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Linear and angular momentum stored in a distribution
of charges in a magnetic field. The other side of the story
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The linear or the angular momentum stored in an arbitrary electric charge distribution in the presence of a magnetic field is defined by
calculating the linear or the angular momentum transferred to the electric charge distribution by a time-dependent magnetic field, which is
initially zero and after some time reaches the desired final value. The component of the transferred linear momentum along some axis depends
only on the final magnetic field if and only if the magnetic field is invariant under translations along this axis. Similarly, the component of the
transferred angular momentum along some axis depends only on the final magnetic field if and only if the magnetic field is invariant under
rotations about this axis.
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1. Introduction

In a recent paper [1] the linear and the angular momentum
stored in a distribution of charges in a magnetic field was
calculated by considering the linear momentum and the an-
gular momentum transferred to a point charge displaced from
infinity to a final position in a given static magnetic field. It
was shown that the component of the linear momentum along
some axis transferred to a point charge is independent of the
path if and only if the magnetic field is invariant under trans-
lations along that axis, and that the component of the angular
momentum along some axis transferred to a point charge is
independent of the path if and only if the magnetic field is
invariant under rotations about that axis.

In this paper the same calculation is addressed in a dif-
ferent way. We consider an arbitrarystatic electric charge
distribution and a time-dependent magnetic field which is
initially zero and after some time acquires some final pre-
determined value. According to Faraday’s law, the variable
magnetic field will induce an electric field which will exert
some force and some torque on the stationary electric charge
(by contrast, the magnetic field does not produce forces or
torques on the electric charges, since they are static). In or-
der to maintain the charges in their positions, some linear or
angular momentum must be transferred to the charge distri-
bution. This linear or angular momentum transferred to the
charges is defined as the linear or angular momentum stored
in the system formed by the charges and the magnetic field.
This procedure is similar to that employed to define the en-
ergy stored in the magnetic field (see,e.g., Ref. [2]).

It is a remarkable fact that the two procedures yield the
same expressions for the linear and the angular momentum

of the magnetic field, taking into account that in Ref. [1] the
calculation is based on the Lorentz force on an electric charge
moving in a static magnetic field, while the calculation pre-
sented in this paper is based on the application of Faraday’s
law of induction to find the force on a static charge in a time-
dependent magnetic field.

In Sec. 2 we summarize the findings of Ref. [1] in or-
der to compare them with the results derived here. In Sec.
3 we calculate the linear or the angular momentum that has
to be transferred to a static electric charge distribution when
the magnetic field attains some predetermined value begin-
ning from zero. We show that the imposition of the adequate
symmetry of the final magnetic field is crucial in order for
the transferred momentum to depend on the final configura-
tion only. Throughout this paper it is assumed that the reader
is acquainted with the basic notions of electrodynamics (as
presented,e.g., in Refs. [2,3]) and vector calculus.

2. Summary of previous results

As shown in Ref. [1], if one considers a static magnetic field,
B (produced by electric currents or by permanent magnets),
in order to displace a point charge,q, along a pathC, one has
to transfer to the point charge a linear momentum given by
(in cgs units)

∆pt =
q

c

∫

C

B× dr, (1)

wherec is the speed of light in vacuum. Thez-component
of this linear momentum, for instance, is path-independent
if and only if the magnetic field is invariant under the trans-
lations along thez-axis (that is,∂B/∂z = 0). Hence, if
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this symmetry condition is satisfied, one can define thez-
component of the linear momentum of the system formed by
the magnetic field and the point charge at some final posi-
tion by Eq. (1), making use ofanypathC starting at infinity
and ending at the final position of the charge. With the aid of
Gauss’s law, thez-component of the stored linear momentum
is expressed in the form

pz =
1

4πc

∫
(E×B)zdv, (2)

whereE is the electric field produced by the point charge
when it reaches its final position.

In a similar way, the angular momentum transferred to
the point charge is given by [1]

∆Lt =
q

c

∫

C

r× (B× dr). (3)

Thez-component of this angular momentum, for instance, is
path-independent if and only if the magnetic field is invariant
under the rotations about thez-axis. Then, if this symme-
try condition is satisfied, one can define thez-component of
the angular momentum of the system formed by the mag-
netic field and the point charge at some final position by Eq.
(3), making use of any pathC starting at infinity and end-
ing at the final position of the charge. Again, with the aid of
Gauss’s law, thez-component of the stored angular momen-
tum is given by

Lz =
1

4πc

∫
[r× (E×B)]zdv, (4)

whereE is the electric field produced by the point charge
when it arrives at its final position.

3. Alternative approach

One can expect that the expressions (2) and (4) be obtain-
able by considering a different process: Instead of displacing
the electric charges from infinity to their final positions in a
given static magnetic field, we can imagine that the charges
are maintained fixed all the time (with respect to someiner-
tial frame) and now we build up the magnetic field starting
from zero. In this way, we will have a magnetic field chang-
ing with the time, which, according to Faraday’s law, must in-
duce some electric field (different from, and unrelated to, that
produced by the static charges). This induced electric field
gives rise to a force and a torque on the electric charges and,
in order to keep the charges motionless, we would have to
apply an equilibrating force and torque on the charges, which
amounts to a transfer of linear and angular momentum. This
linear or angular momentum can be defined as the linear or
angular momentum stored in the system.

These ideas seem pretty simple but there are two difficul-
ties: Faraday’s law allows us to calculate the rotational of the
induced electric field, not the induced field itself, which is
what we need to calculate forces and torques. Furthermore,

the reasoning given in the previous paragraph is valid regard-
less of the symmetry of the magnetic field, which is essential
in the findings of Ref. [1].

3.1. Stored linear momentum

We shall consider a fixed charge distribution characterized by
a charge densityρc and a time-dependent magnetic field,B,
which induces an electric fieldE (different from the electro-
static field,E′, produced by the charge distribution). Accord-
ing to the elementary formulas, thez-component of the force
produced on the charge distribution by the induced electric
field is given by

Fz =
∫

ρcEz dv. (5)

According to Gauss’s law,∇·E′ = 4πρc, and making use of
Gauss’s theorem we can write Eq. (5) in the form

Fz =
1
4π

∫
(∇ ·E′)Ez dv = − 1

4π

∫
E′ · ∇Ez dv.

Thus, making use of Newton’s second law, ifpz is the z-
component of the linear momentum that we have to transfer
to the charges in order to keep them motionless,

dpz

dt
=

1
4π

∫ (
E′

x

∂Ez

∂x
+ E′

y

∂Ez

∂y
+ E′

z

∂Ez

∂z

)
dv

=
1
4π

∫ [
E′

x

(
∂Ez

∂x
− ∂Ex

∂z

)
+ E′

y

(
∂Ez

∂y
− ∂Ey

∂z

)

+E′
x

∂Ex

∂z
+ E′

y

∂Ey

∂z
+ E′

z

∂Ez

∂z

]
dv,

and, employing Faraday’s law,∇×E = −(1/c) ∂B/∂t, we
have

dpz

dt
=

1
4πc

∫ (
E′

x

∂By

∂t
− E′

y

∂Bx

∂t

)
dv

+
1
4π

∫ (
E′

x

∂Ex

∂z
+ E′

y

∂Ey

∂z
+ E′

z

∂Ez

∂z

)
dv

or, equivalently,

d
dt

[
pz − 1

4πc

∫
(E′ ×B)zdv

]
=

1
4π

×
∫ (

E′
x

∂Ex

∂z
+ E′

y

∂Ey

∂z
+ E′

z

∂Ez

∂z

)
dv. (6)

Thus ifB is invariant under translations along thez-axis (that
is, all the Cartesian components ofB can be functions of
(x, y, t) only) and, therefore, the Cartesian components of
the induced electric field are also independent ofz, then the
right-hand side of Eq. (6) vanishes and, at any instant,

pz =
1

4πc

∫
(E′ ×B)zdv, (7)

which agrees with Eq. (2).
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If the components of the induced electric field depend on
z, then the value of the integral on the right-hand side of
Eq. (6) may be different from zero (keep in mind that the
static fieldE′ is arbitrary) and the transferred linear momen-
tum will depend not only on the final value of the magnetic
field, but also on the detailed manner in which the magnetic
field achieves its final value. Hence, in order to have a well-
defined value for the stored linear momentum at any moment
or field configuration, the magnetic field must be invariant
under the translations along thez-axis.

3.2. Stored angular momentum

Proceeding in a similar manner, we shall calculate thez-
component of the angular momentum that has to be trans-
ferred to a fixed charge distribution when a magnetic field is
turned on. For this calculation it is convenient to make use
of the circular cylindrical coordinates,(ρ, φ, z), and the or-
thonormal basis{ρ̂, φ̂, ẑ} associated with these coordinates.
According to the elementary definitions, thez-component of
the torque on the charge distribution produced by the induced
electric fieldE is

τz =
∫

ρc(r×E)z dv =
∫

ρcρEφ dv.

(Note the presence of the charge density,ρc, and the coordi-
nateρ in the last equation.)

Again, with the aid of Gauss’s law and Gauss’s theorem,
we have

τz =
1
4π

∫
(∇·E′) ρEφ dv = − 1

4π

∫
E′ ·∇(ρEφ) dv. (8)

If Lz is thez-component of the angular momentum that we
have to transfer to the charges in order to keep them motion-
less,

dLz

dt
=

1
4π

∫ (
E′

ρ

∂(ρEφ)
∂ρ

+E′
φ

1
ρ

∂(ρEφ)
∂φ

+E′
z

∂(ρEφ)
∂z

)
dv

=
1
4π

∫ [
E′

ρ

(
∂(ρEφ)

∂ρ
− ∂Eρ

∂φ

)

+ E′
z

(
∂(ρEφ)

∂z
− ∂Ez

∂φ

)

+ E′
ρ

∂Eρ

∂φ
+ E′

φ

∂Eφ

∂φ
+ E′

z

∂Ez

∂φ

]
dv

which, making use of Faraday’s law, amounts to

d
dt

{
Lz − 1

4πc

∫
[r× (E′ ×B)]zdv

}

=
1
4π

∫ (
E′

ρ

∂Eρ

∂φ
+ E′

φ

∂Eφ

∂φ
+ E′

z

∂Ez

∂φ

)
dv (9)

[cf. Eq. (6)]. This equation shows that if the time-dependent
magnetic field and the induced electric field are invariant un-
der rotations about thez-axis, then, at any instant, the angular
momentum stored in the system is

Lz =
1

4πc

∫
[r× (E′ ×B)]zdv, (10)

which coincides with Eq. (4).
Equation (9) shows that in order for the stored angular

momentum to have a value depending only on the final value
of the magnetic field, and not on the detailed form in which
the field changes with the time, it is necessary that the in-
duced electric field be invariant under rotations about thez-
axis.

4. Discussion

It should be remarked that the expressions found in the pre-
ceding section coincide with those obtained in Ref. [1], which
is highly satisfactory. If we have a configuration of electric
and magnetic fields with the appropriate symmetry, the trans-
ferred linear or angular momentum is the same whether we
consider a fixed magnetic field and calculate the magnetic
force on charges brought from infinity or we consider a fixed
charge distribution in a magnetic field that is initially zero
and evolves into its predetermined non-zero value.

In the approach followed in Ref. [1] the symmetry guar-
antees that the total transferred linear or angular momentum
is path-independent, while in the approach followed here, the
symmetry guarantees that the total transferred linear or an-
gular momentum does not depend on the precise manner in
which the magnetic field goes from zero to its final value.

The attribution of a linear or angular momentum to a
charge distribution in a magnetic field solves the so-called
Feynman’s paradox (see,e.g., Ref. [4]).

As pointed out in Ref. [1], the Maxwell equations lead to
the definition of a density of linear momentum for the elec-
tromagnetic field, which is given byE×B/4πc, without hav-
ing to assume that the electromagnetic field possesses some
symmetry. Despite the similarity with Eq. (2), in the standard
derivation of the density mentioned above one considers the
interaction of the electric and magnetic fields with the charges
and currents producing them, whereas in the calculations pre-
sented here we have considered the force on a fixed electric
charge distribution, neglecting the effect of the electric field
produced by this charge on the sources of the magnetic field.
In fact, in the calculations given in Sec. 3 it was not necessary
to specify if the magnetic field is produced by currents or by
permanent magnets.

It should be emphasized that the usual (gauge-dependent)
electromagnetic potentials were not necessary in the calcula-
tions presented above (nor in the calculations presented in
Ref. [1]).
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