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Electromagnetic fields with symmetry
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We show that if an electromagnetic field is invariant under translations or rotations, three of the six components of the field can be expressec
in terms of a (gauge-invariant) scalar potential which is also invariant under these transformations. This scalar potential appears in the
constant of motion associated with this symmetry for a charged test particle in this field. We also show that the Cartesian components of the
electromagnetic field can be combined to form two(3Q) vectors.
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1. Introduction nents of the electromagnetic field can be expressed in terms
of a gauge-invariant scalar potential, which is also invari-
If one is interested in particles interacting with an electro-ant under the corresponding transformations. In Sec. 3 we
magnetic field possessing some symmetry, the standard aponsider the equations of motion of a test charge in an elec-
proach would consist inimposing the symmetry at the level otromagnetic field possessing one of these symmetries, mak-
the Lagrangian or the Hamiltonian. However, the Lagrangiarnng use of the elementary vector formalism (without La-
may not possess all the symmetries of the correspondingrangians). In Sec. 4 we show that if the electromagnetic
equations of motion (see,g, Refs. [1,2]; an example in the field is invariant under translations along a fixed direction or
context of continuous systems is that of the free electromagrotations about a fixed axis, then there exist electromagnetic
netic field: the source-free Maxwell equations are invarianipotentials for this field with the same symmetry properties,
under the so-called duality rotations [3], but the standard Laand we use them, in Sec. 5, to construct the usual Lagrangian
grangian for the source-free electromagnetic field is not infor a test charge. In both treatments of the equations of mo-
variant under these transformations) and this is particularlyion for a charged particle we arrive at the same constants
clear in the case of the usual Lagrangian for a charged partof motion, which are made out of the scalar potentials men-
cle in an electromagnetic field, which is written in terms of tioned above. In Sec. 6 we apply the results of Secs. 3 and
the electromagnetic potentials and not of the electromagnetis to the case of a charged particle in the field of a magnetic
fields themselves. For instance, the electromagnetic potemnonopole, finding the constants of motion associated with
tials for a uniform static electric or magnetic field cannot bethe invariance under rotations of the field. In Sec. 7 we show
uniform and static (uniform static potentials only yield fields that if the electromagnetic field is invariant under translations
equal to zero); in the case of a magnetic monopole, whosglong thez-axis, the six Cartesian components of the electro-
magnetic field would be spherically symmetric, the vectormagnetic field are grouped into two sets of three components
potential cannot be spherically symmetric (s&@, Ref. [3],  each which transform as vectors under the Lorentz transfor-
chap. 6). mations in2 4 1 dimensions, obtained by restricting the usual
One of the aims of this paper is to show that if an elec-Lorentz transformations to those leaving invariant tkexis.
tromagnetic field is invariant under translations along a fixed
direction or rotations about a fixed axis one can find electro-
magnetic potentials that are also invariant under those trans- . . ) )
formations. Furthermore, we show that the invariance of the- EleCtrOmagnet'C f'_elds invariant under
electromagnetic field under translations or rotations implies  translations or rotations
the existence of a gauge-invariant scalar potential that de-
termines three of the six components of the electromagnetith this section we show that if an electromagnetic field is
field; these three components are the only ones involved iinvariant under translations or rotations, half of the compo-
the time derivative of the component of the linear or the angunents of the electromagnetic field can be expressed in terms
lar momentum along the symmetry axis of a charged particlef a gauge-invariant scalar potential. This result can be em-
interacting with the field. ployed afterwards in connection with the behavior of charged
In Sec. 2 we begin by considering electromagnetic fieldgest particles in the framework of Newtonian mechanics, rel-
invariant under translations or rotations making use of thativistic mechanics, or quantum mechanics (see Secs. 3 and
standard vector formalism, showing that half of the compo-5).
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2.1. Electromagnetic fields invariant under translations ~ components of the fields with respect to the orthonormal ba-

o o sis induced by the circular cylindrical coordinatégs, ¢, z),
We start by considering an electromagnetic field that may deqg not depend on. Taking into account that in these coordi-
pend on the time in an arbitrary manner with the only restricateg

tion that the Cartesian components of the electric and mag-
P 9 10(pB,)  10B, . OB.

netic fields be independent of this condition, employed in 0=V-B=-=- ,
the equatior’VvV - B = 0, leads to p Op p 06 0z
OB OB the conditiondBy/d¢ = 0 implies that
x Y
= -2, ()

while thez- andy-components of Faraday’s laW, x E = 9z 9p
—(1/c) 9B/ 0t, yield and from thep- andz-components of Faraday’s law we have

OB, __10B, 0B, __19B, _ 9B, _ 198, 10(pE,) _ _19B.

oy c Ot oz c Ot 0z c Ot’ p Op c Ot

Equations/T) and @) are locally equivalent to the existence Equationsi6) and [7) imply the local existence of a func-
of a functionII(z, y,t), defined up to an additive constant, tion A(p, z,t), defined up to an additive constant, such that

such that oA oA 1 %

pB. = —, po:_ia pLy = —— . (8
B, — o1l B ol 5o _1o1 3) dp 0z c ot

I’ y ) z .

9y ’ O c ot Thus, three of the components of the electromagnetic field are
The functionII is a scalar potential whose existence follows given in terms of the gauge-independent functionvhose
from the homogeneous Maxwell equations and the invariancexistence is a consequence of the homogeneous Maxwell
of the electromagnetic field under translations in a spatial diequations and the rotational invariance of the fields.
rection (taken here as theaxis). Note that there are no ~ Onthe other hand, the-component of Faraday’s law can
restrictions about the sources of the field. By contrast withbe written in the form
the standard potential#y and, the scalar potentidll has 10B, OE, O(—E.)
no gauge freedom. (The only freedom allowed by E. ( ot T, T o 0, 9)
and R) is the addition of a trivial constant td.) Further-
more, we shall show in Sec. 7 thHtis invariant under the Which has the form of the divergence of a vector field in
proper Lorentz transformations preserving the direction ofcartesian coordinates. Hence, this equation is locally equiv-

the z-axis. alent to the existence of three functionsg, h, of (p, 2, t)
Even though for some purposes E@).i6 all we require  only such that
[see Eg.11)], we shall find some implications of the as- af g oh  10f
sumed symmetry on the remaining components of the elec- By =+ -, = 3T T a0
L . . dz JOp dp ¢ Ot
tromagnetic field. Writing the-component of Faraday’s law
V x E = —(1/¢) 9B/dt in the form g 199 Oh
E. = . (10)
cdt 0z

10B, n OE, n J(—E;)
c Ot ox y
which is similar to the form of the divergence of a vector field

in Cartesian coordinates, we conclude that there exist Iocallgl Equations of motion of a test particle. Ele-
functions,f, g, h, of (z, y, t) only such that mentary approach

. = @ — %7 y = % — }@, Now we consider the motion of a test charged particle, of
oz Oy oy cot massm and chargey, in the framework of Newtonian me-
_Oh 10f 5) chanics, if the electromagnetic field is invariant under trans-
a ' lations along the-axis. Making use of Newton’s second law
and the Lorentz force, we have

=0, 4) By contrast withA, the functionsf, g, h are not defined in a
unique way.

By contrast withlI, the functionsf, g, h are not uniquely de-

fined. mz = L(cE, + iB, — §B,), (11)
&

2.2. Electromagnetic fields invariant under rotations which, in view of Egs.8), amounts to

Now we shall assume that the electromagnetic field is invari- . q ol oIl . 9ol q dIl

ant under rotations about theaxis, which means that the mE=C\"To " er Yoy )T T ear
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and to the existence of the constant of motion comparison with Egsi8) and {L0) shows that we can choose
the potentials in the form
Ap:f7 pA¢:A7 A2:g7 ‘P:_h (18)
Similarly, noting that the-component of the acceleration This shows that if the electromagnetic fields are invariant un-

mz + 911 = const. (12)
c

is given by der rotations about an axis, the usual electromagnetic poten-
d 4 % A ¢5) tials can be chosen in such a way that they are also invariant
3. Y v v 22 4e) e under these rotations.
T A A A T T4
_ d(pg) L ph= 1d(p*9) 13 5 Equations of motion of a test particle. La-
d p dt grangian approach
we have

In the framework of Newtonian mechanics, the standard La-

d(mp%) q - q ) ) grangian for a charged particle, with massand electric
a Epd" (CE+vxB) = Pl (cEy+ 2B, — pB.) chargeg, in an electromagnetic field defined by the poten-
. o __tials A andy is given by
and if the electromagnetic field is invariant under rotations 1
about thez-axis, making use of Eqs8), L= 5mv2 + %A SV — qp. (19)
dmp?¢) q( A 0N  OA gdA Hence, if the electromagnetic field is invariant under trans-
e\ Tar  Fan png T odar lations along the:-axis, the potentials can be chosen in the
form (16) and the Lagrangiaril@) expressed in Cartesian co-
Hence, S ordinates becomes
m + =A = const. 14 . ) . . . .
e c (14) L:%(1‘2+y2+z2)+%(wa—|—Ayy+Azz)—q<p,
4. Electromagnetic potentials for the electro- - %(;ﬁ + 9%+ 2% + %(fjc + gy + %) + gh.  (20)

magnetic fields invariant under translations

. Since the functiong, g, h andII are functions ofz, y, t only,
or rotations 3.9 Y Y

the coordinate is ignorable and its conjugate momentum

In this section we shall show that in the cases considered oL _ mz+ 1 (21)
above we can give expressions for the usual potentials of 0z c

the electromagnetic field. The main result of this section ids conserved. This constant of motion coincides with that
that these potentials can be chosen in such a way that theyven in Eq. 02).

share the same symmetry as the corresponding electromag- Similarly, if the electromagnetic field is invariant under

netic field. rotations about the-axis, the potentials can be chosen in the
Recalling the standard expressions for the electromagiorm (18) and the Lagrangiarilf) expressed in terms of the
netic fields in terms of the potentiafs and¢, cylindrical coordinates is
m, . : . q . : .
1A L= "2 272 2 1A A A%) —
E:—Vw—g%, B=V xA, (15) 5 (P7 070" +27) + (App + pAgd + A:2) — gy,
_m .9 252 | .2 9, .. ; .
and comparing with Eqs3f and ) we see that if the electro- =5 (F"+ 070"+ 27) + Z(fp+ Ad + g2) + qh. (22)
magnetic field is invariant under translations along#+exis  Now ¢ is an ignorable coordinate and its conjugate momen-
the potentialsA andy can be chosen according to tum
O _ 2+ I (23)
Ac=f  Ay=g, A =1, p=-h (16) a5 VT

) ) is a constant of motion, which coincides with that given by
Since the function$l, f, g andh do not depend on, A and Eq. {14).
 are invariant under translations along thaxis. The corresponding results in the framework of relativistic

In the case where the electromagnetic fields are invarianf,q chanics are very similar to those given above. Making use
under the rotations about theaxis, taking into account that ¢ 1o Lagrangian [3]

B =V x A amounts to

2
L= -m 1Y L 9A . v
B, - 10A, B 0Ay By = 04, _ 0A, mc 2 + c vV —qp

p oo 0z 0z 0Op one readily finds that the constants of moti@i)(and 23)

1 [o(pAy) 04, maintain their form withm replaced by the “relativistic
Bz - = - 5 (17) 2

p Op ) mass’m/y/1 — Y.
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6. Anexample. Charged particle in the field of three components each [see E@).4nd 6)]. In fact, Egs.

a magnetic monopole (3) can be expressed in the simple form
It must be emphasized that the constants of motid) &nd Do = —0u11, with
(14) are, necessarily, gauge-independent and do not depend 0 1 o\
on the coordinates being employed. In this sense, it is conve- (@7, 9", ¢%) = (= Bz, By, —Bo). (25)
nient to notice, for instance, that Eg8) &re equivalent to The lower case Greek indices, j. ..., take the values, 1
1 9A and2 and these indices are raised or lowered with the aid of

VA=((2xr)xB —(xr)-E, (29

the3 x 3 matrices(n,z) = diag (—1,1,1) = (n*?) (hence,

. ", . . €.g, ¢0 = _¢0 =k, bUtﬁbl = (bl = By)

wherer is the position vector of an arbitrary point. ~ Making use of the well-known formulas for the transfor-
The electromagnetic field produced by a magneticmation of the components of the electromagnetic field in the

monopole, with magnetic chargg,, placed at the origin, case of a boost in the-direction (seeg.g, sec. 11.10 of
would beE = 0 andB = ¢,,r/r?, which is invariant un-  Ref. [3]), we find

der rotations about any axis passing through the origin. Ac-

’ cot

cording to Egs.l24), the functionA associated with the in- —FE. v =8 0 —F,
variance under the rotations about thaxis can be taken B, = —v8 ~ O By , (26)
as —gmz/r and therefore the constant of motigh4) is -B! 0 0 1 —B,

m(xy — y&) — qgmz/(cr). There are two similar expressions

for the constants of motion associated with the invariance oivhereg = v/c, v is the velocity of the primed inertial frame
the field under rotations about the andy-axes. Together, with respect to the unprimed one, and= (1 — 3%)~%/2.
these constants form the conserved vector This means thap® transforms as & + 1-vector under the
proper Lorentz transformations that leave invariant the
axis. Clearly, under rotations in the-plane the components
of ¢« transform appropriately.

Whereas the invariance under the rotations abeug, Equation |8) can be written in the fornd,y* = 0, with
the z-axis can be explicitly exhibited in the electromagnetic (¢°, ¢',4?) = (B, E,, —E,), and we can verify that®
potentials, the simultaneous invariance under rotations abouatiso transforms as 2+ 1-vector under the proper Lorentz
different axesannotbe exhibited in the potentials or the La- transformations that leave invariant thexis, in fact,
grangian.

qqu
c r

r X mr —

In the case of an infinitely long solenoid, as that consid- B:z Yy =B 0 B,
ered in the study of the Aharonov—-Bohm effect, the magnetic Eyl =l - v O By - (@7)
field in the exterior of the solenoid should be equal to zero, —E; 0 0 1 —E,

but there must be a nonzero vector potential. According tQ o . .

Egs. B), (10) and @8), the functionsf, g, h can be taken The vectory® can also be expressed in a}acovarlant man-
)y S l IR H H o « 1

equal to zero and, taking into account the Stokes theorenly _Eciuatlé)nsﬂj are eciw\;lalent ta)® = 77935, with

the functionA must be a constant equal 4/27, whered €~ — @0 (50,51,82) = (h, f,9). . .

is the magnetic flux through a cross-section of the solenoid, BY combining the Wa + 1-vectorsg™ andy® we can

In the framework of classical mechanics the presence of thfPrm three invariants:¢®y, = E - B (which is one of

constantA in the constant of motiorild) does not make an the two well-known Lorentz invariants of the electromag-

g : a _ 2 2 2 «@ _
essential difference. However, as we know, in the quantunﬁ‘et'c2f'eld)’2¢ ba . —B.° + B,” + By°, andy®, =
mechanical version of the problem, a nonzero fibspro- B~ + £z + E,°. The last two quantities are separately
duces observable effects. invariant under the proper Lorentz transformations that leave

invariant thez-axis and their difference}“vy, —¢* ¢, corre-

sponds to the second Lorentz invariant of the electromagnetic
7. Relation with the Lorentz transformations field.

in 2+1 dimensions The results of this section may seem curious but are part

of a more general behavior. For instance, in the case of a
As we have seen, when an electromagnetic field is invariartime-independent electromagnetic field, one half of the com-
under translations along theaxis, the Cartesian components ponents of the field (those corresponding to the electric field)
of the field are functions ofct, x,y) only, and the poten- can be expressed in terms of a time-independent scalar po-
tials required to express them can be chosen as functions téntial (defined up to an additive constant), which is invari-
(ct,x,y) only [see Egs!3) and 6) or (16)], sothatoneisled antunder the Lorentz transformations that leave invariant the
to consider the + 1 space-time with coordinate® = ct,  time axis (that is, the ordinary rotations). The other half of
z! = z andz? = y. Furthermore, the components of the the components of the field (those corresponding to the mag-
electromagnetic field are naturally grouped into two sets ohetic field) can be expressed in terms of a time-independent
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vector that is not uniquely defined. With the electric and magdinear or the angular momentum of the electromagnetic field

netic field vectors we can form three invariants under rotaas usually defined [4]. As argued in Ref. [4], the reason is

tions,E - B, E - E andB - B, and the difference between the that in the derivation of the expression for the density of lin-

last two is invariant under all the Lorentz transformations. ear momentum or angular momentum of the electromagnetic
field one takes into account the interaction of the field with

8. Final remarks its sources and the t(_est_charge considered here may not be the
only source of electric field present.

As we have shown, the possibility of having electromagnetic

potentials or Lagrangians invariant under some transformaacknowledgement

tions is not a trivial matter. The concept of symmetry is very

often used loosely, without the required precision. The author wishes to thank the referee for helpful comments.
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