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Non-relativistic representation of the Jackiw-Rebbi soliton
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We consider the Foldy-Whouthuysen (FW) transformation of the Dirac equation coupled to a background soliton field which is equivalent to
a position-dependent massm(x) such that at each limitx → ±∞, the mass to the left and to the right tends to a (possibly different) constant,
with a sign difference at each side. We then build-up a third order unitarily transformed Schrödinger-like Hamiltonian as a counterpart of
the corresponding to the well known Jackiw-Rebbi model. By further FW-transforming the Dirac spinor, we establish the relation between
the non-relativistic and relativistic wave functions up to this order of approximation for generic position dependent mass profiles. For the
economic choicem(x) = m0x/|x|, we find that these spinors are the same up to an overall constant.
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1. Introduction

The Jackiw-Rebbi (JR) model [1] consists in a one-
dimensional Dirac equation coupled to a soliton fieldφ(x)
which can be written in terms of an effective Dirac equation
with a position dependent massm(x) ∝ φ(x) such that as
x → −∞, m(−x) → −m0 whereas asx → ∞, m(x) →
m1, wherem0,1 ≥ 0 are constants which might in general be
different. Assuming that the soliton field has no dynamics,
one usually starts from the Hamiltonian

H0 ≡ αpx + βm (x) , (1)

with the Dirac matrices obeyingα2 = β2 = I2×2, where
I2×2 stands for the identity matrix. In solving

H0ψ = Eψ, (2)

we first consider the possibility of zero modes,E = 0. Thus,

(αpx + βm (x)) ψ0 = 0. (3)

By letting

ψ0 = g (x)χ (4)

with αβχ = −iχ, we straightforwardly find that

ψ0 (x) = e
− ∫ x

x0
dy m(y)

χ, (5)

which exhibits a kink behavior around the point where
φ(x) = m(x) = 0, namely, when energy bands show

no gap. Far from this point, energy bands develop such a
gap. Moreover, a truly remarkable property of this kink is
that it describes a fractionally charged excitation [2], a phe-
nomenon that was discussed even before the Fractional Quan-
tum Hall Effect was discivered [3]. JR model has been real-
ized experimentally in polyacetylene [4] and emerges natu-
rally as the continuum limit of the Su-Schrieffer-Heeger [5]
model for the electron-phonon interaction in these materi-
als. It is also worth mentioning that it also has renewed in-
terest in connection with the physics of topological insula-
tors [6, 7], since the gap closing resembles the emergence of
topologically protected surface mode on these materials. Op-
tical analogs of the JR model have been proposed [8–11],
whereas electrostatic and magnetostatic analogs were dis-
cussed in Refs. [12, 13], respectively. The cylindrical gen-
eralization of the model, namely, the so-called Dirac wires
were first introduced in Ref. [14]. The JR model has also
been found as a non relativistic limit of some topological su-
perconductors [15]. These are enough reasons to further con-
sider other theoretical aspects of the model that we address
in this article. For this purpose, in the next section we ad-
dress the problem of the Foldy-Wouthuysen (FW) transfor-
mation [16] of the Dirac equation with a position dependent
mass term. We discuss our findings and conclude in Sec. 3.

2. Foldy-Wouthuysen transformation

We focus our attention in the non-relativistic representa-
tion of the JR kink as derived from the FW transforma-
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tion [16] of the Dirac equation with a position dependent
mass term [17, 18]. We commence by diagonalizing the
Hamiltonian in Eq. (2) with the corresponding unitary trans-
formation for the FW representation,

U (x) ≡ eiS , (6)

with

S ≡ − i

2
1√
m

βαpx
1√
m

. (7)

By explicitly representing the Dirac matrices as

α ≡ σx, β ≡ σz, (8)

we write the Dirac Hamiltonian

H0 ≡ σxpx + σzm (x) , (9)

and the transformation in Eq. (7) as

S ≡ 1
2

1√
m

σypx
1√
m

. (10)

In the spirit of the FW transformation, we seek to write the
stationary Eq. (2) in the form

HΨ = EΨ, (11)

with the transformed Hamiltonian and wavefuction given by

H ≡ U (x)H0U
† (x) = eiSH0e

−iS ,

Ψ ≡ U (x)ψ = eiSψ. (12)

Then, by exploiting the Baker–Campbell–Hausdorff formula,
we approximate upto third order

H ≈ H0 + i [S,H0]− 1
2

[S, [S,H0]] + . . . (13)

Working out explicitly the first commutator, we find

[S,H0] = i

(
H0−mσz−1

2
σz

{
1√
m

px
1√
m

, px

})

=
[
1
2

1√
m

px
1√
m

σy, pxσx + mσz

]

= [S, pxσx] + [S, mσz] , (14)

from where we derive the following useful relations,

[S, pxσx] = − i

2
σz

{
1√
m

px
1√
m

, px

}

[S,mσz] = iσxpx. (15)

Next, the commutator

[S, [S, H0]] =
[
S, i

(
σxpx−1

2
σz

{
1√
m

px
1√
m

, px

})]

≈ i [S, σxpx] + . . . =
1
2
σz

{
1√
m

px
1√
m

, px

}
, (16)

from which we directly find that at the third order,

H ≈
(

1
4

{
1√
m

px
1√
m

, px

}
+ m

)
σz. (17)

Notice that this Schr̈odinger-like Hamiltonian is quadratic in
the momentum with a non-trivial dependence of the position
dependent mass, as demanded by hermiticity ofH. A similar
form of the Hamiltonian was proposed in Ref. [18] precisely
as the effective Schrödinger equation for position dependent
mass of charge carriers.

For the wave function, we have

Ψ0 = e
i
2

1√
m

px
1√
m

σye
− ∫ x

x0
dy m(y)

χ

=

(
cos

(
1
2

1√
m

px
1√
m

)

+ i sin
(

1
2

1√
m

px
1√
m

)
σy

)
e
− ∫ x

x0
dy m(y)

χ, (18)

but sinceχ is an eigenvector ofσy with eigenvalue +1,

Ψ0 =
(

cos
(

1
2

1√
m

px
1√
m

)
+ i sin

(
1
2

1√
m

px
1√
m

))

× e
− ∫ x

x0
dy m(y)

χ = e
i
2

1√
m

px
1√
m e

− ∫ x
x0

dy m(y)
χ. (19)

Writting formally that

e
i
2

1√
m

px
1√
m =

∞∑
n=0

1
2nn!

(
1√
m

d

dx

1√
m

)n

, (20)

we cast the wavefunction in the form

Ψ0 =
∞∑

n=0

1
2nn!

(
1√
m

d

dx

1√
m

)n

e
− ∫ x

x0
dy m(y)

χ. (21)

Let us observe that
(

1√
m

d

dx

1√
m

)
e
− ∫ x

x0
dy m(y)

=
(

1
2

d

dx

(
1
m

)
− 1

)
e
− ∫ x

x0
dym(y)

≡ f1 (m) e
− ∫ x

x0
dy m(y)

. (22)

Similarly,

(
1√
m

d

dx

1√
m

)2

e
− ∫ x

x0
dy m(y)

=

[
1
m

d

dx
f1 (m) + (f1 (m))2

]
e
− ∫ x

x0
dy m(y)

≡ f2 (m) e
− ∫ x

x0
dy m(y)

. (23)
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From here, we define the recurrence relation
(

1√
m

d

dx

1√
m

)n+1

e
− ∫ x

x0
dy m(y)

=
[

1
m

d

dx
fn (m) + f1 (m) fn (m)

]
e
− ∫ x

x0
dy m(y)

= fn+1 (m) e
− ∫ x

x0
dy m(y)

. (24)

Let us further notice that

fn+1 (m) =
[

1
m

d

dx
+ f1 (m)

]
fn (m)

≡ Dfn (m) , (25)

from which we can write

fn+1 (m) = Dnf1 (m) . (26)

Then

Ψ0 =
∞∑

n=0

1
2nn!

(
1√
m

d

dx

1√
m

)n

e
− ∫ x

x0
dy m(y)

χ

= ψ0 +
∞∑

n=1

1
2nn!

(
1√
m

d

dx

1√
m

)n

e
− ∫ x

x0
dy m(y)

χ

=

(
1 +

∞∑
n=1

Dn

2nn!
f1 (m)

)
ψ0

≡
(
1 +

(
e

D
2 − 1

)
[f1 (m)]

)
ψ0. (27)

This expression determines the FW representation of the JR
kink in terms of the original zero mode for arbitrary shape of
the mass profile.

For illustration, let us consider the profile [7,12,19]

m(x) = m0
x

|x| . (28)

It is straightforward to check that in this case,

Dnf1(m) = (−1)n, (29)

such that, from (27), we directly obtain

Ψ0 =
1√
e
ψ0, (30)

namely, both the spinors differ by an overall constant (Fig. 1).
Another example is a mass profile given by

m(x) = m0 tanh(x). (31)

In this case, the3rd-order FW zero mode wave function is
given by

Ψ0 =
1√
e
e

m0
4 csch2(x)ψ0. (32)

Both, the relativistic and the FW non-relativistic approxima-
tion wave functions are plotted in Fig. 2, where it can be noted
that the functions differ not only in magnitude but in shape as
well.

FIGURE 1. Zero mode wave functions for the relativistic case and
the3rd-order FW non-relativistic approximation for the mass pro-
file m(x) = m0(x/|x|).

FIGURE 2. Zero mode wave functions for the relativistic case and
the3rd-order FW non-relativistic approximation for the mass pro-
file m(x) = m0 tanh(x).

3. Discussion and conclusions

In this article we have carried out the FW transformation of
the Dirac Hamiltonian (9) with a position dependent mass
term. We have focused out attention to the zero mode, which
exhibits a kink behavior for different mass profiles. This zero
mode transforms according to Eq. (27) for a generalm(x).
Explicit examples are depicted in Figs. 1 and 2. Although the
form of the zero mode depends upon the explicit representa-
tion of the Dirac matricesα andβ, it is well-known that the
Pauli matrices form a basis for 2D Dirac Hamiltonians, and it
is possible to use different selections of these basis elements
(similarity transformation of basis) in the Hamiltonian,e.g.

H = σyp + σxm(x), (33)
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so that the systems describes the same physics.
A final word of caution is required. It should be clear that

ψ0 is not a solution of

U†(x)HU(x) ψ0 = 0. (34)

This is because the transformation (27) is valid up to third or-
der and thus is not exact. Nevertheless, we observe that up to
this approximation, the kink character of the relativistic and
non-relativistic spinors holds.

Further non-relativistic FW-like representations of Dirac
Hamiltonians of this type are being considered, like the non-
minimally coupled electric-Moshinsky oscillator [12]. These
ideas are currently under consideration and results shall be
presented elsewhere.
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