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Non-relativistic representation of the Jackiw-Rebbi soliton
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We consider the Foldy-Whouthuysen (FW) transformation of the Dirac equation coupled to a background soliton field which is equivalent to
a position-dependent mass z) such that at each limit — +oo, the mass to the left and to the right tends to a (possibly different) constant,
with a sign difference at each side. We then build-up a third order unitarily transformedd8aier-like Hamiltonian as a counterpart of

the corresponding to the well known Jackiw-Rebbi model. By further FW-transforming the Dirac spinor, we establish the relation between
the non-relativistic and relativistic wave functions up to this order of approximation for generic position dependent mass profiles. For the
economic choicen(z) = mox/|z|, we find that these spinors are the same up to an overall constant.
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1. Introduction no gap. Far from this point, energy bands develop such a
gap. Moreover, a truly remarkable property of this kink is
The Jackiw-Rebbi (JR) model [1] consists in a one-that it describes a fractionally charged excitation [2], a phe-
dimensional Dirac equation coupled to a soliton field)  nomenon that was discussed even before the Fractional Quan-
which can be written in terms of an effective Dirac equationyym Hall Effect was discivered [3]. JR model has been real-
with a position dependent mass(x) o ¢(x) such that as jzed experimentally in polyacetylene [4] and emerges natu-
z — —o0, m(—z) — —mg Whereas ag — oo, m(z) — rally as the continuum limit of the Su-Schrieffer-Heeger [5]
my, wheremg,, > 0 are constants which might in general be model for the electron-phonon interaction in these materi-
different. Assuming that the soliton field has no dynamics g5, |t is also worth mentioning that it also has renewed in-
one usually starts from the Hamiltonian terest in connection with the physics of topological insula-
tors [6, 7], since the gap closing resembles the emergence of

Ho = ape + fm (@), (1) topologically protected surface mode on these materials. Op-
with the Dirac matrices obeying® = (32 = Iy, where tical analogs of the.JR model have begn proposed [8—11},
I stands for the identity matrix. In solving whereas electrostatic and magnetostatic analogs were dis-
cussed in Refs. [12, 13], respectively. The cylindrical gen-
Hoyyp = Ev, (2) eralization of the model, namely, the so-called Dirac wires

were first introduced in Ref. [14]. The JR model has also
we first consider the possibility of zero modés= 0. Thus,  peen found as a non relativistic limit of some topological su-
perconductors [15]. These are enough reasons to further con-
(g + Bm. () 1o = 0. ) sider other theoretical aspects of the model that we address
in this article. For this purpose, in the next section we ad-
dress the problem of the Foldy-Wouthuysen (FW) transfor-
Yo =g (x)x (4)  mation [16] of the Dirac equation with a position dependent
mass term. We discuss our findings and conclude in Sec. 3.

By letting

with a8y = —iy, we straightforwardly find that
bo () = e~ Jeo W mW)y (5) 2. Foldy-Wouthuysen transformation

which exhibits a kink behavior around the point whereWe focus our attention in the non-relativistic representa-
¢(x) = m(x) = 0, namely, when energy bands show tion of the JR kink as derived from the FW transforma-
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tion [16] of the Dirac equation with a position dependentfrom which we directly find that at the third order,

mass term [17, 18].

formation for the FW representation,

Uz) = e, (6)
with
S=-— 6apa: (7)
»/" \/"
By explicitly representing the Dirac matrices as
o= 0g, ﬁ =0z, (8)
we write the Dirac Hamiltonian
Hy = OzPe +0.m (‘r) y (9)
and the transformation in EdZ)as
11 1
S=-——0o,pp——. 10

In the spirit of the FW transformation, we seek to write the

stationary Eq.2) in the form
HU = EV,

with the transformed Hamiltonian and wavefuction given by

H=U(x) HUt (x) = ¢S Hoe ™5,
U =U () = e

Then, by exploiting the Baker—Campbell-Hausdorff formula,

we approximate upto third order
1
H ~ Hy+i[S, Ho| - 5 [S, [S, Hol] +

Working out explicitly the first commutator, we find

rf)

1 1
ﬁpxﬁ7

Or + maz]

1
[S, Hol =i (Ho—mO'z—QO'Z {

11
|:2 \/7pr \/—O'yvpav
=[S, pz0:] + [S,mo.],

from where we derive the following useful relations,

s = 1 1
= 104Pz-

[S,mo.]

Next, the commutator

. 1 1
[Sa [57 HO]] = [SJ (U;cpx—2Uz {\/ﬂpxm’px}ﬂ
1 1 1
R [Sv Uﬂ?pw] +...=50; {pmapz} , (16)
2 m m

11

(12)

(13)

(14)

(15)

We commence by diagonalizing the
Hamiltonian in Eq.2) with the corresponding unitary trans-

= (oo} o) e
Notice that this Sctirdinger-like Hamiltonian is quadratic in
the momentum with a non-trivial dependence of the position
dependent mass, as demanded by hermiticiti/ oA similar
form of the Hamiltonian was proposed in Ref. [18] precisely
as the effective Scbdinger equation for position dependent
mass of charge carriers.

For the wave function, we have

i _1 1
Uy = e vmPrvm e

()

11 1 .
+isn1<2\ﬂnpzvqn>0@>e Jegdvm@y,

but sincey is an eigenvector of , with eigenvalue +1,

(18)

o= o) o )

e Jao W W)y = o3 VmPe o iy Wy (19)

X

Writting formally that

oo

i1 1 1 d 11\"
2 Jm Pz vm — _ | — 20
¢ ;;%Q"rﬂ <\/nzdx v7n> - (20
we cast the wavefunction in the form
- > 1 1 d 1 " —[2 dy m(y)
Yo = Zanl (fda: \ﬁ) € x- (21)
Let us observe that
L od 1\ -z dym
vm dx \/m
1d (1 — [F dym(y)
= _—— —_— — 1 Jxo ” b
(3 () -1)
= fl (m) 6_ J;u dy m(y). (22)
Similarly,
2
L d 1) s aym
m dx /m
_|1d —[F dy m(y)
= lmdl’fl (m) + (f1 (m)) ]
= fa(m)e” J ) (23)
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From here, we define the recurrence relation Relativistic ----- 3d-order FW
L4 N sy m) E— 7
vmdz \/m ]

1 d _ 121 ]

= | ) i ) £ ) |

= fasr (m) e om0, @) g é

Let us further notice that oo 1
fort (m) = | ~L s+ gy (m)| £ ) |
e P A R 02f

= Df, (m), (25) ool !

from which we can write x

fax1(m)=D"f1(m). (26) FIGURE 1. Zero mode wave functions for the relativistic case and
the 3"¢-order FW non-relativistic approximation for the mass pro-

Then file m(z) = mo(z/|z|).

N L (1 d TN gy my
Yo = 7;027%! ( m dx m) e X Relativistic ===== 3rd—order FW
00 n (x)= mo Tanh(x)
B 1 (1 d 1 % dy my) 10— TR
*7/10*‘";2””! < m dx m> « X
/ 08+ il
(o ] L
D™ [
= 1 L
( Dy <m>) ; |
D ‘;’ [
= (1 + (e = 1) [f1 (m)]) Yo. (27) 04} .

This expression determines the FW representation of the JF

kink in terms of the original zero mode for arbitrary shape of

the mass profile. [
For illustration, let us consider the profile [7,12,19] 006~

m(x) = moﬁ. (28) x
) . a: ) FIGURE 2. Zero mode wave functions for the relativistic case and
It is straightforward to check that in this case, the 3"%-order FW non-relativistic approximation for the mass pro-
N " file = mo tanh(z).
D™ f1(m) = (=1)", (29) m(z) = mo tanh(z)
such that, from27), we directly obtain
1 3. Discussion and conclusions
‘I/O = %wm (30)

In this article we have carried out the FW transformation of
the Dirac Hamiltonian/9) with a position dependent mass
term. We have focused out attention to the zero mode, which
m(x) = mg tanh(x). (31) exhibits a kink behavior for different mass profiles. This zero
) d .. mode transforms according to EQ7} for a generain(z).
In this case, thg"-order FW zero mode wave function is g, jicit examples are depicted in Figs. 1 and 2. Although the

namely, both the spinors differ by an overall constant (Fig. 1)
Another example is a mass profile given by

given by form of the zero mode depends upon the explicit representa-
T — b o esch? (x) (32) tion of the Dirac matricest and g, it is well-known that the
0 \/ée 0 Pauli matrices form a basis for 2D Dirac Hamiltonians, and it

Both, the relativistic and the FW non-relativistic approxima- 'Ssiﬁ:)if;i?leﬂfﬂﬁ;g}':ﬁ;ﬁ%ﬁgiﬁgﬁ S]stﬁ;tgzﬁlfoa;;elements
tion wave functions are plotted in Fig. 2, where it can be noteo( Y 9

that the functions differ not only in magnitude but in shape as

well. H=o0yp+ a.m(z), (33)
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so that the systems describes the same physics. Further non-relativistic FW-like representations of Dirac
A final word of caution is required. It should be clear that Hamiltonians of this type are being considered, like the non-
1) is not a solution of minimally coupled electric-Moshinsky oscillator [12]. These
ideas are currently under consideration and results shall be

U(2)HU () ¢ = 0. (34)  presented elsewhere.

This is because the transformati@[is valid up to third or-  Acknowledgements

der and thus is not exact. Nevertheless, we observe that up to
this approximation, the kink character of the relativistic andJCPP and AR acknowledge support from CONACYT Project

non-relativistic spinors holds.
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