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A simple filter Lorenz electronic circuit
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In this work, an electronic circuit of the Lorenz system is developed. The electronic circuit proposed is one of the easiest to implement. We
changed thex-state equation of Lorenz‘s system with a low-pass filter to an RC circuit with the same cutoff frequency. Corron’s electronic
circuit is used as the basis for electronic design. Simulation results support this proposal.
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1. Introduction

Filters have played a very important role in the design of elec-
tronic circuits. For example, filters have been used in con-
nection with creating synthesizer modules used in the man-
ufacture of musical instruments, signal processors, automa-
tion systems, and more [1]. It is very important that students
and researchers have a deep knowledge of the field, both the-
oretically and experimentally. At a theoretical level, filters
are designed according to: the concept of a two-port net-
work [2], modifying the subspace [3], Caprio technique [4],
or implementation via structures such as Sallen-Key filters
[5], Chebyshev topologies [6], or Butterworth [7]. At the
experimental level, there are implementations at the NMOS
transistor level [8] or using FPAA devices [9]. When study-
ing physics, the topic of filtering is often covered, with op-
tical or electronic filtering being the most common. This
topic is important to understand because you need to filter
data collection to perform analysis. A very important ap-
plication of filters is in communication systems, where the
receiving system is tuned to a specific frequency using a fil-
ter, thereby effectively capturing the energy radiated by the
transmitting circuit at that specific frequency [9]. The con-
cept of synchronization is very important in this way of com-
munications with nonlinear systems [10]. The sending sys-
tem is called the master and the receiving system is called
the slave. Although implementing the sender side of commu-
nication system is relatively simple, developing the receiver
side has proven difficult. Often, the lack of known fixed basis
functions makes it difficult to develop suitable filters. There-
fore, receivers depend upon greater complicated strategies to
atone for the presence of noise.

Synchronization of systems has been performed using
different approaches,e.g. forced synchronization, in-phase
synchronization, etc. [11]. Numerical implementations by
computer or through electronic circuit implementation are
used to verify the results. Electronic circuits used for syn-
chronization include Lorenz, Chua, Chen, and so on [12-14].
These circuits in communication systems are used as master

and slave systems, where the slave system can be regarded
as a filter [15]. Over the past decade, fractional order filters
have been implemented. For example, in Ref. [16] a second
generation voltage conveyor is used, and in Ref. [17] a filter
of order greater than 1 and less than 2 is implemented using
a field programmable analog array device, and in Ref. [18]
High-order filters with controllable frequencies are imple-
mented using operational transconductance amplifiers. There
are many types of filters, but the simplest are lowpass, high-
pass, bandpass, and stopband filters. These electronically im-
plemented filters can be passive using only resistorsR and
capacitorsC, or they can be active filters that incorporate op
amps in addition toRC circuits. Active filters allow you to
manipulate the amplitude of the filtered signal.

The work presented in Ref. [15] deals with synchroniza-
tion phenomena and shows that the slave system behaves like
a filter. In this work, the Lorenz system is presented as a
filter. For this purpose, the Lorenz system is divided into
two subsystems of his, with the equations corresponding to
x state being one filter and the equations corresponding toy
andz states being the second filter. These two subsystems
are cascaded. Therefore, the Lorenz slave system behaves
like a filter. A demonstration of this is given in Ref. [15].
Other research on Lorenz systems have been conducted: [19]
uses Presnov decomposition to address the synchronization
problem of fractional order Lorenz families, [20] uses CMOS
technology to synthesize a mathematical Lorenz model, and
[21] analyzes the system through rotation. In this investiga-
tion, we use the work [15] to replace the Lorenz electronic
circuit according to the equation ofx state. In Ref. [22],
a low-pass filter similar to thex state equation is also used
to reconstruct the information signal in the slave system. If
the cutoff frequency is not sufficient, synchronization be-
tween master and slave will not be achieved. This means
that the received signal cannot be reconstructed correctly. In
Refs. [23,24] it is also shown that the use of filters is impor-
tant for constructing communication based chaotic systems.
If the cutoff frequency is good, you will get correct decoding.
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The aforementioned work is based on the Lorenz system.
In this research, the modifications made to the electronic cir-
cuit are based on replacing the equation ofx state with a
passive low-pass filter RC. To achieve this, we use a Lorenz
system in the filtering approach proposed in Ref. [15] and
decompose it into two cascaded subsystems. The first sub-
system corresponds to the equation of statex, and the second
subsystem corresponds to the remaining equationsy andz.
The equation for subsystem 1 (statex) expresses duality with
the equation for the first-order passive low pass filter RC, so
we replace statex in the electronic circuit with a passive filter
RC and check whether the new electronic circuit can gener-
ate chaotic oscillations. There are various works in which
Lorenz’s electronic circuits are modified, such as [23,24] re-
placing the resistor connectingz state andy state. Other sug-
gestions for electronic circuits come from [14,25]. This paper
modifies one of the simplest proposals ever made, made by
Dr. Ned Corron in 2010 [26].

This work uses National Instruments Multisim to run the
Lorenz system and supports the proposal realized in order
to relate the first equation of the Lorenz system to a passive
RC lowpass filter. The research will be treated as follows:
In Sec. 2, thex state equation is related to the passiveRC
circuit and the relationship of the cutoff frequency parameter
σ is related to the occurrence of this state. A Bode plot is
generated. Section 3 gives the electronic implementation of
the circuit. The circuit proposed by Corron is modified. Sec-
tion 4 shows the effect of different cutoff frequencies on the
Lorenz system. Finally, in Sec. 5 presents conclusions.

2. Lorenz’s x state as RC filter

Consider the Lorenz system represented by

ẋ = σ(y − x),

ẏ = rx− xz − y,

ż = xy − bz. (1)

The following parameters make the system chaotic:σ =
10, b = 8/3, andr = 30. According to [15], the Lorenz
system works as a filter. This is because thex state equation
is the dual of theRC equation passive low pass filter. A dia-
gram of anRC low-pass filter is shown in Fig. 1. This gives
the output voltage as a function of the input voltage.

FIGURE 1. PassiveRC filter.

FIGURE 2. The Bode plot forσ = 10.

ẋ =
1

RC
(y − x). (2)

Comparing thex state equation of (1) with (2), (2) is the
dual of (1) and1/RC plays the role ofσ, so that the cutoff
frequency isωc = 1/RC = σ. The Bode’sx plot in Eq. (1)
for σ = 10 is shown in Fig. 2, checking the lowpass filter
response.

Electronically implemented Lorenz systems typically use
integrator circuit withx state equation [14,25]. As we have
already seen, (2) is the dual of (1) corresponding tox state.
The next question then arises: can one still obtain chaotic os-
cillations in a Lorenz circuit by electronically replacing the
x-state integrator with an passiveRC lowpass filter?

3. Modifying Corron’s electronic circuit

To investigate the possibility of replacing the electronic op-
amp integrator with an passiveRC low-pass filter, we im-
plemented the electronic circuit proposed by Corron [26]. It
consists of two active filters, an adder, and an integrator with
an op-amp and two ad633 multipliers. The Corron’s elec-
tronic schematic is shown in Fig. 3.

To implement the electronics, Corron had to adjust the
system parameters to stay within the±10V supply range.
To do this, we changed the variables in the state equation
of system (1) as follows: x = X/

√
ar, y = Y/

√
ar, and

z = Z/ar. If a = 1/3, then the power limit requirement is
satisfied and the system of equations becomes.

Ẋ = σ(Y −X),

Ẏ = rX − arXZ − Y,

Ż = XY − bZ. (3)
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FIGURE 3. Corron’s electronic schematic.

FIGURE 4. Corron’s electronic circuit Multisim response. a)x and
y states versus time, b)x− y phase portrait.

After changing the variables, Corron implements the sys-
tem (3) shown in Fig. 3. A Multisim simulation of the elec-
tronic circuit Fig. 3 in thex andy states, and thex− y phase
portrait over time is shown in Fig. 4. His Kirchhoff equations
for electronic circuits are decomposed hereafter, see [26].

The circuit equations in Fig. 3 are obtained by applying
the nodal equations for the configuration shown in Fig. 5.
These figures will help you better understand how to find the
state equationsx, y, z for the Corron’s electronic circuit.

For the circuit shown in Fig. 5a), we have:adderA =
x− y; integrator ẋ = −1/(R1C1)A, thus

ẋ = − 1
R1C1

(x− y). (4)

FIGURE 5. Corron’s electronic configurations: a) integrator plus
adder, b) filter plus multiplier, c) filter plus multiplier.

For the circuit shown in Fig. 5b), we have:multiplier
B = x(z − 3)/10; filter ẏ = −(1/R3C2)y − (1/R4C2)B,
i.e.

ẏ =
3

10R4C2
x− 1

10R4C2
xz − 1

R3C2
y. (5)

For the circuit shown in Fig. 5c), we have:multiplier
D = −xy/10; filter ż = −(1/R5C3)z − (1/R6C3)D, thus

ż =
1

10R6C5
xy − 1

R5C3
z. (6)

Using the resistance and capacitance electronic circuit
values in Fig. 3, the equations of states are:

ẋ = 10K(y − x),

ẏ = 30Kx− 10Kxz − 1Ky,

ż = 1Kxy − 256Kz. (7)

Observing thex state in Eq. (7), we find that the cutoff
frequency corresponds to 1.59 KHz (10 Krad/s), and, the pro-
posed passiveRC lowpass filter is tuned withR = 10 KΩ
andC = 10 nF to get the cutoff frequency corresponding to
thex state.
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FIGURE 6. Lorenz’s electronic schematic proposal.

FIGURE 7. Lorenz electronic circuit Multisim response. a)x and
y states versus time, b)x− y phase portrait.

Then to answer the question, is it possible to obtain
chaotic oscillations in the Lorenz system by electronically
replacing the op-amp used in thex state with a passiveRC
filter? the Lorenz electronic circuit shown in Fig. 6 is pro-
posed.

The electronic proposal replaces two op-amps in subtrac-
tive and integral configurations (Fig. 3) with an passiveRC
low-pass filter circuit (Fig. 6). To corroborate this change in
the circuit, we simulate the circuit in Multisim to obtain the
response to thex andy states over time, these are shown in
Fig. 7a). And Fig. 7b) also shows thex− y phase portrait.

As shown in Fig. 6, the proposed electronic circuit of the
Lorenz system can generate chaotic oscillations by replacing
thex state with an equivalent passiveRC low-pass filter.

TABLE I. Parameters.

R (Ω) C (F ) frequency (Hz) Figure

1 K 10 n 15915.45 a), b)

4.5 K 10 n 3536.76 c), d)

10 K 10 n 1591.54 e), f)

18.8 K 10 n 846.56 g), h)

30 K 10 n 520.51 i), j)

100 K 10 n 159.15 k), l)

1 M 10 n 15.91 m), n)

10 M 10 n 1.59 o), p)

4. RC filter tuning

To study the behavior of the Lorenz system, the resistanceR
of the filter takes on different values, and the capacitance is
kept constant. The operation is shown in the following im-
ages. The images are arranged horizontally from the top of
the sheet to the bottom of the sheet in the following order
from the highest cutoff frequency (15915.45 Hz) to the low-
est cutoff frequency (1.59 Hz). Table I shows the resistance
and capacitance values used and the cutoff frequency in Hz,
and the figure to which it belongs.

Taking as a reference point to Fig. 8e)-f), it corresponds
to R = 10 kΩ and C = 10 nF . The cutoff frequency is
1.59 kHz, which corresponds to the circuit proposed by Cor-
ron. At these values ofR andC, chaotic oscillations occur.
Increasing the cutoff frequency is the opposite of decreasing
the resistance of the lowpass filter in theRC network. At
the cutoff frequencyfc = 3.53 KHz in Fig. 8c)-d), the os-
cillations are chaotic. Counting thex state crossings near0
V in the corresponding figure as an index of frequency, there
are24 of these crossings for a 20 ms time interval, compared
to 22 for fc = 1.59 KHz. It can be regarded as a measure
of the oscillation velocity of the Lorentz circle between the
lobes (1st and3rd quadrants). Also, atfc = 15.91 KHz,
which is ten times higher than the Fig. 8e)-f), the oscilla-
tion is suppressed as shown in Fig. 8a)-b). From the above
observations, there seems to be an upper limit to the cutoff
frequency at which the circuit will still oscillate chaotically.

Now bring the fundamental cutoff frequencyfc back to
1.59 KHz, Fig. 8e)-f), and start lowering the cutoff frequency.
For example,fc = 846.56 Hz, Fig. 8g)-h) sustains chaotic
oscillations. But by lowering to lower cutoff frequencies the
filter; for example, at cutoff frequenciesfc = 520.51 Hz
Fig. 9i)-j), at fc = 159.15 Fig. 9k)-l), atfc = 15.91 Hz
Fig. 9m)-n) and forfc = 1.59 Hz Fig. 9o)-p), the oscilla-
tions in the Lorenz circuit are extinguished. We can also infer
that in these cases there is a lower cutoff frequency limit that
allows the circuit to oscillate chaotically, as can be seen from
the pictures.
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FIGURE 8. Lorenz electronic circuit Multisim response. a)x state versus time, b)x− y phase portrait.

5. Conclusions

In this investigation, we use the equation ofx state of Lorentz
system. It turns out that the equation for the passiveRC low-
pass filter is the dual of thex state equation. where the pa-
rameterσ corresponds to the cutoff frequencyω = 1/RC.
The Bode plot corroborates this duality of both equations as
is shown in Fig. 2. The Corron electronic circuit is one of
the easiest circuits to emulate the Lorenz system, so it is used
as the basis for modification. Based on Corron’s scheme, the
subtractor-configured and integrator-configured opamps used
to constructx state are replaced by a passiveRC low-pass
filter circuit tuned to the cutoff frequencyσ. The proposed

circuit in Fig. 6 can generate the chaotic oscillations shown
in Fig. 7. This shows that this proposal is one of the sim-
plest ways to emulate a Lorenz system using two multipli-
ers, two amplifiers, resistors, and capacitors. By adjusting
the resistance of theRC filter according to Table I, we find
that there is a frequency interval in which the chaotic oscil-
lations are maintained, after which the chaotic oscillations
cancel. Science students learn that different cutoff frequen-
cies give different behaviors in the modified Lorenz circuit. If
you want to vary the value of theR resistor continuously, re-
place it with a trimpot and the oscilloscope display will show
the appearance of chaos and its cancellation at various cutoff
frequencies.
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FIGURE 9. Lorenz electronic circuit Multisim response. a)x state versus time, b)x− y phase portrait.
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