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Electromagnetic fields with symmetry

G. F. Torres del Castillo
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We show that if an electromagnetic field is invariant under translations or rotations, three of the six components of the field can be expressed
in terms of a (gauge-invariant) scalar potential which is also invariant under these transformations. This scalar potential appears in the
constant of motion associated with this symmetry for a charged test particle in this field. We also show that the Cartesian components of the
electromagnetic field can be combined to form two SO(2, 1) vectors.
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1. Introduction

If one is interested in particles interacting with an electro-
magnetic field possessing some symmetry, the standard ap-
proach would consist in imposing the symmetry at the level of
the Lagrangian or the Hamiltonian. However, the Lagrangian
may not possess all the symmetries of the corresponding
equations of motion (see,e.g., Refs. [1,2]; an example in the
context of continuous systems is that of the free electromag-
netic field: the source-free Maxwell equations are invariant
under the so-called duality rotations [3], but the standard La-
grangian for the source-free electromagnetic field is not in-
variant under these transformations) and this is particularly
clear in the case of the usual Lagrangian for a charged parti-
cle in an electromagnetic field, which is written in terms of
the electromagnetic potentials and not of the electromagnetic
fields themselves. For instance, the electromagnetic poten-
tials for a uniform static electric or magnetic field cannot be
uniform and static (uniform static potentials only yield fields
equal to zero); in the case of a magnetic monopole, whose
magnetic field would be spherically symmetric, the vector
potential cannot be spherically symmetric (see,e.g., Ref. [3],
chap. 6).

One of the aims of this paper is to show that if an elec-
tromagnetic field is invariant under translations along a fixed
direction or rotations about a fixed axis one can find electro-
magnetic potentials that are also invariant under those trans-
formations. Furthermore, we show that the invariance of the
electromagnetic field under translations or rotations implies
the existence of a gauge-invariant scalar potential that de-
termines three of the six components of the electromagnetic
field; these three components are the only ones involved in
the time derivative of the component of the linear or the angu-
lar momentum along the symmetry axis of a charged particle
interacting with the field.

In Sec. 2 we begin by considering electromagnetic fields
invariant under translations or rotations making use of the
standard vector formalism, showing that half of the compo-

nents of the electromagnetic field can be expressed in terms
of a gauge-invariant scalar potential, which is also invari-
ant under the corresponding transformations. In Sec. 3 we
consider the equations of motion of a test charge in an elec-
tromagnetic field possessing one of these symmetries, mak-
ing use of the elementary vector formalism (without La-
grangians). In Sec. 4 we show that if the electromagnetic
field is invariant under translations along a fixed direction or
rotations about a fixed axis, then there exist electromagnetic
potentials for this field with the same symmetry properties,
and we use them, in Sec. 5, to construct the usual Lagrangian
for a test charge. In both treatments of the equations of mo-
tion for a charged particle we arrive at the same constants
of motion, which are made out of the scalar potentials men-
tioned above. In Sec. 6 we apply the results of Secs. 3 and
5 to the case of a charged particle in the field of a magnetic
monopole, finding the constants of motion associated with
the invariance under rotations of the field. In Sec. 7 we show
that if the electromagnetic field is invariant under translations
along thez-axis, the six Cartesian components of the electro-
magnetic field are grouped into two sets of three components
each which transform as vectors under the Lorentz transfor-
mations in2+1 dimensions, obtained by restricting the usual
Lorentz transformations to those leaving invariant thez-axis.

2. Electromagnetic fields invariant under
translations or rotations

In this section we show that if an electromagnetic field is
invariant under translations or rotations, half of the compo-
nents of the electromagnetic field can be expressed in terms
of a gauge-invariant scalar potential. This result can be em-
ployed afterwards in connection with the behavior of charged
test particles in the framework of Newtonian mechanics, rel-
ativistic mechanics, or quantum mechanics (see Secs. 3 and
5).
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2.1. Electromagnetic fields invariant under translations

We start by considering an electromagnetic field that may de-
pend on the time in an arbitrary manner with the only restric-
tion that the Cartesian components of the electric and mag-
netic fields be independent ofz; this condition, employed in
the equation∇ ·B = 0, leads to

∂Bx

∂x
= −∂By

∂y
, (1)

while thex- andy-components of Faraday’s law,∇ × E =
−(1/c) ∂B/∂t, yield

∂Ez

∂y
= −1

c

∂Bx

∂t
, −∂Ez

∂x
= −1

c

∂By

∂t
. (2)

Equations (1) and (2) are locally equivalent to the existence
of a functionΠ(x, y, t), defined up to an additive constant,
such that

Bx =
∂Π
∂y

, By = −∂Π
∂x

, Ez = −1
c

∂Π
∂t

. (3)

The functionΠ is a scalar potential whose existence follows
from the homogeneous Maxwell equations and the invariance
of the electromagnetic field under translations in a spatial di-
rection (taken here as thez-axis). Note that there are no
restrictions about the sources of the field. By contrast with
the standard potentials,A andϕ, the scalar potentialΠ has
no gauge freedom. (The only freedom allowed by Eqs. (1)
and (2) is the addition of a trivial constant toΠ.) Further-
more, we shall show in Sec. 7 thatΠ is invariant under the
proper Lorentz transformations preserving the direction of
thez-axis.

Even though for some purposes Eqs. (3) is all we require
[see Eq. (11)], we shall find some implications of the as-
sumed symmetry on the remaining components of the elec-
tromagnetic field. Writing thez-component of Faraday’s law
∇×E = −(1/c) ∂B/∂t in the form

1
c

∂Bz

∂t
+

∂Ey

∂x
+

∂(−Ex)
∂y

= 0, (4)

which is similar to the form of the divergence of a vector field
in Cartesian coordinates, we conclude that there exist locally
functions,f, g, h, of (x, y, t) only such that

Bz =
∂g

∂x
− ∂f

∂y
, Ey =

∂h

∂y
− 1

c

∂g

∂t
,

Ex =
∂h

∂x
− 1

c

∂f

∂t
. (5)

By contrast withΠ, the functionsf, g, h are not uniquely de-
fined.

2.2. Electromagnetic fields invariant under rotations

Now we shall assume that the electromagnetic field is invari-
ant under rotations about thez-axis, which means that the

components of the fields with respect to the orthonormal ba-
sis induced by the circular cylindrical coordinates,(ρ, φ, z),
do not depend onφ. Taking into account that in these coordi-
nates

0 = ∇ ·B =
1
ρ

∂(ρBρ)
∂ρ

+
1
ρ

∂Bφ

∂φ
+

∂Bz

∂z
,

the condition∂Bφ/∂φ = 0 implies that

∂(ρBz)
∂z

= −∂(ρBρ)
∂ρ

, (6)

and from theρ- andz-components of Faraday’s law we have

− ∂Eφ

∂z
= −1

c

∂Bρ

∂t
,

1
ρ

∂(ρEφ)
∂ρ

= −1
c

∂Bz

∂t
. (7)

Equations (6) and (7) imply the local existence of a func-
tion Λ(ρ, z, t), defined up to an additive constant, such that

ρBz =
∂Λ
∂ρ

, ρBρ = −∂Λ
∂z

, ρEφ = −1
c

∂Λ
∂t

. (8)

Thus, three of the components of the electromagnetic field are
given in terms of the gauge-independent functionΛ whose
existence is a consequence of the homogeneous Maxwell
equations and the rotational invariance of the fields.

On the other hand, theφ-component of Faraday’s law can
be written in the form

1
c

∂Bφ

∂t
+

∂Eρ

∂z
+

∂(−Ez)
∂ρ

= 0, (9)

which has the form of the divergence of a vector field in
Cartesian coordinates. Hence, this equation is locally equiv-
alent to the existence of three functions,f, g, h, of (ρ, z, t)
only such that

Bφ =
∂f

∂z
− ∂g

∂ρ
, Eρ =

∂h

∂ρ
− 1

c

∂f

∂t
,

−Ez =
1
c

∂g

∂t
− ∂h

∂z
. (10)

By contrast withΛ, the functionsf, g, h are not defined in a
unique way.

3. Equations of motion of a test particle. Ele-
mentary approach

Now we consider the motion of a test charged particle, of
massm and chargeq, in the framework of Newtonian me-
chanics, if the electromagnetic field is invariant under trans-
lations along thez-axis. Making use of Newton’s second law
and the Lorentz force, we have

mz̈ =
q

c
(cEz + ẋBy − ẏBx), (11)

which, in view of Eqs. (3), amounts to

mz̈ =
q

c

(
−∂Π

∂t
− ẋ

∂Π
∂x

− ẏ
∂Π
∂y

)
= −q

c

dΠ
dt

,
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and to the existence of the constant of motion

mż +
q

c
Π = const. (12)

Similarly, noting that theφ-component of the acceleration
is given by

φ̂ · dv
dt

=
d
dt

(φ̂ · v)− v · dφ̂

dt
=

d(ρφ̇)
dt

+ v · φ̇ρ̂

=
d(ρφ̇)

dt
+ ρ̇φ̇ =

1
ρ

d(ρ2φ̇)
dt

, (13)

we have

d(mρ2φ̇)
dt

=
q

c
ρ φ̂ · (cE+v×B) =

q

c
ρ (cEφ + żBρ− ρ̇Bz)

and if the electromagnetic field is invariant under rotations
about thez-axis, making use of Eqs. (8),

d(mρ2φ̇)
dt

=
q

c

(
−∂Λ

∂t
− ż

∂Λ
∂z

− ρ̇
∂Λ
∂ρ

)
= −q

c

dΛ
dt

.

Hence,
mρ2φ̇ +

q

c
Λ = const. (14)

4. Electromagnetic potentials for the electro-
magnetic fields invariant under translations
or rotations

In this section we shall show that in the cases considered
above we can give expressions for the usual potentials of
the electromagnetic field. The main result of this section is
that these potentials can be chosen in such a way that they
share the same symmetry as the corresponding electromag-
netic field.

Recalling the standard expressions for the electromag-
netic fields in terms of the potentialsA andϕ,

E = −∇ϕ− 1
c

∂A
∂t

, B = ∇×A, (15)

and comparing with Eqs. (3) and (5) we see that if the electro-
magnetic field is invariant under translations along thez-axis
the potentialsA andϕ can be chosen according to

Ax = f, Ay = g, Az = Π, ϕ = −h. (16)

Since the functionsΠ, f, g andh do not depend onz, A and
ϕ are invariant under translations along thez-axis.

In the case where the electromagnetic fields are invariant
under the rotations about thez-axis, taking into account that
B = ∇×A amounts to

Bρ =
1
ρ

∂Az

∂φ
− ∂Aφ

∂z
, Bφ =

∂Aρ

∂z
− ∂Az

∂ρ
,

Bz =
1
ρ

[
∂(ρAφ)

∂ρ
− ∂Aρ

∂φ

]
, (17)

comparison with Eqs. (8) and (10) shows that we can choose
the potentials in the form

Aρ = f, ρAφ = Λ, Az = g, ϕ = −h. (18)

This shows that if the electromagnetic fields are invariant un-
der rotations about an axis, the usual electromagnetic poten-
tials can be chosen in such a way that they are also invariant
under these rotations.

5. Equations of motion of a test particle. La-
grangian approach

In the framework of Newtonian mechanics, the standard La-
grangian for a charged particle, with massm and electric
chargeq, in an electromagnetic field defined by the poten-
tialsA andϕ is given by

L =
1
2
mv2 +

q

c
A · v − qϕ. (19)

Hence, if the electromagnetic field is invariant under trans-
lations along thez-axis, the potentials can be chosen in the
form (16) and the Lagrangian (19) expressed in Cartesian co-
ordinates becomes

L =
m

2
(ẋ2 + ẏ2 + ż2) +

q

c
(Axẋ + Ay ẏ + Az ż)− qϕ,

=
m

2
(ẋ2 + ẏ2 + ż2) +

q

c
(fẋ + gẏ + Πż) + qh. (20)

Since the functionsf, g, h andΠ are functions ofx, y, t only,
the coordinatez is ignorable and its conjugate momentum

∂L

∂ż
= mż +

q

c
Π. (21)

is conserved. This constant of motion coincides with that
given in Eq. (12).

Similarly, if the electromagnetic field is invariant under
rotations about thez-axis, the potentials can be chosen in the
form (18) and the Lagrangian (19) expressed in terms of the
cylindrical coordinates is

L =
m

2
(ρ̇2 + ρ2φ̇2 + ż2) +

q

c
(Aρρ̇ + ρAφφ̇ + Az ż)− qϕ,

=
m

2
(ρ̇2 + ρ2φ̇2 + ż2) +

q

c
(fρ̇ + Λφ̇ + gż) + qh. (22)

Now φ is an ignorable coordinate and its conjugate momen-
tum

∂L

∂φ̇
= mρ2φ̇ +

q

c
Λ (23)

is a constant of motion, which coincides with that given by
Eq. (14).

The corresponding results in the framework of relativistic
mechanics are very similar to those given above. Making use
of the Lagrangian [3]

L = −mc2

√
1− v2

c2
+

q

c
A · v − qϕ

one readily finds that the constants of motion (21) and (23)
maintain their form withm replaced by the “relativistic

mass”m/
√

1− v2

c2 .

Rev. Mex. Fis. E21020201



4 G. F. TORRES DEL CASTILLO

6. An example. Charged particle in the field of
a magnetic monopole

It must be emphasized that the constants of motion (12) and
(14) are, necessarily, gauge-independent and do not depend
on the coordinates being employed. In this sense, it is conve-
nient to notice, for instance, that Eqs. (8) are equivalent to

∇Λ = (ẑ × r)×B,
1
c

∂Λ
∂t

= −(ẑ × r) ·E, (24)

wherer is the position vector of an arbitrary point.
The electromagnetic field produced by a magnetic

monopole, with magnetic chargeqm, placed at the origin,
would beE = 0 andB = qmr/r3, which is invariant un-
der rotations about any axis passing through the origin. Ac-
cording to Eqs. (24), the functionΛ associated with the in-
variance under the rotations about thez-axis can be taken
as −qmz/r and therefore the constant of motion (14) is
m(xẏ− yẋ)− qqmz/(cr). There are two similar expressions
for the constants of motion associated with the invariance of
the field under rotations about thex- andy-axes. Together,
these constants form the conserved vector

r×mṙ− qqm

c

r
r
.

Whereas the invariance under the rotations about,e.g.,
thez-axis can be explicitly exhibited in the electromagnetic
potentials, the simultaneous invariance under rotations about
different axescannotbe exhibited in the potentials or the La-
grangian.

In the case of an infinitely long solenoid, as that consid-
ered in the study of the Aharonov–Bohm effect, the magnetic
field in the exterior of the solenoid should be equal to zero,
but there must be a nonzero vector potential. According to
Eqs. (8), (10) and (18), the functionsf, g, h can be taken
equal to zero and, taking into account the Stokes theorem,
the functionΛ must be a constant equal toΦ/2π, whereΦ
is the magnetic flux through a cross-section of the solenoid.
In the framework of classical mechanics the presence of the
constantΛ in the constant of motion (14) does not make an
essential difference. However, as we know, in the quantum
mechanical version of the problem, a nonzero fluxΦ pro-
duces observable effects.

7. Relation with the Lorentz transformations
in 2+1 dimensions

As we have seen, when an electromagnetic field is invariant
under translations along thez-axis, the Cartesian components
of the field are functions of(ct, x, y) only, and the poten-
tials required to express them can be chosen as functions of
(ct, x, y) only [see Eqs. (3) and (5) or (16)], so that one is led
to consider the2 + 1 space-time with coordinatesx0 = ct,
x1 = x andx2 = y. Furthermore, the components of the
electromagnetic field are naturally grouped into two sets of

three components each [see Eqs. (3) and (5)]. In fact, Eqs.
(3) can be expressed in the simple form

φα = −∂αΠ, with

(φ0, φ1, φ2) ≡ (−Ez, By,−Bx). (25)

The lower case Greek indices,α, β, . . . , take the values0, 1
and2 and these indices are raised or lowered with the aid of
the3 × 3 matrices(ηαβ) = diag (−1, 1, 1) = (ηαβ) (hence,
e.g., φ0 = −φ0 = Ez butφ1 = φ1 = By).

Making use of the well-known formulas for the transfor-
mation of the components of the electromagnetic field in the
case of a boost in thex-direction (see,e.g., sec. 11.10 of
Ref. [3]), we find




−E′
z

B′
y

−B′
x


 =




γ −γβ 0
−γβ γ 0

0 0 1







−Ez

By

−Bx


 , (26)

whereβ = v/c, v is the velocity of the primed inertial frame
with respect to the unprimed one, andγ = (1 − β2)−1/2.
This means thatφα transforms as a2 + 1-vector under the
proper Lorentz transformations that leave invariant thez-
axis. Clearly, under rotations in thexy-plane the components
of φα transform appropriately.

Equation (4) can be written in the form∂αψα = 0, with
(ψ0, ψ1, ψ2) ≡ (Bz, Ey,−Ex), and we can verify thatψα

also transforms as a2 + 1-vector under the proper Lorentz
transformations that leave invariant thez-axis, in fact,




B′
z

E′
y

−E′
x


 =




γ −γβ 0
−γβ γ 0

0 0 1







Bz

Ey

−Ex


 . (27)

The vectorψα can also be expressed in a covariant man-
ner. Equations (5) are equivalent toψα = εαβγ∂βsγ , with
ε012 = 1 and(s0, s1, s2) = (h, f, g).

By combining the two2 + 1-vectorsφα andψα we can
form three invariants:φαψα = E · B (which is one of
the two well-known Lorentz invariants of the electromag-
netic field), φαφα = −Ez

2 + Bx
2 + By

2, andψαψα =
−Bz

2 + Ex
2 + Ey

2. The last two quantities are separately
invariant under the proper Lorentz transformations that leave
invariant thez-axis and their difference,ψαψα−φαφα, corre-
sponds to the second Lorentz invariant of the electromagnetic
field.

The results of this section may seem curious but are part
of a more general behavior. For instance, in the case of a
time-independent electromagnetic field, one half of the com-
ponents of the field (those corresponding to the electric field)
can be expressed in terms of a time-independent scalar po-
tential (defined up to an additive constant), which is invari-
ant under the Lorentz transformations that leave invariant the
time axis (that is, the ordinary rotations). The other half of
the components of the field (those corresponding to the mag-
netic field) can be expressed in terms of a time-independent
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vector that is not uniquely defined. With the electric and mag-
netic field vectors we can form three invariants under rota-
tions,E ·B, E ·E andB ·B, and the difference between the
last two is invariant under all the Lorentz transformations.

8. Final remarks

As we have shown, the possibility of having electromagnetic
potentials or Lagrangians invariant under some transforma-
tions is not a trivial matter. The concept of symmetry is very
often used loosely, without the required precision.

The termsqΠ/c or qΛ/c, appearing in Eq. (12) and (14),
respectively, need not coincide with thez-component of the

linear or the angular momentum of the electromagnetic field
as usually defined [4]. As argued in Ref. [4], the reason is
that in the derivation of the expression for the density of lin-
ear momentum or angular momentum of the electromagnetic
field one takes into account the interaction of the field with
its sources and the test charge considered here may not be the
only source of electric field present.
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