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In this analysis, we found the disturbances caused by the decrease in stellar mass and the expansion of the universe, to three fundamental
parameters that represented the stability of a planetary orbit: the period, the semi-major axis and the eccentricity. First, by assuming much
greater the mass of the star than the planetary, the star-planet interaction is reduced to a single-body problem with origin of reference system
lying in the greater mass; and, through the mathematical formalism of the central forces, the variations of the three orbital parameters to
be considered were obtained. As a result, the variations corresponding to the period and semi-major axis have been characterized in their
mathematical structure by the terms that describe each phenomenon; namely,ξ ∼ 2.16× 10−21 for the case of Sun, and̈α/α ∼ 3× 10−36

concerning the decrease in stellar mass and the expansion of the universe, respectively. In the case of eccentricity, it is shown that this
parameter is an invariant quantity under the disturbances produced by these two cosmological phenomena.
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1. Introduction

The dynamics of Solar System is a fundamental topic of
physics, which is teaching from a bachelor to graduate level
university. From the theory it begins from two body prob-
lem interacting via a central force, extended to the three body
system, crossing the study of perturbations of the inner or-
bit planets associated to its orbital elements variations as a
time function. Last topic makes part of an area of knowl-
edge much bigger, belonging to the study of stability of the
Solar System, where orbital motion of one inner planet has
disturbances not only due to effect of interaction of remain-
ing planets but also to the effects associated with the inner
dynamic of the star, until cosmological effects. Perturbations
of the orbits in the inner planets and the stability in the So-
lar System can be introduced in the classroom as it was ap-
proached from the historical and theoretical point of view,
approaches that contribute to the construction of learning en-
vironments around mechanics. It can be presented from Jo-
hannes Kepler, who with the help of the observations made
by Tycho Brahe, published his three laws and pointed out the
discrepancy between the observations made by Regiomon-
tanus about the movements of the planets Jupiter and Sat-
urn later. In 1687, Isaac Newton in his text on optics ex-
pressed his doubts about the stability of the Solar System
when he saw compromised disturbances due to other plan-

ets and comets [1]; furthermore, he raised the idea that these
disturbances could accumulate and destroy it. For this prob-
lem, he raised the possibility of divine intervention that could
correct the planetary orbits. In 1776, Halley’s tables were re-
produced, where the irregularities in the behavior of the orbits
of Jupiter and Saturn were evidenced. Due to these irregular-
ities, the French Academy of Sciences offered a prize for the
one who could solve the aforementioned problem. This was
of vital importance, since the stability of the Solar System
was directly involved even more when the law of gravitation
was already formulated along with Kepler’s laws. Leonhard
Euler set about working on the problem and was awarded
prizes in 1748 and 1752 for laying the foundations of pertur-
bation methods, and for showing that secular variations in the
mean motion of Jupiter and Saturn were induced in Newton’s
laws. However, based on observations, it was known that Eu-
ler’s results were wrong [2]. In 1773 Pierre Simon Laplace
described the secular invariance of the semi-major axis of the
planets; however, he was concerned that his results had been
shown by Laplace to be secular invariant of the semi-major
axis by considering only the first few terms in the expansion
of average perturbations; but his results were in discrepancy
with the observations. Nevertheless a comparison between
Halley’s data and his results allowed him to conclude that the
variations in the movements of Jupiter and Saturn were due
to their mutual action, building a better model in which he
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considered the Jupiter-Saturn system, which coincided with
observations without recourse to an empirical secular term.
After the work of Lagrange and Laplace, the stability of the
Solar System seems to be explained. The semi-principal axes
of the orbits had no long-term variations, and their eccentrici-
ties and inclinations showed only small variations that do not
allow the orbits to cross and the planets to collide. Urbain
Jean Joseph Le Verrier in 1840 was based on the work done
by Lagrange and Laplace, and considered the effects of the
higher order terms in the perturbation series, with the idea
that the third order terms could be larger than the third order
terms, terms of second order, which in his opinion compro-
mised the convergence of the solutions.

Henri Poincaŕe in 1892-1899 demonstrated that it is im-
possible to integrate the equations of motion of three bodies
that interact with each other through the action of gravity,
and the impossibility of finding an analytical solution in an
infinite time interval, which makes the system not be inte-
grable and that the behavior of the system cannot be pre-
dicted, creating a type of instability [3]. For Le Verrier the
problem lies in considering the higher order terms in the ex-
pansion due to perturbations, while for Poincaré the prob-
lem lies in the convergence of the series. Kolmogorov in
1954 analyzed the problem of the convergence of the series
of perturbations of celestial mechanics and showed that for
perturbed Hamiltonian systems non-degenerate, close to the
non-regular solutions described by Poincaré, there are still
regular quasi-periodic trajectories that span a torus in phase
space [4]. Arnold in 1963 showed that for a sufficiently small
disturbance, the set of invariant tori foliated by quasi-periodic
trajectories is of strictly positive measure; as it tends to unity
when the disturbance tends to zero [5]. Moser in 1962 estab-
lished the same type of results for less strong conditions that
do not require the analyticity of the Hamiltonian. Since the
quasi-periodic tori are isolated, an infinitely small variation
of the initial conditions will convert a neatly stable quasi-
periodic solution into a solution chaotic and unstable. Said in
other words, weakly perturbed Hamiltonian systems tend to
maintain their stability. As higher is the disturbance parame-
ter, is lower the probability that the system being stable.

At a predictive level, Jackes Laskar using computational
methods in the 1980s, 1990s and in 2009, he showed that
resonances destroy predictability because they amplify the
gravitational effects by periodically joining the bodies [2, 6].
Laskar recreated the orbital movements with small variations
of the initial conditions that give rise to 2500 dynamics pos-
sible for the next billions of years; in the cases, Venus, Mer-
cury, The Earth or Mars collided with each other or with
the Sun. Computational methods can provide very good ap-
proximations of the solutions of the planets over thousands
of years, but they would not be able to give answers to the
questions about the stability of the Solar System.

Another topic associated to the Solar System stability
concerns not only inner planets but also astrophysics phe-
nomena mainly to the dynamics of the Star,i.e. the Sun and
cosmological effects, making this topic more extended. The

classical Kepler problem could be introduced in a didactic
way by “local” effects associated to the disturbance of the
orbits of the inner planets by interaction between them, but
also the decreasing in the mass of the Sun, and “global” ef-
fects related to the expansion of the universe. For example, in
this sense the generalizes of the Newtonian condition for hy-
drostatic equilibrium is modeled with Tolman-Oppenheimer-
Volkoff (TOV) equation, which presents “local” and “global”
solutions as analytical strategy [7–9] to describe a star as per-
fect fluid.

Along with the interaction between the planets when they
move around the star by gravitational action, the expansion
of the universe as a “global” phenomenon and the decreas-
ing in stellar mass as a “local”, are equally important factors
when the stability of the planetary orbits is the subject to con-
sider [2,10,11]. In general problems that concern cosmolog-
ical phenomena are mostly explained in the field of general
relativity, but to understand these interesting topics from an-
other formalism contemplated in any course of physics grad-
uation, we present this analysis using a classical approach;
more properly, the central forces. This formalism offers the
advantage that from a disturbance in the conditions of stabil-
ity and circularity, a number of physical consequences follow
that do not necessarily involve a complex calculation; so, it
turns out to be an excellent alternative method to obtain con-
crete and approximate results.

In Sec. 2, reduction to one-body problem is made with
their respective invariant quantities that are deduced from
Noether’s theorem; furthermore, the conditions for circular-
ity are defined, resulting in the Kepler problem and Hooke’s
law like two special cases. In Sec. 3, the mathematical rep-
resentation of orbital parameters, that have the main study in
this work, is shown. Perturbations to these orbital parameters
caused by the decrease in stellar mass and the expansion of
the universe have been performed in Secs. 4, 5 respectively.
The conclusions and final remarks are done in Sec. 6.

2. The two body problem

The two-body problem is represented by two masses (M and
m) interacting through some potential that depends on the
mutual distanceV (r) . This system can be reduced to an one-
body problem if the center of mass, whose associated vector
position r (Fig. 1), represents an inertial system reference.
Furthermore, ifM À m, the center of mass is approximately
located within the largest mass, allowing to chose a reference
system whose origin lies in this mass. Dynamics of two body
can be described from the Lagrange formalism: It contains
the kinetic energy andV (r) the potential energy. Then, the
Lagrangian relative to the bodym is

L =
1
2
mṙ2 − V (r). (1)

To determine the conserved quantities, Noether’s theorem al-
lows us to obtain a more complete meaning. For a rotation of
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FIGURE 1. Two body problem.

typer ′ = ζr (with ζ constant), it is obtained thatL′(ṙ ′, r ′) =
L(ṙ , r). It allow us to deduce the conservation of angular mo-
mentumL ,i bringing with it the restriction of the movement
of massm to a perpendicular plane. Given this symmetry,
and since the motion of the planet will be restricted to an
elliptical orbit according to Kepler’s first law, it allow us to
write L in polar coordinatesr, θ:

L =
m

2
[ṙ2 + r2θ̇2]− V (r). (2)

Again, the first two terms make up the kinetic energy (in po-
lar coordinates), and the second term is the potential energy.
The Euler-Lagrange‘s equations forr andθ are [12]

m[r̈ − rθ̇2] = F (r), (3)

m[rθ̈ + 2ṙθ̇] = 0, (4)

whereF (r) = −∂V /∂r is the central force, and the last
equation is related with the conserved angular momentum
l = mr2θ̇. On the other hand, by Noether’s theorem, the
explicit independence of time in the Lagrangian Eq. (1) al-
low us to get the total energy of systemE as a conserved
quantity. Taking these two considerations into account, the
energy equation in polar coordinates is

E =
1
2
mṙ2 +

l2

2mr2
+ V (r). (5)

It is possible to relate energy equation with the angular mo-
mentuml defined the effective potentialV ′(r) = l2/2mr2 +
V (r), and the total energy of the system is

E =
1
2
mṙ2 + V ′(r). (6)

In the case ofV (r) = −kr−1, and for an effective force
F ′ = 0 (corresponding toV ′), it is guaranteed a circular or-
bit for a single distancer0. That explicitly means

FIGURE 2. Effective potentialV ′ as a function ofr.

E = − k

r0
+

l2

2mr2
0

, (7)

0 = − k

r2
0

+
l2

mr3
0

. (8)

This situation is represented in the Fig. 2, where the minimum
of the effective potential curve coincides with the energyE4,
and the movement is only possible for a radiusr0; this leads
to ṙ = 0, and therefore, the orbit is circular.

Bertrand’s theorem generalizes this result, establishing
that an energy slightly deviated from one that produces a cir-
cular orbit, would still produce a closed orbit. This distur-
bance is translated into a harmonic movement aroundu =
1/r into Eq. (3), that is

u′′(θ) + u(θ) = − m

l2u(θ)
F (1/r), (9)

u′′(θ) + u(θ) = J(u), (10)

where for small deviation in the energy aroundr0, J(u) can
be development in Taylor series of the force with respect to
the radiusr0, J(u) = u0 + (u − u0)J ′(u0), and its solution
is described by the equation [12]:

u = u0 + A cosβθ, (11)

whereA is the amplitude which depends on the energy devi-
ation from the value corresponding to the circular orbit, and

β2 = 3 +
r0

F (r0)
dF (r0)

dr
. (12)

If the deviations into energy are not according to a circular
motion, Taylor expansion must have higher terms into Eq. (9)
up to third order, that is
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u′′(θ) + u(θ) = u0 + xJ ′(u0)

+
x2

2
J ′′(u0) +

x3

6
J ′′′(u0), (13)

with x = (u − u0). Bertrand proved that adding harmonic
solutions to the Eq. (11), the only forces that give rise to
closed orbits are the law of the inverse squared of the distance
F = −kr−2 r̂ (Kepler problem) and Hooke’s lawF = −krr̂ .

3. The Kepler problem

From Eq. (6) and using the definition of the angular momen-
tum l = mr2θ̇, the differential equations

dθ

dr
=

l

mr2

√
2(E−V ′)

m

, (14)

dt

dr
=

1√
2
m (E − V ′)

, (15)

are obtained. Using Euler’s substitutions, the solution for the
first equation is

1
r

=
mk

l2

[
1 +

√
1 +

2El2

mk2
cos θ

]
. (16)

Connected with the previous eq., there is the Laplace-Runge-
Lenzt vector [12]:

A = p× L −mk
r̂
r
, (17)

whose magnitudeA2 = m2k2 + 2mEl2 is another constant
in the Kepler’s problem, and also can be related with the ra-
dial orbit Eq. (16)

1
r

=
mk

l2

[
1 +

A

mk
cos θ

]
. (18)

First orbital element emerges from previous equation: the ec-
centricity, which by comparing with the equation of a conic
in polar coordinates is

e =

√
1 +

2El2

mk2
, (19)

=
A

mk
, (20)

where for different energy valuesE (and hencee) orbits are
classified as parabolaE = 0, hyperbolicE > 0 and ellipse
E < 0 [12]. For elliptical orbit0 < e < 1 ande = 0 for a
circle. Both cases as a closed orbit generates the semi-major
axisa, the second orbital element, which is a function of the
total energyE

a = − k

2E
, (21)

a =
l2

mk(1− e2)
, (22)

and Eq. (16) can be written as

r =
a(1− e2)
1 + e cos θ

. (23)

The period arises from the second differential equation,
Eq. (15), which the integration by parts leads to

T = πk

√
m

−2E3
. (24)

It is easy to verify the Kepler’s third law using Eq. (21)
and (24)

T 2

a3
=

4π2m

k
, (25)

which establishes semi-major axis is connected with the orbit
period.

4. Decreasing in stellar mass

The properties that describe each star vary with the object in
question. Some appropriate parameters are the radius, mass
and the superficial temperature. However, the time in which
the star’s mass is converted into energy and then irradiated,
is the most fundamental parameter since it is common to all
stars. Thus, if it is supposed that the mass is converted at
a constant rate, it will be convenient to obtain a simpler ex-
pression. The ratio of stellar mass with respect to time is cal-
culated from certain physical principles. Firstly, the Stefan-
Boltzmann law states that for a black body the luminosity is

L¯ = σAT 4, (26)

whereσ = 5.67 × 10−8 J/m2sK−4, A is the emission area
and T the temperature. In the stars the fusion nuclear re-
actions create helium, carbon, magnesium, oxygen, sulfur,
neon, nickel, cobalt, and 4 different isotopes of iron. The
teacher should assist or give hints as necessary. The students
should end up with the following fusion relationships:

(4H) → He+ 2e+ + 2ν + energy, (27)

(4He) → 12C + energy. (28)

If the luminosity is related with energyE by L¯ ≡ E/t, it is
obtained that the mass is converted into energy by the equa-
tion L¯ = m¯c2/t (using Einstein’s relationE = mc2). For
a constant rate, ones has:

ṁ¯ =
4πr2

¯σT 4

c2
= (7.91× 10−24)r2

¯T 4, (29)

wherer¯ andT are the radius and temperature of the star,
respectively. Thus, the stellar mass decreases with respect to
an initial massM0 obeying the equation

M¯(t) = M0 − ṁ¯t. (30)

Rev. Mex. Fis. E21020202
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Making a suitable changing in the mass decreases Eq. (29)
asṁ¯ = ξM0 with ξ = 7.91× 10−24r2

¯T 4M−1
0 , the stellar

mass Eq. (30) is given by

M¯(t) = M0(1− ξt), (31)

= M¯e−ξt, (32)

where the last one equation is obtained by using a first order
approximatione−x ≈ 1−x for ṁ¯ ¿ M0. This also implies
a variation ink of typek(t) = k0e

−ξt. To study the effects of
a variable mass on the semi-major axis (and under a central
force), Jeans relation [13]:

d

dt

(M¯
2a

)
=

1
a

dM¯
dt

, (33)

leads to the equality

1
a

da

dt
− ξ = 0, (34)

whose solution is:

a(t) = a0e
ξt. (35)

The integration constanta0 is interpreted as the initial semi-
major axis. With the variation ofa and M¯, it is effec-
tively verified that the productM¯a is constant. For energy,
Eq. (21) allow us to obtain

E(t) = E0e
−2ξt, (36)

whereE0 = −k0/2a0. In the case of eccentricity, Eq. (20)
establishes that this quantity remains constant over time;i.e.,
the shape of the planetary orbit is unchanged. Using Eq. (20)
and expressingk with Eq. (21),

e =

√
1 +

2(E0e−2t)l2

m(k2
0e
−2t)

, (37)

e =

√
1 +

2E0l2

mk2
0

. (38)

These results are also used to find the variation of the orbital
period by Eq. (24)

T (t) = T0e
2ξt, (39)

with

T0 = πk0

√
m

−2E3
0

. (40)

With this, the fulfillment of Kepler’s third law is also con-
firmed, where

T 2

a3
=

4π2m

k
→ T 2

0

a3
0

=
4π2m

k0
. (41)

The equation obtained in Ref. [13] is based on the fact that
while the stellar mass decreases, the energy of the object

FIGURE 3. Orbits for planets ata0 = 1.0 UA with eccentricities
values ofe = 0 ande = 0.5. In this case, the star has 1 solar
mass, 500 solar radio, and 5 solar temperature. The time spent for
disturbed orbits wast = 50.000 years.

in orbit increases along with its orbital parameters, and the
productM¯a remains constant. For this, the conservation of
angular momentuml must be assumed at all times.

As eccentricity does not change, we can rewrite the orbit
equation including Eq. (35) as

r =
a0e

ξt(1− e2)
1 + e cos θ

. (42)

In Fig. 3, orbits with eccentricities values ofe = 0 and
e = 0.5 are obtained, reproducing these results for planets
with a0 = 1 UA value. In this case, the star has 1 solar mass,
500 solar radio, and 5 solar temperature. The time spent for
disturbed orbits wast = 50.000y.

5. Expansion of the universe

The expansion of the universe is defined from Hubble’s
law [14]:

ṙ = H(t)r, (43)

beingH the Hubble parameter andr coincide with the dis-
tance measured from the center of mass (greater mass) in a
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problem of two bodies. RegardingH, it is useful to use the
scale factor

α(t) =
r(t)
r0

, (44)

beingr0 the distance measured at an initial timet0. This ex-
pression allow us to re-express the Hubble parameter as

H(t) =
α̇(t)
α(t)

. (45)

On the other hand, the discovery of the accelerated expansion
of the universe [15], suggests an acceleration in Hubble’s law.
This result can be expressed by combining Eqs. (43) and (44)
as:

r̈ = Ḣr + Hṙ, (46)

r̈ =
α̈

α
r. (47)

Current values [10] indicate thaẗα/α = 3× 10−36 s−2. For
the two body problem given by Se. 2, a “force” expression
can be associated to expansion effect using Eq. (46), that is

Fe = mr̈ = m
α̈

α
r, (48)

that can be included into radial Eq. (3)

mr̈ = − k

r2
+

l2

mr3
+ m

α̈

α
r. (49)

It can be established a circular orbit condition for the force
and energy Eqs. (8), given as:

E = E0 − α̈

α

m

2
r2
0, (50)

0 = F ′0 +
α̈

α
mr0, (51)

where

E0 =
−k

r0
+

l20
2mr2

0

, and F ′0 =
−k

r2
o

+
l20

mr3
0

. (52)

Like energy, Eq. (50) can be understood as the square of the
disturbed angular momentum

l2 = l20 −
α̈

α
m2r4

0, (53)

wherel20 = mkr0. To find the variation in the period, it is
necessary to remember thatT = 2π/θ̇, andl is related to the
angular frequency byl = mr2

0 θ̇. Therefore,θ̇ is expressed as
a functionα̈/α by the equation

θ̇ =

√
k

mr3
0

− α̈

α
=

√
k

mr3
0

√
1− α̈

α

mr3
0

k
. (54)

Applying the approximation(1 + εx)n ≈ 1 + nεx for small
values ofε, a new period expression is obtained, given by

T = T0

(
1 +

α̈

α

T 2
0

8π2

)
, (55)

whereT0 = 2πr
3/2
0

√
m/k. For the semi-major axis, that

coincides with constant radiusr0, a result is obtained by a
similar procedure. In this case, Eq. (21) leads to the equa-
tion T 2/a3 = 4π2m/k along with the approximation already
used(1+εx)n ≈ 1+nεx, makes the semi-major axis changes
as

a = − k

2
(
E0 − α̈

α
m
2 r2

0

) , (56)

a = − k

2E0

(
1 +

α̈

α

mr2
0

2E0

)
, (57)

a = a0

(
1− α̈

α

T 2
0

4π2

)
, (58)

wherea0 = −k/2mE0 anda3
0 = kT 2

0 /4mπ2. Equation (58)
shows that for a circular orbit radius is reduced, a bizarre re-
sult. Like the decrease in stellar mass in a central force prob-
lem, the fact that the expansion of the universe does not have
a preferential direction would suppose an unalteration in the
eccentricity of the orbits. To prove this, we use the disturbed
energy and square of the angular momentum, in order to sub-
stitute in the definition of eccentricity Eq. (20). The modified
product using the Eq. (20) and (53) is

El2 =
(

E0 − α̈

α

m

2
r2
0

)(
l20 −

α̈

α
m2r4

0

)
, (59)

which is solved under certain considerations: the multiplica-
tion between the last two terms of each expression is negli-
gible insofar as the factor(α̈/α)2 is too small in comparison
to the other terms; secondly, the substitution ofE0 and l20
for their corresponding values, nullify any total contribution
related toα̈/α. In this way, it is verified that the product
El2 = E0l

2
0 (undisturbed value), leaving the eccentricity of

a planetary orbit unchanged.

On the other hand, Bertrand’s theorem can be applied by
including the effect of expansion to study the behavior of
closed orbit when energy is slightly disturbed. This can be
performed using Eq. (12) but including the associated force
given by the Eq. (48), that is:

β2 = 3− r

− k
r2 + α̈

αmr

[
d

dr

(
− k

r2
+

α̈

α
mr

)]

r=r0

, (60)

β2 = 4− 3
(

1− α̈

α

mr3
0

k

)−1

. (61)

Using again the periodT 2
0 = 4π2r3

0m/k,

β =

√
1− α̈

α

3T 2
0

4π2
, (62)

β = 1− 3
8

α̈

α

T 2
0

π2
, (63)
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where previous Eq. (63) is obtained using(1+x)n ≈ 1+nx.
The orbit equation can be established by using Eq (11), writ-
ten as

1
r

=
1

r0[1 + e cosβθ]
, (64)

whereA = s0e ande is the eccentricity which is unchanged.
Thus, the orbit equation keeps an ellipse shape but is not to-
tally a closed. It can be understood sinceβ has to be a ratio-
nal number, and as it is given from the Eq. (63), this is not
the case. However, when̈α/α = 0 is obtained,β = 1 i.e. a
circular orbit.

Interestingly, we can get the disturbed energy
(α̈/α)(m/2)r2

0 (from which most of the results were gen-
erated) from the Eq. (50) by means of a simple dimen-
sional analysis [16]: letf an arbitrary function such that
f = f(V, m, r,H) whereV is an energy potential. There
is a dimensionless quantityΠ that satisfiesΠ = HambrcV .
Taking the units of[V ] =

[
ML2/T 2

]
, and through a system

of equations, it reads that:a = −2, b = −1, c = −2. This
results in equivalence:

Π =
V

H2mr2
, (65)

or more properly

V = ΠH2mr2. (66)

As we can see,Π = −1/2.

6. Conclusions and perspectives

We study the local and global effects for the orbital parame-
ters for a two body system with a central force coming from
mass stellar variation and the cosmological expansion. The
most interesting result was that eccentricity is an invariant
quantity under the phenomena considered here. This could
have been foreseen since the phenomena that gave rise to the
extra terms were of the center type; that is, they presented a
symmetry in angular directions, and the only dependency was
the radial variable. If that were not the case, anisotropies into
expansion effect would have into account, but this does not

make part of this study. In the semi-major axis and period, the
decrease of stellar mass causes a disturbance that vary with
time; that result makes sense since the rate (considered con-
stant here) at which the mass is lost varies over time. In the
case of the expansion of the universe both quantities are di-
rectly proportional to the term̈α/α, and as in the case of the
stellar mass, their disturbance depends on time. This can be
seen if the value ofH changes for different times in which it
is measured. Also, this work could be used as a heuristic ex-
ample in a classical subject. The implementation of the new
factors due to the expansion of the universe, under the anal-
ysis of Bertrand’s theorem and a new effective potential, can
yield new results that in principle should be more rigorous
from a mathematical point of view. In this case, the problem
lies in that the term(α̈/α)(m/2)r2 has no algebraic relation-
ship with the centrifugal potential(1/2)(l2/mr2) − (k/r);
that is, it is not possible to obtain a new force of the form
f(r) = −(k/r3−β2

) (a necessary condition to give rise to
a closed orbit and stable). On the other hand, the results in
stellar mass were obtained thanks to the mass of the star is
much greater than the planetary one. However, ifṁ¯ ≈ M0

in magnitude, and there is a planetary system whose stellar
mass is comparable to the mass of the orbital planet, such
approximations would not be the most indicated. For these
cases, the perturbations to the orbital factors must be studied
from another analysis.

For the study to the three body problem and extended to
inner planets into Solar System, the effects due to decreasing
in the stellar mass and the expansion of the universe as per-
turbations into the elemental orbits can be neglected at first
instance, but as numerical studies presented by Laskar [2, 6]
these perturbations could appear for huge scales of time and
being taken into account.
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i. This conservation will help to re-express the kinetic energy of
the system given by the Eq. (5).
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2. J. Laskar, M. Gastineau, Existence of collisional trajecto-
ries of Mercury, Mars and Venus with the Earth,Nature
Letters 459 (2009) 817, https://doi.org/10.1038/
nature08096 .

3. R. A. Mardling, Resonance, Chaos and Stability: The
Three-Body Problem in Astrophysics, In S. J. Aarseth,
C. A. Tout, and R. A. Mardling, eds.,The Cambridge

N-Body Lectures, vol. 760, pp. 59-96 (Springer Nether-
lands, Dordrecht, 2008),https://doi.org/10.1007/
978-1-4020-8431-7 3.

4. A. N. Kolmogorov, On the conservation of conditionally pe-
riodic motions under small perturbation of the Hamiltonian,
Dokl. Akad. Nauk. SSR98 (1954) 527.

5. V. I. Arnol, Proof of a Theorem by A. N. Kolmogorov
on the invariance of quasi-periodic motions under small
perturbations of the Hamiltonian,Russian Math. Sur-

Rev. Mex. Fis. E21020202

https://doi.org/10.1038/ nature08096�
https://doi.org/10.1038/ nature08096�
https://doi.org/10.1007/978-1-4020-8431-7_3�
https://doi.org/10.1007/978-1-4020-8431-7_3�


8 JUAN D. FONSECA, I. A. MONROY, AND G. CARDONA RODRIGUEZ

vey 18 (1963) 9, https://dx.doi.org/10.1070/
RM1963v018n05ABEH004130 .

6. J. Laskar, Large-scale chaos in the solar system.,Astron. Astro-
physics287 (1994) L9,https://ui.adsabs.harvard.
edu/abs/1994A \&A...287L...9L

J. Laskar, Large-Scale chaos in the solar system,
Astron. Astrophysics L9-L12 (1994) 287, https:
//ui.adsabs.harvard.edu/abs/1994A%26A.
..287L...9L/abstract .

7. E. Ch́avez Nambo and O. Sarbach, Static spherical perfect
fluid stars with finite radius in general relativity: a review,
Rev. Mex. Fis.18 (2021) 020208 1,https://10.31349/
RevMexFisE.18.020208 .

8. J. Chaćon, J. A. V́azquez, and R. Gabbasov, Dark
matter with n-body numerical simulations,Rev. Mex.
Fis. E 17 (2020) 241, https://doi.org/10.31349/
RevMexFisE.17.241 .
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