepted 15 June 2023

Most Modern Physics books contain a chapter on the laws of black body radiation when introducing the principles of Quantum Mechanics.
These laws govern many phenomena that we encounter in daily life, technological developments, and scientific research. For that, this old
subject is still of great importance, and even now some issues require our attention. This work addresses one of these topics. We describe
why it makes no sense to think that the wavelength at which Planck’s black-body spectral radiance distribution plotted as a function of the
wavelength has its maximum value, must be the same that the wavelength calculated from the peak value obtained when the distribution is
plotted as a function of another variable, such as the energy of the photons. We will show how the issue lies in using the correct form to
calculate this wavelength from measured quantities.
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Wien’s displacement law, named after the German physicist
Wilhelm Wien, tells us that the emission spectra of objects at
different temperatures peak at different wavelengths. These
wavelengths are shorter for hotter objects than for cooler
ones. The emission spectrum of a hot body can be repre-
sented as a graph of the spectral intensity,I(λ), as a function
of wavelength,λ. The spectral intensity, or spectral radiance,
is the amount of light energy incident on a detector per time
unit, per unit area, and per wavelength increment interval,
dλ. In other words, it is intensity per wavelength increment
interval [1]. It is expressed in Wm−3 units.

For a black body at a temperatureT , the spectral radiance
is given by Planck’s law of thermal radiation [2]
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whereh is Planck’s constant,c is the speed of light in vac-
uum, andkB is the Boltzmann constant. The wavelength
(λmax) at which this function has its maximum value at a
given temperature is described by Wien’s displacement law:

λmax = hc/(4.951kBT ) = b/T, (2)

whereb = 2.897756 × 10−3 mK is Wien’s constant. Ac-
cordingly, for a body like our Sun with a surface temperature
T ≈ 5800 K, the peak of the radiance spectrum appears in its
visible part at a wavelengthλmax ≈ 500 nm [Fig. 1a)] [3].

The spectral radiance can also be shown as a function
of other quantities, such as the energy(E = hc/λ) or fre-
quency(ν = c/λ) of the photons. For example, the radi-
ance, expressed in terms of the energy, is the intensity per
energy increment interval,dE. To convert a graph ofI(λ)
vsλ in one ofI (E) vsE, one must substituteλ by hc/E in
Eq. (1) and apply the Jacobian’s transformation to scale the
ordinates’ axis by the factorhc/E2 [4]. Then, the units of

I (E) (m−2s−1) will differ from those ofI(λ). Energy con-
servation implies that the values of the radiated energy fluxes,
given by the areas under the spectral radiance spectra, must
be the same, whether they are represented as a function ofλ
or E, that is

I (λ) dλ = I (E) dE. (3)

Consequently,
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The minus sign in the above equation only reflects the differ-
ent directions of integration in energy and wavelength. In the
same way, if we want to represent the radiance as a function
of frequency, the corresponding Jacobian’s transformation is:
I(ν) = −I(λ = c/ν)c/ν2.

The value ofλmax = 500 nm for which I(λ) is max-
imum is different from that calculated from the energy at
which theI(E) function has a maximum. Fig. 1b) shows
that Emax ≈ 1.41 eV, from which one obtainsλmax =
hc/Emax ≈ 800 nm [3]. This value is in the near-infrared
part of the spectrum.

The question about where the Wien peaks really are has
been the subject of discussion in several works in which it
is accepted that the maxima of the spectra occur at different
wavelengths when plotted in different scales [4–12]. How-
ever, this fact is somewhat paradoxical since the same physi-
cal phenomenon is represented as a function of different mag-
nitudes but straightforwardly related to one another. In other
words, the spectral radiance spectra must peak at the same
wavelength, whether shown as a function ofλ or of any other
variable.



2 E. MARÍN AND A. CALDERÓN

FIGURE 1. Plank’s spectral radiation distribution function atT = 5800 K as a function of wavelength a), energy b), and energy inverse
c). The purple and green arrows show the Jacobian factor when spectrum a) is transformed in b) and c), respectively. Note that the solar
spectrum contains light of all colors from the ultraviolet to the mid-infrared, so that the real color of our Sun is white, as it would look when
viewed from space. Instead, when the Sun’s rays pass through Earth’s atmosphere, some molecules distort the shorter-wave photons, causing
longer-wave photons to reach us sooner.

For the solution of this paradox, we must consider that
the spectral radiance is a distribution function, for which
λmax 6= hc/Emax [12], except for the case of a very narrow
distribution [3,13–15]. The explanation is as follows.

The average wavelength of theI(λ) distribution is de-
fined as

〈λ〉 =
∫

λI(λ)dλ∫
I(λ)dλ

. (5)

Substituting Eq. (3) andλ = hc/E in Eq. (5) leads to

〈λ〉 =

∫
hc
E I(E)dE∫
I(E)dE

= hc〈1/E〉, (6)

where〈1/E〉 represents the average of the energy inverse. In
the above equations the integrations are performed over the
entire wavelength (energy) range. In analogy with Eq. (3),
the energy conservation in terms ofλ andE−1 variables can
be written as

I(λ)dλ = I(1/E)d(1/E). (7)

Consequently, the Jacobiandλ/d(1/E) = hc applied toI(λ)
transforms it intoI(1/E). As the Jacobian of this transfor-
mation is a constant, the spectrum ofI preserves the shape
after the transformation, except for a scaling factor ofhc, so
that the wavelength for whichI(λ) is maximum corresponds
to the value of the energy inverse for whichI(1/E) has the
maximum, as:

λmax = hc(1/E)max. (8)

Since in arriving at Eqs. (6) and (8) one has made no assump-
tion about the shape of the spectral distribution function, then
these can be generalized for spectral distributions with any
shape, including that given by Planck’s formula.

In Fig. 1c) Planck’s spectral radiance distribution is
plotted as a function of1/E. The maximum appears at
(1/E)max ≈ 0.4 eV−1. Substituting this value into Eq. (8)
leads toλmax ≈ 500 nm, which is the same value at which
the I(λ) versusλ distribution peaks. Note that the recipro-
cal of (1/E)max is 2.5 eV, quite different from that at which
I(E) has its maximum.

Analogously, one can demonstrate thatλmax 6= c/νmax

butλmax = c(1/ν)max.
Substituting Eq. (8) into Eq. (2), it can be straightfor-

wardly demonstrated that Wien’s law in the(1/E)− domain
becomes:

(1/E)max = λmax/hc = 1/(4.9651kBT ). (9)

In the same way, if we plot the Planck’s distribution as a
function of1/ν we will have:

(1/ν)max = λmax/c = h/(4.9651kBT ). (10)

In conclusion, the wavelength at which Planck’s black-
body spectral radiance distribution has its maximum value is
the same, and is independent of the quantity chosen to plot
this function. The issue lies in using the correct form to cal-
culate this wavelength from the measured quantities.

Note that the above results can be generalized for opti-
cal emission distribution spectra of any kind, such as fluores-
cence spectra.
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