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A catenary-like cable confined in a circular cylinder
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The problem of obtaining the curve of a cable suspended between two points, supporting only its own weight, was solved simultaneously,
in the 17th century, by Johann Bernoulli, Leibniz, and Huygens. This curve is called the catenary. This article solves a modified problem
in which the suspended cable is confined in a vertical cylinder. For this, an functional is formulated to describe the potential energy of a
fixed-length confined cable in any possible arrangement. Then, the variational problem of extremizing this functional is presented and the
Euler-Lagrange differential equation is deduced. The analytical solution of this equation is obtained for the cable suspended by two points at
equal and different heights. Furthermore, the tensile force acting on the cable is determined. Numerical results are presented comparing th
effect of confinement on the tensile force in relation to the traditional catenary.
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1. Introduction lus is a powerful mathematical tool that is applied to formu-

) ) ~ late modern physical theories of both particles and physical
A flexible cable suspended between two points, supportingie|ds. A known problem that variational calculus manages to
only its own weightie., in static equilibrium), forms a curve  go|ye in an elegant way is the brachistochrone problem, and
called catenary. This word comes from the Latin word catengyt present, there are articles still discussing this issue [4]. One

which means chain. Examples of catenaries are the cablggay to solve the catenary problem using variational calculus
used in transmission lines and telephone lines. is briefly described below.

The problem of determining the equation of the curve of

flexible cable, of fixed length, between the two points and First, it is _co_ns_;idered t_hat, give_n tWO_ fixed poinsand
in static equilibrium, was proposed by Galileo Galilei. In B, there are infinite possible configurations of a suspended

this problem it is assumed that the cable is homogeneous, iffaPle with a fixed length betweehand B (although, exper-
there is only one stable cable configuration). Next,

elastic and flexible in the sense that any resistance offered {gentally. th _ ,
bending is negligible [1]. Galileo conjectured that the So|u_the gravitational potential energy of the cable is calculated

tion to the problem was a parable. But Christiaan Huygensconsidering that the cable has a certain mass and linear den-
Sity. The variational principle is then used with a Lagrange

aged just 17, in 1647, and Joachim Jungius, in 1669, showed”Y: ' ot ) . ;
that Galileo’s conjecture was false, without, however, pre_mult|pI|er [5] to minimize the functional relative to the gravi-

senting the analytical solution of the catenary [2, 3. Omytauonal potential energy of the cable, subject to the constraint

in 1691, after a public challenge by Jakob Bernoulli threethat the total length of the suspended cable is fixed. The so-

different solutions appeared to obtain the catenary equatiop'f'tio,n to this variational problem is the physical cable config-
given by Leibniz, Huygens and Johann Bernoulli. Huygeng!ration that solves the catenary problem.

presented a solution using the classical euclidean mathemat- In the classic catenary problem presented so far, the cable
ics. Whereas Leibniz and Bernoulli used the newly inventeds localized on a flat vertical surface parallel to the gravita-
Calculus and this resulted was the first public success of Cational field. In this article, the previous problem is formulated

culus [2]. in a different situation. The suspended cable is how confined
The catenary equation is given by: to a cylindrical vertical surface. Then we use variational cal-
1 culus to determine the second-order Euler-Lagrange differen-
y(x) = acosh(z/a) = 54 (egc/a + efm/a) . D tial equation, whose solution results in the static equilibrium
The parameter determines the shape of the catenarygeometrlc configuration of the suspended cable
(i.e., how fast the catenary opens). The solution of the Euler-Lagrange equation is obtained

Another way to solve the problem of finding the catenaryfor two cases: (1) pointd and B that suspend the cable are
equation is through variational calculus. Variational calcu-at the same height. (2) and B can be at different heights.
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Next, the tensile force in the cable confined to the cylinder
is calculated. Results that are important from an engineering
point of view to analyze the cable tensile strength. Finally,
numerical experiments will be shown. As far as we know no
other research papers exist describing this specific problem.
Because of this, we do not provide a dedicated related work
section.

2. The flexible cable model suspended on a
vertical cylindrical surface

Consider a flexible, inelastic, homogeneous cable of linear
density . and lengthL suspended by two pointd and B
fixed in a vertical cylinder with a circular cross section. The
cable is subject only to the action of its own weight and is
completely confined in the cylindrical surface of radiiand
sufficiently large in height. Thd and B points can be at dif-
.ferem heights. Determine the equalltlo-n of th.e cgrve qescrlbl-:lGURE 1. Cable of arbitrary shape in the vertical cylinder of ra-
ing the suspended cable. The gravitational field is uniform. US R

The surface of the cylinder is parameterized by the vector '
function:

of arc lengthds between two points of a curve, totally con-
®(2,0) = (Rcosd, Rsinb, 2), ) ﬂned ?n an a_rbitrary surfacs, can be _calculated using the
first differential forms of the differential geometry. There-
wherez € Ref € [0,2n]. So there are two ways to rep- fore, we have the parametric form 6f Equation 2), and
resent a point on the cylinder surface. First, with respect tovith the following identificatioru = z,v = 6, we obtain
the coordinates of the spaf& (extrinsic coordinates) with ®. = (0,0,1),®y = (—Rsin#, Rcos#,0) which is substi-
the triple (z,vy, 2) such thatz? + y> = R? 2 € R, and tuted in the first fundamental forms
then by the paifz, #) which is known as the intrinsic coordi-
nates of the cylindrical surface. The non-compact coordinate E=<9%,, ¢,>=1
z, which varies along the generator of the cylinder, and the
. . . . F=<®,, &;>=0;
compact coordinaté, which varies along the cross section
of the cylinder. G =<®y, ®y>= R
In the intrinsic coordinates of the cylindrical surface, the
curve confined in the cylinder is written as and from

z = z(0).

B
ds = Eu? 4 2F a0 + Go? dt
Considerh as the difference in height between poiitand y /\/ e sy G
A

point A. h may assume positive or negative values. For math-
ematical convenience, the cable starts at pdint (—0,0)  (see Ref. [5]) obtain
and ends at poinB = (6, h).

The Fig. 1 shows that the arc length eleméntilong an B \/ﬁ
arbitrary cable is calculated approximately with a right trian- ds = \/ 2% + R20% dt
gle, whose legs are: the differential elemént(vertical) and
the arc length element in the direction of the cross sectiof?”

Rdf. Then by the Pythagorean theorem: ds = \/(Rd0)® + d=2

ds = +/(RdO)? + dz2. 3 )
becauselz = Zdt,df = ¢dt and asdz = (dz/df)) dz then
As z = z(0), thendz = 2'df andz’ = dz/df. Hence % = (dz/dh)h, hence we obtain the same expressiorddf (
for the element of arc lengids in the cylinder, demonstrated
(Rd0)* + 2/d6? = / R* + 2/ df. (4)  previously. So the cable length is given by

The previous approach is practical and intuitive because it

6o 6o
uses specific cylinder properties. However, we can also study B B SR
using more general concepts, valid for arbitrary surfaces de- L= ds = RE + 272 do. ®)
fined by differentiable functions. Thus, the element —0o —60

Rev. Mex. Fis. E21 010201



A CATENARY-LIKE CABLE CONFINED IN A CIRCULAR CYLINDER 3

According to classical mechanics, the lower the potentiaBecause this function depends only erand 2/, then the
energy of a mechanical system, the more stable that systeEuler-Lagrange equation can be simplified to the following
will be. Then, we find the total potential energy of the cableequation (see the proof in A):
in an arbitrary geometric configuration and minimize it by
the variational calculus. It is understood that there is a func- L — Z/ai = 0. (10)
tional calledPotential EnergyEp : M — R, wherelM is the 92
set of all smooth functions (curves) that represent cables witipplying this equation tcg), we obtain,
length of L and fixed by the ends at points and B. The ( Y
functional Ep associates each arbitrary cumve- z(0) € M /2 4 2 _ o | 2 \gHZ _
to areal numbeE p(z) which is the physical potential energy (gnz + NV R 2 ‘ [ VR? + 22 } b

of the curvez = z(0) in the cylinder. 2 2 2
, ) R+ z z
We can define the potential energy of an elemén(of (gpz+ ) VIR - NI = (.
massdm) of the cable, located at the coordindte z), as +z +z

being By consideringC, = C1/R?, R # 0, we obtain

dE, = zgdm = zguds, z <0,
. . . gz + A= Co/ R? 4 22, (11)
whereg is the acceleration of gravity. It was assumed that

the zy-plane is the reference level for calculating the poten-which is the differential equation for the cable confined in the

tial energy of any particle (see Fig. 2). The total potentialcylinder described at the beginning of this section. The solu-

energyE, of the cable is given by tion to this equation will be presented in Sec. 4, along with
the constraints).

6o 0o
E, = E, = . . .
? / By / 2gpds 3. An alternative solution
—0o —bo
i ( . In the equilibrium configuration, the coordinate abscissa of
Applying (4), we obtain the center of gravity of the cable is minimal. It is given by
7]
i [ pzds
E, = / guzy/ R? + 22 d6. (6) z= T pds (12)

_911 . . . .. .
So in the variational process, we could minimize the func-

From the point of view of variational calculus, we have justtional associated with the abscissa. Then we would get the
built a functional because the numerical value of the definitessame result as the previous functiongl&s shown below.
integral (the image of the functional) depends on the cable By applying [ uds = pL and @) to (12), we obtain the
configuration with fixed endga and B. Therefore, the prob- functional to be minimized

lem of determining the curve equation such that the potential

0o
energy of the cable is minimal means finding the extreme of VR + 22 db 9
the functional _ Jgo 2V R? + 22
Jzl=z= 0 = T e,
fo [ pds o
Jz]| = E, = / gz R? + 2'2d6, @ —fo
—0 subject to the constraint of the fixed length of the cable.

. . ! As before, we can convert this constrained problem into
subject to the constraint of the fixed length of the cable, th%n equivalent unconstrained problem:

equation ).
We can convert this constrained problem into an equiv- by

alent unconstrained problem using the Lagrange multipliers Klz] = / (2/L+ X))V R? + 22d. (13)
method [5]. The new functional to be minimized is as fol- )
lows: ’

Applying the Euler-Lagrange EquatioiQ) to Lagrangian
Klz]= / —0000 (guz\/Rz + 2240/ R2 + Z/2> do, (8)  from (13), we obtain the differential equation

— 2 12
where is the Lagrange multiplier. The function being inte- Lt A=CVE 22 (14)

grated (Lagrangian function) is given by which is identical to the Eq/1{l) except for the constants that

will be eliminated during the development of the solution in
L(z,7') = guzV/R? + 2% + AW R2 + 22, 9)  sec. 4.
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4. Differential equation solution and bound-
ary conditions

In this section we will find the solution td.Q).
CaseCy # 0

By squared both sides 011), and rearranging the terms,
we obtain

Z/

+
Vignz +A7/C5 - B2
Becauselz = 2’ df, this equation can be written as:
n dz
Vignz +2)?/C3 - R?

Integrating both sides and replacing = guz + A and
dz = du/(gu), we get

CQ / du
+— | ——==0+0C5.

gr ) \J/u?— R2C3 °
The signal+ can be absorbed into the constart and by
replacingu = RC5; cosh(v) anddu = RCj sinh(v)dv, we

get
Co / RC5 sinh(v)dv _ G / sinh(v)dv
gr \/R2022 cosh?(v)—R2C2  IHJ | Jcosh?(v) — 1
:@1}:0 + 03.
gr

If we now substituter = cosh ™' (u/(RC>)), we get

CQ —1 < u )
—= cosh =60+ Cs.
gu RCs °
Hence
u = RC5 cosh (g’g@ + g:C’g) .
By substitutingu = guz + A, we get
z = aR cosh (T) +c, (15)
where
a:@, b:C3, C:—i-
g gp

Equation [15) is the solution of the differential equa- Finally

4.1. Particular case i = 0): cable suspended at points

with the same height

In this case, the boundary conditions afe-0y) = 2(6y) =
0. Under these conditions, the cable is symmetrical with re-
spect to ther axis. This implies thab = 0 in Eq. (15), be-
cause values df £ 0 would shift the cable horizontally caus-
ing the loss of this symmetry. Therefore, the cable equation
for Case 1 is given by

z = aRcosh(f/a) + c. (16)
Now we calculate the parameterA cable has a fixed length
equal toL given by 6). Solving it, we get

6o

0o
:/ R2+Z’2d0:/\/R2+[Rsinh(9/a)]2d0

—0o —0o

0o
:R/cosh(ﬂ/a)dﬁ.
—6o

Thus,

2aRsinh(fy/a) = L. 17)
Equation|L7) relatesa to L, but it is a transcendental equa-
tion. Because of this, to get thigparameter, we must resort to
numerical methods such as the Newton-Raphson method [6].

Applying z(6y) = 0 to (15), we obtain the parameter
directly,

¢ = —aRcosh(bp/a). (18)

We can obtain an alternative form for this equation
as follows. Using17) and the relationcosh?(6y/a) —
sinh?(Ay/a) = 1, we obtain

L 2
cosh(6y/a) = <2aR) + 1
Applying it to (18), we get

(L/2)* + (aRR)?. (19)

c=—

we replace the parameterandc with their values

tion (11) and therefore is the equation of the cable confined irl:alculated in Eq.16) to obtain the final solution to the prob-

the cylinder. Note that it is the catenary Ef) (nultiplied by
R in the 6z-plane. The parametets b andc depend on the

boundary conditions and the constraint of the fixed length o

the cable Eq.9). The parametersandc translate the cable
horizontally and vertically, respectively, to fit the points

andB. Firstly, for pedagogical purposes, we will determine

lem.

¢ Although [17) is not solved analytically, we can still study
geometrically what kind of solution it can provide. To do this,
we introduce two auxiliary functions:

. . . ) = sinh(fgx), 20
the parameters for the particular case in which paihend 9(w) = sinh(foz) (20)
B have the same height. Next, we will study the general case Fa) = ix (21)
in which A and B can also be at different heights. 2R™

Rev. Mex. Fis. E21 010201



A CATENARY-LIKE CABLE CONFINED IN A CIRCULAR CYLINDER 5

A Putting cosh in the exponential form and rearranging the
terms, we get the relationship

eb/a _ e—b/a h

—=gsinh(b/a) = —— . 26

2 sinh(b/a) 2aRsinh(0y/a) (26)

f(x) Now we will use the fixed length constraint of the cable given
by (5) to get another relationship. Solving we get

0o
L = / VvV RZ+ 22 do

—0o

9(x)

FIGURE 2. Auxiliary functions f(z) e g(x). a) The intersections
betweenf(z) andg(z) generate two candidate solutions. b) For

x # 0, there is no intersection betwe¢iiz) andg(x) (no candi- 0o 5

date solution). _ / \/R2 n [R sinh (0 + b)} &0
a

wherexz = 1/a. Thus, [L7) has the following forny(z) = —%

f(z) with 2 being the unknown to be determined. With the 6o

exception of the point = 0, the points of intersection be- - R / cosh (M> do.

tweenf(x) andg(z) are candidate solutions for the problem a

[see Fig. 2a)]. However, if the slope ¢f(z) is small, as b0
shown in the Fig. 2b), then there will be no solution.

In the case of Fig. 2a), there must be two solutions ; _  pa o <90 + b) _ wRsinh (90 +b> @
in Eg. (17), which are symmetric with respect to the origin a a
of thez-axis (v = 1/a). However, we observe that the nega- putting sinh in the exponential form and rearranging the
tive solution ¢ < 0) is invalid, because when it is substituted terms, we get the relationship
in Eq. (15), it results in a curve with concavity facing down- b/a 1 —bja I
wards and therefore would not minimize the functior@jl ( et te ™ _ cosh(b/a) = ———"———.
Then, the positive solutiofz > 0) would be the only so- 2 2a R sinh (6o /a)
lution to the problem. In the case of Fig. 2b), there is noWe apply the relationships26) and 28) in the formula
candidate solution because the slopefaf) is lesser than cosh®(b/a) — sinh?(b/a) = 1 to obtain

the slope ofy(z) at pointz = 0. Hence the condition for a . _ 7 12
solution to exist is: 2aRsinh(fo/a) = V' L? — h2. (29)

Hence

(28)

I The parametes; can be determined bi29) which relatesy
1'(0) = 3R 9'(0) = bo. (22)  to L. However, it is also a transcendental equation that must
. be solved by numerical methods.
Rearranging the terms, Using the relationship6) and 28) again, we have
L > R(26y). (23) sinh(b/a) h

tanh(b/a) = ———= = —. (30)
This solubility condition of[17) is confirmed geometrically. cosh(b/a) L
Because according to Fig. 1, the lengitof cable must be SO We get the paramety
greater than the circular distance betweenAhend B ends b=atanh *(h/L). (31)

of the cable, located here at the same height, for the problem il d i her al ) q inin th
to make some physical sense. Thatfis; R(26,), which is Now we will describe another alternative for determining the

exactly the condition of the algebraic solubili@3) arising ~ Parameteb. Putting thetanh in the exponential form in30)

from the transcendental EALY). we have,
eb/a _ e—b/a h
: i 32)
4.2. General case/{ € R): cable can be suspended at eb/a 4 e—b/a T T, (
points of different heights By rearranging the terms, we get
In this case, the boundary conditions afe-6,) = 0 and (eb/ay2 = L+h
2(6p) = h. Applying them to/{5), we obtain L—nh
So we have another formula for the paraméter
0 = aRcosh((—0y +b)/a) + ¢, (24)
b O (LR (33)
h = aRcosh((6y+b)/a) + c. (25) —o™\7 =)
Subtracting the first equation from the second, we have ~ Finally, we can get the parametedirectly from 24):
0o +b —Op+b\ h ¢ = —aRcosh fo—b : (34)
osh P — cosh " = 7 a
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6 E. G. M. DE LACERDA AND H. L. CARRON

5. The tensile force on cable

. . . K — de, dy. dz
The cable, by hypothesis, is totally flexible. Thatis, it does ¥~ Vet V) T v2X= g1+ 2 )+ o
not resist any bending. Because of this, the internal force act- — _Rsinfi+ Rcosi+ Rsinh((0+b K
ing on the cable is always in the direction of the cable. Atthe Sl_n i+ Reosfj+ Reinh((0+0)/a)k.
general positior, this force or tension in the cable is denoted and its length is

by |v]|=v/(—Rsin0)2+(R cos 0)2+(Rsinh((f + b) /a))?
T(0) =T,(0)i+ T,(0)j + T.(0)k. — Recosh((6+b)/a).
The cable equation is given i1%). Its minimum point SO, the direction cosines @f are given by
is atd = —b (see left side in Fig. 3). For mathematical con- g _ Vx _ sin (36)
venience, we will study the cable segment after its minimum CosVe = vl _Cosh((a +b)/a)’
point (¢ > —b), that is, the segment in intervitb, §]. The ‘
length of this segment is given by cosf, = Y — ___cosb (37)
Y lvll cosh((0 +b)/a)’

s(6) = aRsinh((6 + b)/a). (35) cosf, = H%H = tanh((# + b)/a). (38)
This equation can be obtained in the same way2a} (ust The external forces acting on the cable are the cable’s own
changing the integration interval fe-b, ). weight and the reaction force, normal to the cylinder surface,

The rectangular coordinates of the cable curve are opresulting from the reaction of the cylinder wall to the contact
tained by the equations of cable. This reaction force is distributed along the cable.

Therefore, it is expressed in unit of force per unit of length
and denoted by

N = Ncosfi+ Nsinfbj.

The right side of the Fig. 3 shows the forces acting on a small
z = aRcosh((6 +b)/a) +c. sectionAs of the cable, wheré\s = s(6) — s(6 + A#) and

AT = T(6 + A9) — T(#). The weight force acting on the
In other words, these equations are the parametric comp@ectionAs is always a vector in the vertical direction that
nents of the vector function that we associate with the curvgyoints downwards, that is; guAs k. SinceAs is small, the
that physically represents the cable. By deriving this vectokesultant normal force can be approximatedbyN. In this
function we will obtain the tangent vector to the curve. Be-way, we can write the three static equilibrium equations as
cause the tensidn is in the direction of the cable curve, then N
the direction cosines dT, (i.e., cos@,, cosf, andcos¥.), ATy + Ncos§As =0,
are equal to the direction cosines of the tangent vector to the AT, + NsinAs = 0,
cable.

The tangent vector to the cable curve is

x = Rcos(0),
y = Rsin(0),

AT, — gulAs = 0.
Dividing the equations byA# and makingAd — 0, we get

—gulAsk

gu% (aRsinh((0' +b)/a))db'.

dT, ds
W + NCOS 9@ = 0, (39)
dT, oads
20 —|—Nslnt9d9—0, (40)
dT, ds
o 9o = 0. (41)
We obtain the vertical componefit of tensionT by inte-
grating 41):
0
ds
L.(0) = To(=b) + [ gu-gdd (42)
—b
/0
—b

FIGURE 3. The forces acting on a small segment of cahle (43)
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At the minimum point @ = —b), the direction of tensiol
is horizontal. Therefor&,(—b) = 0. So the result 0143) is
T.(0) = gpaRsinh((6 + b)/a). (44)

Substitutingl44) and 38) in the relationshid’, = T cos 6.,
we obtain the magnitude of the cable tension,
T(0) = guaR cosh((0 +b)/a). (45)

Using the relationship§, = T cosf, andT, = T cosd,
and 36) and 37), we obtain the other componentsBf

T.(0) = —guaRsinf,
T,(0) = guaR cosb.

(46)
(47)

Substituting/46) in (39), we get

dilg(—guaR sin 0)+N cos 9% (aRsinh((0+b)/a))do = 0.

Solving the above equation fé¥, we have the magnitude of

the normal force per unit of length.

gpa

N(6) = RN RV (48)

Summarizing the results so far, we have the cable tension

T = guaR [—sin0i+ cosfj + sinh((0 + b)/a) k], (49)

and the reaction of the cylinder wall to the cable contact

N = L(cos@i—i—sin@j).

cosh((6 + b)/a) (50)

Tg

Ta

P

FIGURE 4. External forces acting on the cable.

7. External forces

Now we can directly determine the external forces acting on
the cable (see Fig. 4). The forces that suspend the cable at
points A and B are, respectively

Ty =-T(—6y) = guaR[ —sinfp i

— cos fpj — sinh((—6y + b)/a) k, ], (54)
Tp =T(0) = guaR| — sin i+ cos o]
+ sinh((6p + b)/a) k.]. (55)

The resultant forc&R of the reaction of the wall on the
cable is given by

90 90
gua
R = Nds = - s
/ 5 / cosh((6 + b) /a)
—90 —‘90

X (cos @i+ sinbj)ds. (56)

Converting these two results to cylindrical coordinates, we

obtain,
T = guaR [ég + sinh((0 + b)/a) &.] , (51)

_ gpa A
N = cosh(@ 1 0)/a) & (52)

whereé,., &y e &, are the unit vectors for cylindrical coordi-

nates.

6. Load on the cylinder wall

From (35), we obtainds = R cosh((0 + b)/a)df. Substitut-

ing it in the equation above, we get
R =2gpaRsinfyi. (57)

Substituting [27) in the resultant weight forc® = gulL Kk,
we can rewrite it as

P = guaR|sinh ((6y + b)/a)

— sinh ((—6o + b)/a) | k. (58)

Finally, we can easily check the balance of forces. That is,
Ta+Tep+R+P=0.

It should be noted that the cable forms a distributed load on

the cylinder wall. This load, denoted Y, has a diago- 8. Numerical Experiments
nal direction and is composed of two components: the re-
action force in reverse.é., —N) and the force weight per 8.1.
unit length. That is,

Cable suspended at points with the same height

Consider a flexible cable with a length 6f= 3.0 m, den-
sity © = 3 kg/m andg = 9.81 m/, confined in a cylin-
der of radiusR = 0.5 m. The cable is suspended at points

_ gua

——mér_gﬂéz- (53)

Rev. Mex. Fis. E21 010201



8 E. G. M. DE LACERDA AND H. L. CARRON

A = (—n/6.0) and B = (7/6.0) in cylindrical coordinates. Parametet is obtained by/34)

The cable equation is described IRE). We will determine

the parameters, b andc of the cable equation. = —0.142100 x 0.5 cosh (—7?/6 -0, 049248)
Because the cable is suspended at points of the same ’ ’ 0, 142100

height ¢ = 0), sob = 0. We get the parameterfrom (17). — _1.001892

Then ’ ’

. ™
2asinh (@) =30, Substituting these values ii%), we obtain the cable

whose solution is: = 0.139066 (obtained with numerical €duation,

computing software). We get the parametdrom (19) or

(19): 23(0) = 0,0710499

« cosh 0 + 0,0492481
0, 1421

c=—/(3,0/2)2 + (0,139066 x 0,5)2 = —1,50161. )——LOM&D. (62)
Substituting parameter values 5}, we obtain the cable

) The maximum tension on the cable is located at péint
equation,

because it is higher. Substituting the poigtin Eq. 45),

we obtain the maximum tensidh,... = 58,9157 N. Note
that raising theB point by 1 m, compared to the previous
example, increased the maximum tension significantly (see
Eqg. B9)). Finally, the graphs of the cables and z, are
shown in Fig. 5.

21(6) = 0.0695332 cosh(6,/0.139066) — 1.50161

The maximum tension in the cable occurs at poiitsnd B
because they are at the same height. Substituting the Aoint
(or B) in (45), we obtain the maximum tension:

Thax = 9,81 x 3 x 0,139066 8.3. Cable forces on cylinders with different radius.

x 0.5 cosh(7/(6 x 0,139066)) = 44.1924N.  (59) This experiment compares the tensions and reaction forces
between cables confined in different cylinders and also with
the catenary (unconfined cable).

Consider the same cable and cylinder as the previous exam- Consider a cable of length = 330 m, shown in Fig. 6,

ple, with the difference that in this section the cable is sus¥ith density, = 12 kg/m andg = 9.81 m/s’, suspended

pended at the pointd — (—/6,0) e B = (/6,1). SO between pointsq andB of the same heighti(= 0) and sep-
h =1 m. Parameted is determined byd9) aratgd by a fixed distance dT: 300 m. . _
Figure 7 shows the tension on this cable versus its partial
24 % 0.5sinh (1) _ \/m7 (60) lengths for cylinders with radius300, 350, 500, and900 m.

6a In this graph, the tensidh was determined as follows. Equa-
tion (35), with b = 0, gives the partial length of the cable
from the half of the cable. So to determine the length of the
cable, from the beginning, we add'2, that is

8.2. Cable suspended at different height points

whose solution iss = 0,142100 (obtained by numerical
computing software).
Parameteb is obtained by33)

s =L/2+ aRsinh(0/a),

b

2 3—-1

0, 142100 (3 +1
= In

) =0,049248. (61)
hence

= 'ii
0. ~ o
Zz & ’
g, 5
14 i ’
y 5
—

2 - ] ~-05
057 ~ ’

o~

¥ R 0.5

0.5

FIGURE 5. Flexible cables confined in a circular cylinder. Cables FIGURE 6. Cable suspended at points and B separated by a
are the same length but suspended at different points. distanced.
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Tension in the cable

40
. —— R=300m
38 1 —— R =350m
1 —— R =500m
36 —— R=900m
34 _- Catenary

Tension (KN)

22 T T T T T T

0 50 100 150 200 250 300 350
Partial cable length s (m)

FIGURE 7. The graph shows the tension in the cable, along its
length, when confined to different cylinders and without confine-
ment (catenary).

Cylinder wall reaction force

120
—— R =300m
i —— R=350m
100 A — R=500m
— R=900m
£
4
o
o
o ]
c
2 60
3]
@
0] 4
x //\
40

’I"’P‘-—“_\\

P
20 1 I I I I I
0 50 100 150 200 250 300 350

Partial cable length s (m)

FIGURE 8. The graph shows the wall reaction force per unit length.

_ —L/2
—asinh™! [ 2222
0 = asin ( R >

Then we can determine the traction, given Bg)(

T = gpaR cosh(0/a).

Likewise, Fig. 8 shows the cylinder reaction force per unit>iNc&y =y

length @48), for cylinders with different radius. According to

Figs. 7 and 8, the tension of the cable and the reaction forces 4 /9. 0 (0LNdy 0 ;OLNdy!
increase significantly as the cylinder radius decreases. Onthe .. ( ) ( ) ( )

other hand, when the radius increases, the tensile and reaction
forces decrease and approach the behavior of a catenary.

9. Conclusion

This work solved a modified version of the classical cate-
nary problem in which the cable is confined in a cylinder.
The article addressed several aspects of the problem ranging
from cable equation deduction to cable tensile analysis. We
believe this approach is useful for physics students and en-
gineers interested in flexible cable analysis. The cable equa-
tion deduction was based on the principle that the cable equi-
librium configuration is the minimum gravitational potential
energy configuration. Variational calculus was used to ob-
tain the curve that minimizes the potential energy of the ca-
ble. We obtain formulas for the cases of cables suspended
at points of the same height and different heights. In addi-
tion, we also obtain the formula for the tension at each point
of the cable. The analysis of tension in cables confined to
surfaces is an aspect that differs from the classical catenary
problem. The classical catenary has no contact with surfaces
and surface reaction forces do not exist. This article presents
examples to illustrate applications of the formulas obtained.
And numerical experiments have shown that confinement in
the cylinder significantly increases cable tension compared
to classical catenary. Numerical results also showed that in-
creasing the radius of the cylinder reduces the tension in the
cable, as long as the distance between the support points is
maintained. Finally, this work serves as an introduction to
future work with cables confined to a cylinders, spheres and
other surfaces.

Appendix

A. Particular form of the Euler-Lagrange equa-
tion in which = does not appear explicitly in the
Lagrangian, i.e., £ = L(y, y!)

Suppose that in the functional of an elementary problem of
variational calculus

xyf
Sly] = / Llx,y,y) de,

we havel = L(y,y/). S0 (0L/dyr) = (0L/0y")(y,y!),
because if the Lagrangian depends onlyyandy/, then its
partial derivative) L /dyr must also depend only gnandyr.
This implies that the Euler-Lagrange equation becomes:

% = %(%(%y/))

oy!
(x) andy’ = yr(z), then differentiating the right-
hand side with respect toand using the chain rule, we get:

o) = 5\ Gy ) az T o \ag)
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Therefore, the Euler-Lagrange equation becomes:
oL 0 (0L\dy 0 0L\ dy!
(557) 3 * 395 2o

E. G. M. DE LACERDA AND H. L. CARRON

then

By~ oy \oy oy \ogr) dz” d(c ygﬁ,) 0

Passing everything to the left-hand side and multiplying by
y', we get Hence

oL 0 (oL o 0L dyt

(@*iy(ayl)@*@(ay/) L) =0 Loy ¢ A1)
By rearranging the terms, we obtain oy!
y’g—ﬁ g—ﬁ? — g—ﬁ? whereC is a constant. Equatio/\(1) is easier to solve than
y oyhdr  oyhdr the Euler-Lagrange equation because it has already been par-
oLNdy , 0 oL\ dy tially solved.
4 Oy (8y/) dx 8y/ (83//) =0,

Because the first two terms of the previous equation are
(d/dx)(L£) and the last three terms are

d ( g,c/(y y))
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