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A catenary-like cable confined in a circular cylinder
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The problem of obtaining the curve of a cable suspended between two points, supporting only its own weight, was solved simultaneously,
in the 17th century, by Johann Bernoulli, Leibniz, and Huygens. This curve is called the catenary. This article solves a modified problem
in which the suspended cable is confined in a vertical cylinder. For this, an functional is formulated to describe the potential energy of a
fixed-length confined cable in any possible arrangement. Then, the variational problem of extremizing this functional is presented and the
Euler-Lagrange differential equation is deduced. The analytical solution of this equation is obtained for the cable suspended by two points at
equal and different heights. Furthermore, the tensile force acting on the cable is determined. Numerical results are presented comparing the
effect of confinement on the tensile force in relation to the traditional catenary.
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1. Introduction

A flexible cable suspended between two points, supporting
only its own weight (i.e., in static equilibrium), forms a curve
called catenary. This word comes from the Latin word catena
which means chain. Examples of catenaries are the cables
used in transmission lines and telephone lines.

The problem of determining the equation of the curve of
flexible cable, of fixed length, between the two points and
in static equilibrium, was proposed by Galileo Galilei. In
this problem it is assumed that the cable is homogeneous, in-
elastic and flexible in the sense that any resistance offered to
bending is negligible [1]. Galileo conjectured that the solu-
tion to the problem was a parable. But Christiaan Huygens,
aged just 17, in 1647, and Joachim Jungius, in 1669, showed
that Galileo’s conjecture was false, without, however, pre-
senting the analytical solution of the catenary [2, 3]. Only
in 1691, after a public challenge by Jakob Bernoulli, three
different solutions appeared to obtain the catenary equation
given by Leibniz, Huygens and Johann Bernoulli. Huygens
presented a solution using the classical euclidean mathemat-
ics. Whereas Leibniz and Bernoulli used the newly invented
Calculus and this resulted was the first public success of Cal-
culus [2].

The catenary equation is given by:

y(x) = a cosh(x/a) =
1
2
a

(
ex/a + e−x/a

)
. (1)

The parametera determines the shape of the catenary
(i.e., how fast the catenary opens).

Another way to solve the problem of finding the catenary
equation is through variational calculus. Variational calcu-

lus is a powerful mathematical tool that is applied to formu-
late modern physical theories of both particles and physical
fields. A known problem that variational calculus manages to
solve in an elegant way is the brachistochrone problem, and
at present, there are articles still discussing this issue [4]. One
way to solve the catenary problem using variational calculus
is briefly described below.

First, it is considered that, given two fixed pointsA and
B, there are infinite possible configurations of a suspended
cable with a fixed length betweenA andB (although, exper-
imentally, there is only one stable cable configuration). Next,
the gravitational potential energy of the cable is calculated
considering that the cable has a certain mass and linear den-
sity. The variational principle is then used with a Lagrange
multiplier [5] to minimize the functional relative to the gravi-
tational potential energy of the cable, subject to the constraint
that the total length of the suspended cable is fixed. The so-
lution to this variational problem is the physical cable config-
uration that solves the catenary problem.

In the classic catenary problem presented so far, the cable
is localized on a flat vertical surface parallel to the gravita-
tional field. In this article, the previous problem is formulated
in a different situation. The suspended cable is now confined
to a cylindrical vertical surface. Then we use variational cal-
culus to determine the second-order Euler-Lagrange differen-
tial equation, whose solution results in the static equilibrium
geometric configuration of the suspended cablei.

The solution of the Euler-Lagrange equation is obtained
for two cases: (1) pointsA andB that suspend the cable are
at the same height. (2)A andB can be at different heights.
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Next, the tensile force in the cable confined to the cylinder
is calculated. Results that are important from an engineering
point of view to analyze the cable tensile strength. Finally,
numerical experiments will be shown. As far as we know no
other research papers exist describing this specific problem.
Because of this, we do not provide a dedicated related work
section.

2. The flexible cable model suspended on a
vertical cylindrical surface

Consider a flexible, inelastic, homogeneous cable of linear
densityµ and lengthL suspended by two pointsA andB
fixed in a vertical cylinder with a circular cross section. The
cable is subject only to the action of its own weight and is
completely confined in the cylindrical surface of radiusR and
sufficiently large in height. TheA andB points can be at dif-
ferent heights. Determine the equation of the curve describ-
ing the suspended cable. The gravitational field is uniform.

The surface of the cylinder is parameterized by the vector
function:

Φ(z, θ) = (R cos θ, R sin θ, z), (2)

wherez ∈ R e θ ∈ [0, 2π]. So there are two ways to rep-
resent a point on the cylinder surface. First, with respect to
the coordinates of the spaceR3 (extrinsic coordinates) with
the triple (x, y, z) such thatx2 + y2 = R2, z ∈ R, and
then by the pair(z, θ) which is known as the intrinsic coordi-
nates of the cylindrical surface. The non-compact coordinate
z, which varies along the generator of the cylinder, and the
compact coordinateθ, which varies along the cross section
of the cylinder.

In the intrinsic coordinates of the cylindrical surface, the
curve confined in the cylinder is written as

z = z(θ).

Considerh as the difference in height between pointB and
pointA. h may assume positive or negative values. For math-
ematical convenience, the cable starts at pointA = (−θ0, 0)
and ends at pointB = (θ0, h).

The Fig. 1 shows that the arc length elementds along an
arbitrary cable is calculated approximately with a right trian-
gle, whose legs are: the differential elementdz (vertical) and
the arc length element in the direction of the cross section
Rdθ. Then by the Pythagorean theorem:

ds =
√

(Rdθ)2 + dz2. (3)

As z = z(θ), thendz = z′dθ andz′ = dz/dθ. Hence

ds =
√

(Rdθ)2 + z′dθ2 =
√

R2 + z′2 dθ. (4)

The previous approach is practical and intuitive because it
uses specific cylinder properties. However, we can also study
using more general concepts, valid for arbitrary surfaces de-
fined by differentiable functions. Thus, the element

FIGURE 1. Cable of arbitrary shape in the vertical cylinder of ra-
diusR.

of arc lengthds between two points of a curve, totally con-
fined in an arbitrary surfaceS, can be calculated using the
first differential forms of the differential geometry. There-
fore, we have the parametric form ofS, Equation (2), and
with the following identificationu = z, v = θ, we obtain
Φz = (0, 0, 1), Φθ = (−R sin θ, R cos θ, 0) which is substi-
tuted in the first fundamental forms

E =< Φz, Φz >= 1;

F =< Φz, Φθ >= 0;

G =< Φθ, Φθ >= R2;

and from

ds =

B∫

A

√
Eu̇2 + 2Fu̇v̇ + Gv̇2 dt

(see Ref. [5]) obtain

ds =
√

ż2 + R2θ̇2 dt

or

ds =
√

(Rdθ)2 + dz2

becausedz = żdt, dθ = θ̇dt and asdz = (dz/dθ) dz then
ż = (dz/dθ)θ̇, hence we obtain the same expression of (4)
for the element of arc lengthds in the cylinder, demonstrated
previously. So the cable length is given by

L =

θ0∫

−θ0

ds =

θ0∫

−θ0

√
R2 + z′2 dθ. (5)
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According to classical mechanics, the lower the potential
energy of a mechanical system, the more stable that system
will be. Then, we find the total potential energy of the cable
in an arbitrary geometric configuration and minimize it by
the variational calculus. It is understood that there is a func-
tional calledPotential EnergyEP : M → R, whereM is the
set of all smooth functions (curves) that represent cables with
length ofL and fixed by the ends at pointsA andB. The
functionalEP associates each arbitrary curvez = z(θ) ∈ M
to a real numberEP (z) which is the physical potential energy
of the curvez = z(θ) in the cylinder.

We can define the potential energy of an elementds (of
massdm) of the cable, located at the coordinate(θ, z), as
being

dEp = zgdm = zgµds, z < 0,

whereg is the acceleration of gravity. It was assumed that
thexy-plane is the reference level for calculating the poten-
tial energy of any particle (see Fig. 2). The total potential
energyEp of the cable is given by

Ep =

θ0∫

−θ0

dEp =

θ0∫

−θ0

zgµds.

Applying (4), we obtain

Ep =

θ0∫

−θ0

gµz
√

R2 + z′2 dθ. (6)

From the point of view of variational calculus, we have just
built a functional because the numerical value of the definite
integral (the image of the functional) depends on the cable
configuration with fixed endsA andB. Therefore, the prob-
lem of determining the curve equation such that the potential
energy of the cable is minimal means finding the extreme of
the functional

J [z] = Ep =

θ0∫

−θ0

gµz
√

R2 + z′2 dθ, (7)

subject to the constraint of the fixed length of the cable, the
equation (5).

We can convert this constrained problem into an equiv-
alent unconstrained problem using the Lagrange multipliers
method [5]. The new functional to be minimized is as fol-
lows:

K[z]=
∫
−θ0θ0

(
gµz

√
R2 + z′2+λ

√
R2 + z′2

)
dθ, (8)

whereλ is the Lagrange multiplier. The function being inte-
grated (Lagrangian function) is given by

L(z, z′) = gµz
√

R2 + z′2 + λ
√

R2 + z′2. (9)

Because this function depends only onz and z′, then the
Euler-Lagrange equation can be simplified to the following
equation (see the proof in A):

L − z′
∂L
∂z′

= C1. (10)

Applying this equation to (9), we obtain,

(gµz + λ)
√

R2 + z′2 − z′
[
z′(gµz + λ)√

R2 + z′2

]
= C1,

(gµz + λ)
(

R2 + z′2√
R2 + z′2

− z′2√
R2 + z′2

)
= C1.

By consideringC2 = C1/R2, R 6= 0, we obtain

gµz + λ = C2

√
R2 + z′2, (11)

which is the differential equation for the cable confined in the
cylinder described at the beginning of this section. The solu-
tion to this equation will be presented in Sec. 4, along with
the constraint (5).

3. An alternative solution

In the equilibrium configuration, the coordinate abscissa of
the center of gravity of the cable is minimal. It is given by

z̄ =
∫

µzds∫
µds

. (12)

So in the variational process, we could minimize the func-
tional associated with the abscissa. Then we would get the
same result as the previous functional (7) as shown below.

By applying
∫

µds = µL and (4) to (12), we obtain the
functional to be minimized

J [z] = z̄ =

θ0∫
−θ0

zµ
√

R2 + z′2 dθ

θ0∫
−θ0

µds

=

θ0∫

−θ0

z
√

R2 + z′2

L
dθ,

subject to the constraint of the fixed length of the cable.
As before, we can convert this constrained problem into

an equivalent unconstrained problem:

K[z] =

θ0∫

−θ0

(z/L + λ)
√

R2 + z′2dθ. (13)

Applying the Euler-Lagrange Equation (10) to Lagrangian
from (13), we obtain the differential equation

z/L + λ = C
√

R2 + z′2, (14)

which is identical to the Eq. (11) except for the constants that
will be eliminated during the development of the solution in
Sec. 4.

Rev. Mex. Fis. E21010201



4 E. G. M. DE LACERDA AND H. L. CARRIÓN

4. Differential equation solution and bound-
ary conditions

In this section we will find the solution to (11).

CaseC2 6= 0

By squared both sides of (11), and rearranging the terms,
we obtain

± z′√
(gµz + λ)2/C2

2 −R2
= 1.

Becausedz = z′ dθ, this equation can be written as:

± dz√
(gµz + λ)2/C2

2 −R2
= dθ.

Integrating both sides and replacingu = gµz + λ and
dz = du/(gµ), we get

±C2

gµ

∫
du√

u2 −R2C2
2

= θ + C3.

The signal± can be absorbed into the constantC2 and by
replacingu = RC2 cosh(v) anddu = RC2 sinh(v)dv, we
get

C2

gµ

∫
RC2 sinh(v)dv√

R2C2
2 cosh2(v)−R2C2

2

=
C2

gµ

∫
sinh(v)dv√
cosh2(v)− 1

=
C2

gµ
v=θ + C3.

If we now substitutev = cosh−1(u/(RC2)), we get

C2

gµ
cosh−1

(
u

RC2

)
= θ + C3.

Hence

u = RC2 cosh
(

gµ

C2
θ +

gµ

C2
C3

)
.

By substitutingu = gµz + λ, we get

z = aR cosh
(

θ + b

a

)
+ c, (15)

where
a =

C2

gµ
, b = C3, c = − λ

gµ
.

Equation (15) is the solution of the differential equa-
tion (11) and therefore is the equation of the cable confined in
the cylinder. Note that it is the catenary Eq. (1) multiplied by
R in theθz-plane. The parametersa, b andc depend on the
boundary conditions and the constraint of the fixed length of
the cable Eq. (5). The parametersb andc translate the cable
horizontally and vertically, respectively, to fit the pointsA
andB. Firstly, for pedagogical purposes, we will determine
the parameters for the particular case in which pointsA and
B have the same height. Next, we will study the general case
in whichA andB can also be at different heights.

4.1. Particular case (h = 0): cable suspended at points
with the same height

In this case, the boundary conditions arez(−θ0) = z(θ0) =
0. Under these conditions, the cable is symmetrical with re-
spect to thez axis. This implies thatb = 0 in Eq. (15), be-
cause values ofb 6= 0 would shift the cable horizontally caus-
ing the loss of this symmetry. Therefore, the cable equation
for Case 1 is given by

z = aR cosh(θ/a) + c. (16)

Now we calculate the parametera. A cable has a fixed length
equal toL given by (5). Solving it, we get

L =

θ0∫

−θ0

√
R2 + z′2 dθ =

θ0∫

−θ0

√
R2 + [R sinh(θ/a)]2dθ

= R

θ0∫

−θ0

cosh(θ/a)dθ.

Thus,

2aR sinh(θ0/a) = L. (17)

Equation (17) relatesa to L, but it is a transcendental equa-
tion. Because of this, to get thea parameter, we must resort to
numerical methods such as the Newton-Raphson method [6].

Applying z(θ0) = 0 to (15), we obtain the parameterc
directly,

c = −aR cosh(θ0/a). (18)

We can obtain an alternative form for this equation
as follows. Using (17) and the relationcosh2(θ0/a) −
sinh2(θ0/a) = 1, we obtain

cosh(θ0/a) =

√(
L

2aR

)2

+ 1.

Applying it to (18), we get

c = −
√

(L/2)2 + (aR)2. (19)

Finally, we replace the parametersa andc with their values
calculated in Eq. (16) to obtain the final solution to the prob-
lem.

Although (17) is not solved analytically, we can still study
geometrically what kind of solution it can provide. To do this,
we introduce two auxiliary functions:

g(x) = sinh(θ0x), (20)

f(x) =
L

2R
x, (21)

Rev. Mex. Fis. E21010201
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FIGURE 2. Auxiliary functionsf(x) e g(x). a) The intersections
betweenf(x) andg(x) generate two candidate solutions. b) For
x 6= 0, there is no intersection betweenf(x) andg(x) (no candi-
date solution).

wherex ≡ 1/a. Thus, (17) has the following formg(x) =
f(x) with x being the unknown to be determined. With the
exception of the pointx = 0, the points of intersection be-
tweenf(x) andg(x) are candidate solutions for the problem
[see Fig. 2a)]. However, if the slope off(x) is small, as
shown in the Fig. 2b), then there will be no solution.

In the case of Fig. 2a), there must be two solutions
in Eq. (17), which are symmetric with respect to the origin
of thex-axis (x = 1/a). However, we observe that the nega-
tive solution (a < 0) is invalid, because when it is substituted
in Eq. (15), it results in a curve with concavity facing down-
wards and therefore would not minimize the functional (8).
Then, the positive solution(a > 0) would be the only so-
lution to the problem. In the case of Fig. 2b), there is no
candidate solution because the slope off(x) is lesser than
the slope ofg(x) at pointx = 0. Hence the condition for a
solution to exist is:

f ′(0) =
L

2R
> g′(0) = θ0. (22)

Rearranging the terms,

L > R(2θ0). (23)

This solubility condition of (17) is confirmed geometrically.
Because according to Fig. 1, the lengthL of cable must be
greater than the circular distance between theA andB ends
of the cable, located here at the same height, for the problem
to make some physical sense. That is,L > R(2θ0), which is
exactly the condition of the algebraic solubility (23) arising
from the transcendental Eq. (17).

4.2. General case (h ∈ R): cable can be suspended at
points of different heights

In this case, the boundary conditions arez(−θ0) = 0 and
z(θ0) = h. Applying them to (15), we obtain

0 = aR cosh((−θ0 + b)/a) + c, (24)

h = aR cosh((θ0 + b)/a) + c. (25)

Subtracting the first equation from the second, we have

cosh
(

θ0 + b

a

)
− cosh

(−θ0 + b

a

)
=

h

aR
.

Putting cosh in the exponential form and rearranging the
terms, we get the relationship

eb/a − e−b/a

2
= sinh(b/a) =

h

2aR sinh(θ0/a)
. (26)

Now we will use the fixed length constraint of the cable given
by (5) to get another relationship. Solving we get

L =

θ0∫

−θ0

√
R2 + z′2 dθ

=

θ0∫

−θ0

√
R2 +

[
R sinh

(
θ + b

a

)]2

dθ

= R

θ0∫

−θ0

cosh
(

θ + b

a

)
dθ.

Hence

L = aR sinh
(

θ0 + b

a

)
− aR sinh

(−θ0 + b

a

)
. (27)

Putting sinh in the exponential form and rearranging the
terms, we get the relationship

eb/a + e−b/a

2
= cosh(b/a) =

L

2aR sinh(θ0/a)
. (28)

We apply the relationships (26) and (28) in the formula
cosh2(b/a)− sinh2(b/a) = 1 to obtain

2aR sinh(θ0/a) =
√

L2 − h2. (29)

The parametera can be determined by (29) which relatesa
to L. However, it is also a transcendental equation that must
be solved by numerical methods.

Using the relationships (26) and (28) again, we have

tanh(b/a) =
sinh(b/a)
cosh(b/a)

=
h

L
. (30)

So we get the parameterb,

b = a tanh−1(h/L). (31)

Now we will describe another alternative for determining the
parameterb. Putting thetanh in the exponential form in (30)
we have,

eb/a − e−b/a

eb/a + e−b/a
=

h

L
. (32)

By rearranging the terms, we get

(eb/a)2 =
L + h

L− h
.

So we have another formula for the parameterb,

b =
a

2
ln

(
L + h

L− h

)
. (33)

Finally, we can get the parameterc directly from (24):

c = −aR cosh
(

θ0 − b

a

)
. (34)
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6 E. G. M. DE LACERDA AND H. L. CARRIÓN

5. The tensile force on cable

The cable, by hypothesis, is totally flexible. That is, it does
not resist any bending. Because of this, the internal force act-
ing on the cable is always in the direction of the cable. At the
general positionθ, this force or tension in the cable is denoted
by

T(θ) = Tx(θ)i + Ty(θ)j + Tz(θ)k.

The cable equation is given in (15). Its minimum point
is atθ = −b (see left side in Fig. 3). For mathematical con-
venience, we will study the cable segment after its minimum
point (θ ≥ −b), that is, the segment in interval[−b, θ]. The
length of this segment is given by

s(θ) = aR sinh((θ + b)/a). (35)

This equation can be obtained in the same way as (27), just
changing the integration interval to[−b, θ].

The rectangular coordinates of the cable curve are ob-
tained by the equations

x = R cos(θ),

y = R sin(θ),

z = aR cosh((θ + b)/a) + c.

In other words, these equations are the parametric compo-
nents of the vector function that we associate with the curve
that physically represents the cable. By deriving this vector
function we will obtain the tangent vector to the curve. Be-
cause the tensionT is in the direction of the cable curve, then
the direction cosines ofT, (i.e., cos θx, cos θy andcos θz),
are equal to the direction cosines of the tangent vector to the
cable.

The tangent vector to the cable curve is

FIGURE 3. The forces acting on a small segment of cable∆s.

v = vx i + vy j + vz k =
dx

dθ
i +

dy

dθ
j +

dz

dθ
k

= −R sin θ i + R cos θ j + R sinh((θ + b)/a)k,

and its length is

‖v‖=
√

(−R sin θ)2+(R cos θ)2+(R sinh((θ + b)/a))2

= R cosh((θ+b)/a).

So, the direction cosines ofT are given by

cos θx =
vx

‖v‖ = − sin θ

cosh((θ + b)/a)
, (36)

cos θy =
vy

‖v‖ =
cos θ

cosh((θ + b)/a)
, (37)

cos θz =
vz

‖v‖ = tanh((θ + b)/a). (38)

The external forces acting on the cable are the cable’s own
weight and the reaction force, normal to the cylinder surface,
resulting from the reaction of the cylinder wall to the contact
of cable. This reaction force is distributed along the cable.
Therefore, it is expressed in unit of force per unit of length
and denoted by

N = N cos θ i + N sin θ j.

The right side of the Fig. 3 shows the forces acting on a small
section∆s of the cable, where∆s = s(θ) − s(θ + ∆θ) and
∆T = T(θ + ∆θ) − T(θ). The weight force acting on the
section∆s is always a vector in the vertical direction that
points downwards, that is,−gµ∆sk. Since∆s is small, the
resultant normal force can be approximated by∆sN. In this
way, we can write the three static equilibrium equations as

∆Tx + N cos θ∆s u 0,

∆Ty + N sin θ∆s u 0,

∆Tz − gµ∆s = 0.

Dividing the equations by∆θ and making∆θ −→ 0, we get

dTx

dθ
+ N cos θ

ds

dθ
= 0, (39)

dTy

dθ
+ N sin θ

ds

dθ
= 0, (40)

dTz

dθ
− gµ

ds

dθ
= 0. (41)

We obtain the vertical componentTz of tensionT by inte-
grating (41):

Tz(θ) = Tz(−b) +

θ∫

−b

gµ
ds

dθ′
dθ′ (42)

= Tz(−b) +

θ∫

−b

gµ
d

dθ′
(aR sinh((θ′ + b)/a)) dθ′.

(43)

Rev. Mex. Fis. E21010201
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At the minimum point (θ = −b), the direction of tensionT
is horizontal. ThereforeTz(−b) = 0. So the result of (43) is

Tz(θ) = gµaR sinh((θ + b)/a). (44)

Substituting (44) and (38) in the relationshipTz = T cos θz,
we obtain the magnitude of the cable tension,

T (θ) = gµaR cosh((θ + b)/a). (45)

Using the relationshipsTx = T cos θx andTy = T cos θy

and (36) and (37), we obtain the other components ofT ,

Tx(θ) = −gµaR sin θ, (46)

Ty(θ) = gµaR cos θ. (47)

Substituting (46) in (39), we get

d

dθ
(−gµaR sin θ)+N cos θ

d

dθ
(aR sinh((θ + b)/a)) dθ = 0.

Solving the above equation forN , we have the magnitude of
the normal force per unit of length.

N(θ) =
gµa

cosh((θ + b)/a)
. (48)

Summarizing the results so far, we have the cable tension

T = gµaR [− sin θ i + cos θj + sinh((θ + b)/a)k] , (49)

and the reaction of the cylinder wall to the cable contact

N =
gµa

cosh((θ + b)/a)
(cos θ i + sin θ j) . (50)

Converting these two results to cylindrical coordinates, we
obtain,

T = gµaR [êθ + sinh((θ + b)/a) êz] , (51)

N =
gµa

cosh((θ + b)/a)
êr. (52)

whereêr, êθ e êz are the unit vectors for cylindrical coordi-
nates.

6. Load on the cylinder wall

It should be noted that the cable forms a distributed load on
the cylinder wall. This load, denoted byD, has a diago-
nal direction and is composed of two components: the re-
action force in reverse (i.e., −N) and the force weight per
unit length. That is,

D = − gµa

cosh((θ + b)/a)
êr − gµ êz. (53)

FIGURE 4. External forces acting on the cable.

7. External forces

Now we can directly determine the external forces acting on
the cable (see Fig. 4). The forces that suspend the cable at
pointsA andB are, respectively

TA = −T(−θ0) = gµaR
[− sin θ0 i

− cos θ0j− sinh((−θ0 + b)/a)k,
]
, (54)

TB = T(θ0) = gµaR
[− sin θ0 i + cos θ0j

+ sinh((θ0 + b)/a)k.
]
. (55)

The resultant forceR of the reaction of the wall on the
cable is given by

R =

θ0∫

−θ0

Nds =

θ0∫

−θ0

gµa

cosh((θ + b)/a)

× (cos θ i + sin θ j)ds. (56)

From (35), we obtainds = R cosh((θ + b)/a)dθ. Substitut-
ing it in the equation above, we get

R = 2gµaR sin θ0 i. (57)

Substituting (27) in the resultant weight forceP = gµLk,
we can rewrite it as

P = gµaR
[
sinh ((θ0 + b)/a)

− sinh ((−θ0 + b)/a)
]
k. (58)

Finally, we can easily check the balance of forces. That is,
TA + TB + R + P = 0.

8. Numerical Experiments

8.1. Cable suspended at points with the same height

Consider a flexible cable with a length ofL = 3.0 m, den-
sity µ = 3 kg/m andg = 9.81 m/s2, confined in a cylin-
der of radiusR = 0.5 m. The cable is suspended at points

Rev. Mex. Fis. E21010201
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A = (−π/6.0) andB = (π/6.0) in cylindrical coordinates.
The cable equation is described by (15). We will determine
the parametersa, b andc of the cable equation.

Because the cable is suspended at points of the same
height (h = 0), sob = 0. We get the parametera from (17).
Then

2a sinh
( π

6a

)
= 3, 0,

whose solution isa = 0.139066 (obtained with numerical
computing software). We get the parameterc from (19) or
(18):

c = −
√

(3, 0/2)2 + (0, 139066× 0, 5)2 = −1, 50161.

Substituting parameter values in (15), we obtain the cable
equation,

z1(θ) = 0.0695332 cosh(θ/0.139066)− 1.50161.

The maximum tension in the cable occurs at pointsA andB
because they are at the same height. Substituting the pointA
(or B) in (45), we obtain the maximum tension:

Tmax = 9, 81× 3× 0, 139066

× 0.5 cosh(π/(6× 0, 139066)) = 44.1924N. (59)

8.2. Cable suspended at different height points

Consider the same cable and cylinder as the previous exam-
ple, with the difference that in this section the cable is sus-
pended at the pointsA = (−π/6, 0) e B = (π/6, 1). So
h = 1 m. Parametera is determined by (29)

2a× 0.5 sinh
( π

6a

)
=

√
62 − 12, (60)

whose solution isa = 0, 142100 (obtained by numerical
computing software).

Parameterb is obtained by (33)

b =
0, 142100

2
ln

(
3 + 1
3− 1

)
= 0, 049248. (61)

FIGURE 5. Flexible cables confined in a circular cylinder. Cables
are the same length but suspended at different points.

Parameterc is obtained by (34)

c = −0, 142100× 0, 5 cosh
(−π/6− 0, 049248

0, 142100

)

= −1, 001892.

Substituting these values in (15), we obtain the cable
equation,

z2(θ) = 0, 0710499

× cosh
(

θ + 0, 0492481
0, 1421

)
− 1, 001892. (62)

The maximum tension on the cable is located at pointB
because it is higher. Substituting the pointB in Eq. (45),
we obtain the maximum tensionTmax = 58, 9157 N. Note
that raising theB point by 1 m, compared to the previous
example, increased the maximum tension significantly (see
Eq. (59)). Finally, the graphs of the cablesz1 and z2 are
shown in Fig. 5.

8.3. Cable forces on cylinders with different radius.

This experiment compares the tensions and reaction forces
between cables confined in different cylinders and also with
the catenary (unconfined cable).

Consider a cable of lengthL = 330 m, shown in Fig. 6,
with densityµ = 12 kg/m andg = 9.81 m/s2, suspended
between pointsA andB of the same height (h = 0) and sep-
arated by a fixed distance ofd = 300 m.

Figure 7 shows the tension on this cable versus its partial
lengths for cylinders with radius300, 350, 500, and900 m.
In this graph, the tensionT was determined as follows. Equa-
tion (35), with b = 0, gives the partial length of the cable
from the half of the cable. So to determine the length of the
cable, from the beginning, we addL/2, that is

s = L/2 + aR sinh(θ/a),

hence

FIGURE 6. Cable suspended at pointsA and B separated by a
distanced.
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FIGURE 7. The graph shows the tension in the cable, along its
length, when confined to different cylinders and without confine-
ment (catenary).

FIGURE 8. The graph shows the wall reaction force per unit length.

θ = a sinh−1

(
s− L/2

aR

)
.

Then we can determine the traction, given by (45):

T = gµaR cosh(θ/a).

Likewise, Fig. 8 shows the cylinder reaction force per unit
length (48), for cylinders with different radius. According to
Figs. 7 and 8, the tension of the cable and the reaction forces
increase significantly as the cylinder radius decreases. On the

other hand, when the radius increases, the tensile and reaction
forces decrease and approach the behavior of a catenary.

9. Conclusion

This work solved a modified version of the classical cate-
nary problem in which the cable is confined in a cylinder.
The article addressed several aspects of the problem ranging
from cable equation deduction to cable tensile analysis. We
believe this approach is useful for physics students and en-
gineers interested in flexible cable analysis. The cable equa-
tion deduction was based on the principle that the cable equi-
librium configuration is the minimum gravitational potential
energy configuration. Variational calculus was used to ob-
tain the curve that minimizes the potential energy of the ca-
ble. We obtain formulas for the cases of cables suspended
at points of the same height and different heights. In addi-
tion, we also obtain the formula for the tension at each point
of the cable. The analysis of tension in cables confined to
surfaces is an aspect that differs from the classical catenary
problem. The classical catenary has no contact with surfaces
and surface reaction forces do not exist. This article presents
examples to illustrate applications of the formulas obtained.
And numerical experiments have shown that confinement in
the cylinder significantly increases cable tension compared
to classical catenary. Numerical results also showed that in-
creasing the radius of the cylinder reduces the tension in the
cable, as long as the distance between the support points is
maintained. Finally, this work serves as an introduction to
future work with cables confined to a cylinders, spheres and
other surfaces.

Appendix

A. Particular form of the Euler-Lagrange equa-
tion in which x does not appear explicitly in the
Lagrangian, i.e., L = L(y, y′)
Suppose that in the functional of an elementary problem of
variational calculus

S[y] =

xf∫

x0

L(x, y, y′) dx,

we haveL = L(y, y′). So (∂L/∂y′) = (∂L/∂y′)(y, y′),
because if the Lagrangian depends only ony andy′, then its
partial derivative∂L/∂y′must also depend only ony andy′.
This implies that the Euler-Lagrange equation becomes:

∂L
∂y

=
d

dx

( ∂L
∂y′ (y, y′)

)

Sincey = y(x) andy′ = y′(x), then differentiating the right-
hand side with respect tox and using the chain rule, we get:

d

dx

( ∂L
∂y′ (y, y′)

)
=

∂

∂y

( ∂L
∂y′

)dy

dx
+

∂

∂y′
( ∂L

∂y′
)dy′

dx
.
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Therefore, the Euler-Lagrange equation becomes:

∂L
∂y

=
∂

∂y

( ∂L
∂y′

)dy

dx
+

∂

∂y′
( ∂L

∂y′
)dy′

dx
.

Passing everything to the left-hand side and multiplying by
y′, we get

y′
(∂L

∂y
− ∂

∂y

( ∂L
∂y′

)dy

dx
− ∂

∂y′
( ∂L

∂y′
)dy′

dx

)
= 0.

By rearranging the terms, we obtain

y′
∂L
∂y

+
∂L
∂y′

dy′
dx

− ∂L
∂y′

dy′
dx

− y′
∂

∂y

( ∂L
∂y′

)dy

dx
− y′

∂

∂y′
( ∂L

∂y′
)dy′

dx
= 0,

Because the first two terms of the previous equation are
(d/dx)(L) and the last three terms are

d

dx

(
y′

∂L
∂y′ (y, y′)

)
,

then

d

dx

(
L − y′ ∂L

∂y′
)

= 0.

Hence

L − y′ ∂L
∂y′ = C (A.1)

whereC is a constant. Equation (A.1) is easier to solve than
the Euler-Lagrange equation because it has already been par-
tially solved.
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