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On the dynamics of a rolling spherical charged shell
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In this work, we investigate the behaviour of a charged spherical shell rolling on an inclined plane, in presence of a point charge located
at the lowest part of the inclined plane. The shell generates two magnetic fields, one due to its rotation and another due to its translation,
These magnetic fields affect the shell through self-inductance. On the other hand, the charge in the lowest part of the inclined plane interacts
with the shell, and we find that under certain conditions the spherical shell rolls back and up the inclined plane due to the electric force. We
perform a numerical analysis to study this behavior.
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1. Introduction

One of the main advantages of the Lagrangian formalism
over the Newtonian formalism, is the Noether’s theorem [1]
which, roughly speaking, states that every symmetry in the
Lagrangian of a physical system with conservative forces has
a corresponding conservation law. In order to apply this the-
orem, it is necessary that the Lagrangian is written with the
same symmetries.

In this paper, we consider a charged spherical shell rolling
on an inclined plane interacting with a point charge in the
lowest part of the inclined plane. From the point of view
of mechanics, the system has friction, inertia, angular veloc-
ity, and angular acceleration, the Newtonian standard vari-
ables (Galileo transformations). However, from the point of
view of electrodynamics, the system has an electric field and
a magnetic field (Lorentz transformations). If we write down
the Lagrangian of this system, the Newtonian part would have
quantities invariant under Galileo transformations, and the
Maxwell part would have quantities invariant under Lorentz
transformations. Therefore, the first question would be, is
this Lagrangian correct? [2]. To avoid the above-mentioned
problem, we will calculate the mechanical and electromag-
netic variables at the same point and small velocities are con-
sidered. Remember that the position vector~R = ~r − ~r ′ is
where we want to measure, minus where the charge distri-
bution is, so~r will be set in the chargeq, the black point in
Fig. 1, because we want to determine the force feel the spher-
ical shell, due to the chargeq.

The paper is organized as follows. In Sec. 2, we present
the problem and the physical implications of the system. We
construct the Lagrangian and obtain the equations of motion.
In Sec. 3, we solve the problem numerically and analyze the
solutions for several situations. The acceleration changes of
a spherical shell are analyzed in Sec. 4. Due to its electric
charge and acceleration changes, the shell produces electro-
magnetic radiation. Finally, we present the conclusions and
remarks in Sec. 5.

2. The problem

In this paper, we want to investigate the dynamics of a spheri-
cal shell of massm and radiusa, made of a conducting mate-
rial, carrying a uniform surface chargeσ, rolling down on an
inclined plane of lengthL, with a fixed angleα and friction,
interacting with a static point charge located at the lowest part
of the inclined plane, the black dot in Fig. 1.

It is known that the best way to obtain the dynamics
of a system is through Lagrange’s equations. However, to
preserve the symmetry of the system, it is necessary to fix
both reference systems, electromagnetic and mechanical, to
the same point. In our case, we have decided that our ref-
erence system will be at the bottom part of the inclined
planei.e., ~r = 0, Fig. 1, and the spherical shell in the top
~r ′ = −x cosα x̂ + x sin α ŷ. Where thex-axis is the hori-
zontal,y-axis is the vertical and thez-axis, point outside the
plane.

FIGURE 1. System diagram.
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2.1. Building the Lagrangian

To solve the problem, we start by writing the generic
Lagrangian, considering all the energies of the system,
Eq. (1.63) of [3],L = (1/2)mv2−mgy−q Φ+q v·A. Since
we are interested in determining the dynamics of the spher-
ical shell, for our case,q will be the charge of the spherical
shell,Φ will be the potential of the point charge (the black dot
in, Fig. 1),~v is the velocity with which the spherical shell de-
scends, andA is the magnetic vector potential generated by
the charge (the black dot in, Fig. 1). Therefore,q v ·A = 0,
and

L = Ttrans+ Trotat− Vgravi− Velect. (1)

The mechanical parts are

Ttrans+ Trotat =
1
2
mẋ2 +

1
2
Iφ̇2,

Vgravi = mgx sinα ,

wherex, is the displacement along the plane (starting at the
bottom of the plan),I = (2/3)ma2 the moment of inertia,
andφ the angle of rotation of the sphere [3,4].

For the electric energy, Eq. (1.62) of [3], and Sec. 2.3.2
of [5], we have

Velect = q Φ(r) = σ(4πa2)
kq

R
=

qσa2

ε0x
,

whereR = |~r − ~r ′| = x. Up to this point, we have obtained
all the corresponding energies of the Lagrangian

2.2. Lagrangian and equations of motion

Finally, replacing all the energies in the Lagrangian, Eq. (1)

L =
1
2
mẋ2 +

1
3
ma2φ̇2 −mgx sinα− qσa2

ε0x
.

The Lagrangian has two degrees of freedom and one con-
straint. The equations of motion are determined by the Euler-
Lagrange equations. However, in this case, there is a holo-
nomic constraint that relates the angleφ to the displacement
x. This requires the use of the Lagrange multiplier

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λ

∂F

∂qi
,

whereλ is the Lagrange multiplier, andF is the constraint.
To define the constraint, we analyze the angleφ, and find

that it is related to the displacementx, so that

x = aφ → F = x− aφ .

From the Euler-Lagrange equations and the above constraint,
the equations of motion forqi = x, φ. are

mẍ + mg sin α− qσa2

ε0x2
= λ,

2
3
maφ̈ = −λ.

(2)

The differential equations are second order, and one is non-
linear.

FIGURE 2. Displacement of the spherical charged shell in an electric field with: massm = 1 kg, radiusa = 0.25 m, g = 9.81 m/s2, angle
of the planeα = 5o, distance of inclined planeL = 10 m, chargeq = 1 µC, vacuum permittivityε0 = 8.854 × 10−12 C2N−1m−2, with
different charge densities: a)σ = 0, b) σ = 5600 µC/m2, and c)σ = 12 mC/m2.
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FIGURE 3. Phase space diagram of the system shown in the Fig. 2b). a)(x, px), b) (φ, pφ). From the diagrams, it can be observed that the
systems reaches a stability, which is not at rest.

3. Solving the equations of motion

To solve the equations Eq. (2), it is necessary to eliminate the
λ factor, by algebraic manipulation of the equations. It should
also be noted that Eq. (2) are coupled non-linear differential
equations which makes analytical solutions difficult. Instead,
a numerical approach is required in this case. According
to [6], in order to solve second-order differential equations
using numerical methods, it is necessary to reduce their or-
der by introducing new variables, then obtaining a system of
first-order differential equations.

In this case, we introduce two new variablesv and ω,
which are the velocities, of the displacement and the rotation
of the sphere, respectively

ẋ = v, φ̇ = ω, (3)

thus Eq. (2) becomes a first-order non-linear differential
equation

mv̇ + mg sin α− qσa2

ε0x2
= λ,

2
3
maω̇ = −λ.

(4)

To solve the system generated by Eq. (3) and Eq. (4), was
implemented the Runge-Kutta method [7], using the SciPy
library of Python. We obtained the results for distance vs.
time, shown in the Fig. 2, where the behavior depends on the
charge density.

In Fig. 2a) the system is purely mechanical,i.e., we have
turned off the electric energy; the velocity increases with dis-
tance as is expected for the motion of a particle moving on
an inclined plane. In Fig. 2b) and Fig. 2c) the charge density
has been increased, and is enough to affect the dynamics of
the system, since the system now oscillates,i.e., the sphere
rises and falls on the inclined plane with an oscillatory be-
havior, this is caused by the fact that when the spherical shell
moves downward, it is closer to the other chargeq, and due

to the electric force~F = q ~E, Fig. 4, the spherical shell is re-
pelled, causing the sphere to move upward and, consequently,
the sphere will present a loss of velocity, due to the friction,
gravity, and to the decay of the Coulomb force, causing it to
rotate downward again, repeating this behavior periodically.
The system continues oscillating over time,i.e., the system
never reaches the rest. This can be verified in the phase space
diagrams, Fig. 3.

On the other hand, it is known that a moving charge pro-
duces a magnetic vector potential~A, in the same direction of
movement of the charge. Therefore, when analyzing the dy-
namics of the spherical shell there are two magnetic vector
potential, one due to rotation of the sphere and the other due
to translation, analyzing these two magnetic field we have
that. When the sphere rotates around its own axis, it gener-
ates a magnetic field that leaves the sheet plane and points in
the ẑ direction. Also when the sphere is displaced, the mag-
netic field (caused by this displacement) leaves the plane of
the sheet and also points in theẑ direction. These two mag-
netic fields interact with the sphere through self-inductance,
resulting in the appearance of a magnetic force~F = q ~v × ~B
on the sphere, whereq, the charge of the sphere,~v, the veloc-
ity when moving, and~B, the superposition of the two mag-

FIGURE 4. a) Electric force of the chargeq, on the sphere in its
downward motion. b) The external forces exerted on a spherical
shell, lying on an inclined plane. It is important to note that the
friction will change direction depending on whether the sphere is
going up or down.
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netic fields mentioned above. The more charge the sphere
has, the greater the magnetic field will be, and therefore the
greater the magnetic force, and according to the right-hand
rule, the sphere should slow down in its downward path due
to self-inductance. We analyze such situation numerically,
but the magnetic force is too small that we can only see this
behavior when we consider very large charges.

4. Energy loss

Since the inclined plane has friction, the system is losing en-
ergy. From the electromagnetic point of view, we can quan-
tify the energy flux density loss through the Poynting vector,
since the spherical shell starts to move from rest, accelerates
and slows down, there is an exchange of kinetic energy to
electromagnetic energy, which is reflected as electromagnetic
radiation emitted by the shell. Using the generalization anal-
ogous of electric dipole radiation Eq. (11.59) of [5], we can
quantify the radiation. Bear in mind that there are two mag-
netic fields. The Poynting vector

~S =
µ0

16c3
(a2Ï)2

sin2 θ

r2
r̂ =

µ0(σπa2 sin θ)2

2c3r2
φ̈2 r̂,

where~I = l ~K = l(σ~v). As long as there is a change in
acceleration, we will have electromagnetic radiation.

5. Conclusion and remarks

With this didactic problem, we wanted to show how to deal
with a mechanical-electromagnetic problem, with a holo-
nomic constraint, and to show the behavior of the fields indi-
vidually and the hierarchy that each one of them has.

As we have shown, the sphere initially starts rolling down
the plane until it reaches a rest point, and immediately goes
back upward, starting an oscillating movement (Fig. 2).

This behavior is maintained without the shell coming to
rest, which can be shown in the graphic of the phase space.

This behavior is because of the electric force is much
stronger than the gravitational and magnetic force, and this
dominates at short distances. However, since the chargeq, is
small, the electric force does not completely dominate over
the gravitational force.

In the other hand, there are different numerical methods
to solve the system. According to [8], the Runge-Kutta is the
best method to solve second order differential equations.

Finally, we want to emphasize that there is self-
inductance, but it is too small to modify the aforementioned
physical behavior, due to the low speed and low charge of the
spherical shell.
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