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About the force on a magnetic dipole
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There is disagreement about which is the correct expression for the force on a magnetic dipole, and at least two expressions for this force
have been proposed, generating a controversy between Vaidman [1985] and Franklin [2018]. Our view here exposed is that the macro-
scopic Maxwell equations and the constitutive relations imply, via electromagnetic momentum balance equations, several force densities
which include those proposed by some authors. Therefore, the question is not which one is correct, since all are legitimate deductions of
Maxwell’s equations, but under what conditions they may be useful to explain some phenomena. The discussion of conceptual problems of
electromagnetism is very useful to both graduate students and researchers.
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1. Introduction

Traditionally, classical electromagnetism is taught begin-
ning with the interaction of electromagnetic fields and point
charges, electric dipoles, magnetic dipoles and filamentary
currents in vacuum. Some results obtained with this approach
are extrapolated to the interaction of electromagnetic fields
and material media. Thus, the forces electromagnetic fields
exert on charges and dipoles are considered well established
by the Lorentz force density. There is, however, a controversy
about what is the correct expression for the force a magnetic
field exerts on a magnetic dipole.

Recently, Franklin [1] revisited the controversy about
what is the force on a magnetic dipole. There are two pro-
posals,

F = ∇ (m ·B) , (1)

based on the potential energy of an isolated magnetic dipole
in an external magnetic field and [2]

F = ∇ (m ·B)− d

dt
(m×E) . (2)

This last expression is closely related to the force associ-
ated to hidden momentum, one of whose expressions is

Fhidden mom= −
(

d

dt
m

)
×E. (3)

Franklin [1] concludes that the second term in Eq. (2)
is incorrect and that “There is no hidden momentum in any

of magnetic dipole configuration” as Vaidman proposes [2].
Therefore, only the force Eq. (1) is correct. This problem
has been treated with relativity theory with the aim of differ-
entiating orbital angular momentum from spin angular mo-
mentum [3].

The conclusions seem imposing, since the force in
Eq. (1) is based on microelectromagnetism and other mag-
netic forces must be derived from it, but it is not clear if there
are situations in which the second term in Eq. (2) is rele-
vant. Since an elementary dipole is independent of time, this
term is zero in this case but there can be materials in which
it is relevant. The term associated to hidden momentum was
discussed long ago by several authors [4–7], and recently
there has been renewed interest in this concept of electro-
magnetic momentum [8–10]. Hidden momentum is useful
in dealing with the interaction of matter with static and quasi-
static fields. However, we can take the macroscopic Maxwell
equations with the constitutive relations as phenomenological
postulates from which several force densities can be deduced
through balance equations and obtain as a particular case the
force on an isolated dipole with the configuration,M → m,
wherem is a point magnetic dipole.

At first sight it may seem that Franklin’s arguments dis-
qualify not only the dipole configurations proposed by Vaid-
man [2], where hidden momentum may be relevant, but
also the relevance of hidden momentum in the interaction
with any dipole configuration. However, Jiménezet al.,have



2 I. CAMPOS, J. A. E. ROA-NERI, AND J. L. JIḾENEZ

shown [11] the usefulness of hidden momentum to analyze
Feynman’s disk and establish that the electromagnetic field
has angular momentum, even in quasi-static conditions [12].
Then, the question remains, what is the force on a magnetic
dipole? On the other hand, Boyer [13] showed that the model
of dipole with two magnetic monopoles imply a force

F = (m · ∇) B, (4)

while a magnetic dipole modelled with a current loop implies
a force

F = ∇ (m · B). (5)

This means that the force depends on the model of dipole.
We consider that the force must be independent of the model
of dipole. We will see that there are forces whose usefulness
depends on the particular situation studied.

2. Alternative analysis

Several force densities, electric and magnetic, have been pro-
posed. The most usual is Lorentz’s force density, sometimes
considered as an axiom that must be added to Maxwell’s
equations, and from which other force densities are deduced.
Thus, we have

f1 = (P · ∇) E, (6)

fJ polarization=
(

∂P

∂t

)
× B, (7)

fHelmholtz Electric= −1
2
E2∇ε, (8)

and

fHelmholtz Magnetic= −1
2
H2∇µ. (9)

However, these force densities can be obtained from the
macroscopic Maxwell equations by transforming them and
the constitutive relations into momentum balance equations
whose structure is

∇ · ←→
T = f + δf , (10)

where
←→
T is a stress tensor,f a Lorentz type force density,

andδf a force density that depends only on the electromag-
netic fields, basic and auxiliary, as can be seen below. Thus,
from the most usual expression of Maxwell’s equations

∇ · D = ρ,

∇ · B = 0,

∇ × E +
∂B

∂t
= 0,

∇ × H − ∂D

∂t
= J ,

(11)

a balance equation can be obtained multiplying the first
and second equations byE and B and multiplying vec-
torially by −D and −B on the left of the third and
fourth equations, and using vector and dyad identities (in
particular: u × (∇ × v) + u · (∇v) = ∇ {

1
2
u · v

} −
1
2 [(∇u) · v − (∇v) · u], we obtain the balance equa-
tion [14]

∇ ·
[
DE + BH − 1

2
←→
I (D · E + B · H)

]

− ∂

∂t
(D × B) = ρE + J × B

+
1
2

[
(∇E) ·D − (∇D) ·E

+(∇H) ·B − (∇B) ·H
]
,

(12)

where
←→
I is the unit dyad.

A Lorentz type of force density appears,

fL = ρE + J × B, (13)

but with total fields. The usual Lorentz force density is a limit
of Eq. [13], valid only for test charges and the fields are only
external fields.

Besides, we have also the force density

δf =
1
2

[
(∇E) · D − (∇D) · E

+(∇H) · B − (∇B) · H
]
,

(14)

which is usually omitted, since for vacuum, or homogeneous
media, it is zero. It is evident that the force densities asso-
ciated with forces Eqs. [6–9] do not appear. However, there
are other expressions of Maxwell’s equations and the consti-
tutive relations, for example, that proposed by Panofsky and
Phillips [15],

∇ · E =
1
ε0

(ρ−∇ · P ) ,

∇ · B = 0,

∇ × E +
∂B

∂t
= 0,

∇ × B − ε0µ0
∂E

∂t
= µ0

(
J +

∂P

∂t
+ ∇ × M

)
.

(15)

Proceeding as before, we multiply the first and second
equation byE andB, and multiply vectorially by−E and
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−B the third and fourth equations, and with the help of vec-
tor and dyad identities, we obtain the balance equation [16]

∇ ·
[
ε0EE +

1

µ0

BB

− 1
2

←→
I

(
εE · E +



µ

B · B

)]

− ε0
∂

∂t
(E × B) = ρE + J × B + (∇P ) · E

+
(

∂

∂t
P

)
× B + (∇ × M) × B.

(16)

Now the force density Eq. (7) appears, which is in this
case an implication of Maxwell’s equations. This force den-
sity was used by Bohren [17] for the analysis of radiation
pressure.

On the other hand, by means of the constitutive relations

D = ε0E + P ,

B = µ0 (H + M) ,
(17)

we can transform Eq. (11) and (12) into Eq. (15) and (16).
Furthermore, if we express the constitutive relations in the
form

D = ε0εrE = εE,

B = µ0µrH = µH,
(18)

we can see that Eq. (14) leads directly to Eqs. (8) and (9).
Then, it is evident that the Maxwell equations with differ-
ent expressions of the constitutive relations lead to different
balance equations, and therefore to different force densities.
Their utility depends on the situation under analysis.

We now show that hidden momentum is part of a balance
equation deduced from Maxwell’s equations. First, we write
these equations in the equivalent form

∇ · E =
1
ε0

(ρ−∇ · P ) ,

∇ · H = −∇ · M ,

∇ × E + µ0
∂H

∂t
= −µ0

∂M

∂t
,

∇ × H − ε0
∂E

∂t
= J +

∂P

∂t
.

(19)

These expressions may seem strange, but they are a direct
consequence of the usual form of Maxwell’s equations and
the constitutive relations. From these equations, following a
similar procedure as before [18,19], we can obtain, again by
means of vector and dyad identities, the balance equation

∇ ·
(

(ε0EE + µ0HH)

−1
2

(εE · E + µH · H)
←→
I

)

− ε0µ0
∂

∂t
(E × H) = ρE + µ0J × H

+ µ0

(
∂

∂t
P

)
×H − ε0µ0

(
∂

∂t
M

)
×E

+ (P · ∇) E + µ0 (M · ∇) H.

(20)

We can see that the force density Eq. (3) appears, as well
as a term similar to Eq. (4). This is a consequence of elimi-
nating in Maxwell’s equations the magnetic fieldB in favor
of the auxiliary fieldH. We follow here Purcell’s convention
takingB as the magnetic field [20]. Then, the right member
in Eq. (20) is a possible force density implied by Maxwell’s
equations. If there are no free charge and current densities,
the balance equation reduces to

f1 = µ0

(
∂

∂t
P

)
×H − ε0µ0

(
∂

∂t
M

)
×E

+ (P · ∇) E + µ0 (M · ∇) H.

(21)

If there are no polarizations(P = 0), then the balance
equation reduces to

f1 = −ε0µ0

(
∂

∂t
M

)
×E + µ0 (M · ∇) H. (22)

Now, with the identity

∇ (M · H) = (M · ∇)H + (H · ∇)M

+ M × (∇ × H) + H × (∇ × M) ,
(23)

and remembering that there are no free currents, we have

M × (∇ × H) = M ×
(

∂

∂t
D

)
. (24)

Also, we do not have polarizations, and we can write

M ×
(

∂

∂t
D

)
= ε0M ×

(
∂

∂t
E

)
. (25)

With these results, Eq. (23) becomes

∇ (M · H) = (M · ∇)H + (H · ∇)M

+ ε0M ×
(

∂

∂t
E

)
+ H × (∇ × M) ,

(26)

from which we can obtain

µ0 (M · ∇) H = µ0∇ (M · H)− µ0

[
(H · ∇)M

+ ε0M ×
(

∂

∂t
E

)
+ H × (∇ × M)

]
. (27)
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In this way, Eq. (22) is transformed into

f1 = −ε0µ0

(
∂

∂t
M

)
×E + µ0∇ (M · H)

− µ0

(
(H · ∇) M + ε0M ×

(
∂

∂t
E

)

+ H × (∇ × M)
)

,

then,

f1 = −ε0µ0
∂

∂t
(M ×E) + µ0∇ (M · H)

− µ0 ((H · ∇) M + H × (∇ × M)) . (28)

Now, considering the case of an elementary dipole.

M → m, (29)

and assuming thatm does not depend onr, and thatB =
µ0H, the force densityf1 results

f1 = −ε0µ0
∂

∂t
(m×E) + ∇ (m ·B) , (30)

which is the result considered by Franklin as erroneous.
Here, we have shown that this expression is an implication
of Maxwell’s equations and the constitutive relations.

3. Conclusions

Though Franklin [1] argues that in an expression of the
force on a magnetic dipole proposed by Vaidman [2], a term
related to hidden momentum is erroneous, indeed what he
shows is that this term is not adequate to deal with the con-
figurations of magnetic dipoles analyzed by this author.

However, we have shown that this term is a consequence
of Maxwell’s equations and the constitutive relations through
a momentum balance equation deduced from them. Indeed,
different balance equations can be deduced from Maxwell’s
equations by writing them in different forms according to
different ways of expressing them in terms of the constitu-
tive relations. Therefore, different force densities derived in
this way can be useful in different cases of dipole configu-
rations. Results for point dipoles can be obtained as limits
takingP→ p andM → m, wherep is a point electric dipole
and m is a point magnetic dipole.
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