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1. Introduction BecauseCadabra tries to encourage and support a
work-flow which is close to how computations are done with

Algebraic manipulation of mathematical expressions is a@€encil and paper, it sometimes differs quite strongly from
common but tedious part of most research in physics. Symother computer algebra systems with a wide scope. In the
bolic computer algebra software has been used from the earresent paper, and its followup companion [7], our goal is to
days to help with this, and many special-purpose system8how how gravity computations (which will at least in spirit
have been built to deal with expression manipulations spebe familiar to many readers) can be done withdabra .

cific to particular areas in physics. This is in particular trueFor a deeper look into using the system for advanced gravity
for research in gravity; for a recent review of the many usegomputations, see.g [9].

of symbolic computer algebra in this field, see Ref. [1]. The approach o€adabra is that (geometrical) objects

Cadabra is a relatively new, free and open-source stan-2r€ first declared by assignimgoperties  to objects, af-
dalone computer algebra systemwhich was designed from (€7 Which they can then be manipulated waigorithms
the ground up to manipulate mathematical expressions whicffnich act according to the previously assigned properties. A
occur in classical and quantum field theory [2-5]. In con-Prief example is in ordef,
trast to many special-purpose systems written for sometimes
very specific tasks, it aims to provide a wide variety of basic
field-theory building blocks, not only to tackle gravity com-
putations but also to provide support for things like fermions
and anti-commuting variables, algebra-valued objects, com-
ponent and abstract computations, tensor symmetries and
various others. Its main philosophy is to provide a simple-to-
use ‘scratchpad’ for computations in field theory in its widest
sense, to help with computations which are too tedious to b(a+b+ab), ba + bab, Q)
do by hand, while keeping them close in form to what those
computations would look like on paper. Itis programmablein In the above example,a and b are the objects
Python , yet also accepts mathematical expressions in starend we assign the propertieblonCommuting and
dard BTpX notation. It has been used in a wide variety of Distributable to them, and additionally assign the prop-
computations in high-energy physics and gravity, but also irerty SelfAntiCommuting to the objecth. The first as-
different fields such as nuclear physics [6]. signment forbids the rearrangementbab asab?, while the

{a,b} : :NonCommut ing.
{a,b}::Distributable.
{b}::SelfAntiCommuting.
expr :=b (a+b+ab);
distribute();
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2 O. CASTILLO-FELISOLA, D. T. PRICE, AND M. SCOMPARIN

last assignment ensures tidt = 0. Notice that output is The action of the commutator of covariant derivatives on

shown only when a command ends with a semicojdn ( a vector yields an algebraic operator, dubbeddhevature
This paper is organised as follows. Section 2 briefly intro-tensor

duces the basic concepts of General Relativity (see Sec. 2.1)

and their implementation i€adabra (see Sec. 2.2). The Vi, Vo,IVT =R, V7,

code in Sec. 2.2 is intended to serve aseaderfile, which

can be called from otheCadabra notebooks in order to where

avoid the declaration of “standard” properties. In Sec. 3 we

exemplify the manipulation of tensor expressions by writ- R G =007 6 — 0,17 15

ing down explicit expressions for the Lanczos—Lovelock La-

grangians in Sec. 3.1, and their field equations in Sec. 3.2.

In Sec. 4 we explore the capabilities@adabra to manip-

ulate differential forms. Specifically, we obtain the Bianchi

identities from the structural equatidfis Next, in Sec. 5

the variational principle is exemplified by extremising the

Einstein—Hilbert actioni-or reasons of space, the variation of

the Lanczos—Lovelock action is not addressed in this paper. R v + R o + R yop = 0,

We then deal with the resolution of Einstein field equations VAR gy + VR gyp + VR g2 = 0.

in Sec. 6, solving in particular the Schwarzschild spacetime.

Some conclusions are drawn in the Sec. 7. In Appendix A Werhe contraction of the Riemann tensor are interesting geo-

introduce a tool that could help to improve the performancenetrical quantities,

of calculations or long routines.

+ FT}L/\F)\VO' - ]-—\Tl/)\]-—\ky,o" (3)

The curvature tensor, also known as the Riemann tensor, is
skew-symmetric in the last two indices, and additionally sat-
isfies the algebraic and differential Bianchi identities,

Ry, = R 67y and R = guyR,uw (4)
2. Formalism o o
called the Ricci tensor and Ricci scalar (curvature) respec-
2.1. Introduction to the formalism of General Relativity ~tively.

o ] ] ] ] From a physics perspective, the relevant geometrical ob-
Let us start by giving a brief reminder of the ingredients iject is theEinstein tensar

General Relativity, both to set our conventions and to prepare

for the discussion of its properties formulateddadabra 's 1

language. General Relativity is currently the best model Guv = Ry — 591“’R' ®)

of gravitational interactions, and was proposed in 1915 by

A. Einstein [9,10], as an attempt to conciliate the conceptsThe field equations of General Relativity are obtained by ex-
introduced by the special theory of relativity with those of tremising the Einstein—Hilbert action,

gravitation. In his model, Einstein proposed that the gravi- 1

tational interaction is an effect of the curvature of the space- S=_— /d4x V=g (R —2A), (6)
time. Meanwhile, the matter distribution determines how the 2K

spacetime curves. This is sometimes called the geometrisdihare - is the coupling constant of gravity (inversely pro-

tion of gravity. portional to the gravitational Newton constait;), A is the

Since the the_ory hgs to t_)ellnvanant under general Coord'(:osmological constant, and the sympaitands for the deter-
nate transformations, its building blocks &e@sorg(or more

. " minant of the metric tensb.
generallytensor densitigs In General Relativity the space- The interaction between matter and gravity is (formally)
time is assumed to be a pseudo-Riemannian manifold, whose

. : . achieved through the minimal coupling mechanism,start-
geometry is completely characterised by the metric tensoni g pling

guv- IN order for the derivative of a tensor to be a tensor, th
concept of connectiori“(\u,,) has to be introduced, allowing
to define ecovariant derivativgV,, = 0, +1'*,.). The con-
dition of metricity,i.e. Vg = 0, relates the connection (the
Levi-Civita connection) to the metric and partial derivatives
of it,

hg from the action on a flat spacetime and replacing the par-
Sial derivative by covariant derivative, the Minkowski metric
by the curved metric, and the flat volume measiire by the
invariant volume measuré'z,/—g. Hence, to the action in
Eq. (6) one adds the matter action for a generic fi¢ld

1 Swa= [ At/ =GLnalv.9, ). @)
F#UT - 591“7(87-91/0 + &/gm - 80’91/7’)- (2)
This then leads to Einstein’s equations, which set the Ein-
The Levi-Civita connection is symmetric in its lower indices, stein tensoG,,,, proportional to the energy-momentum ten-
I+, =T*.,, this property is referred d@ersion-free condi-  sor,T},,,, which encodes the properties of the matter distribu-
tion. tion.
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CADABRA AND PYTHON ALGORITHMS IN GENERAL RELATIVITY AND COSMOLOGY I: GENERALITIES 3

PROJECT under the exported functions in ghost cells which are ignored
Lo , when imported, similarly to howif _ name = ==
e " _main __ "  statements are usedfython .
header.cnb After this, theheader.cnifile defines one main function
init_properties , Which accepts aoordinates  pa-

Elm g . el rameter containing the range of coordinates used through the

notebooks and enetrics parameter with the names of the
metric tensors required, and uses this to inject appropriate
property declarations into tHéadabra kernel. It begins by
declaring the coordinates and indices used in the notebooks:

— sec3_lanczos_lovelock.cnb
+— secd_bianchi_identities.cnb

+— secb_variational_principle.cnb
5 def init_properties(*, coordinates, metrics=[$g_{\mu
\nu}$], signature=-1):

mmn

— sec6_solutionl schw.cnb
6

FIGURE 1. Organisation of notebooks discussed in the present pag ’

mmn

2.2. Introduction to the formalism of Cadabra: The 10 @ (coordinates) : :Coordinate.
header.cnb |ibrary 1 index_list := {\muy, \nu, \rho, \sigma, \alpha, \beta, \
gamma, \tau, \chi, \psi, \lambda, \lambda#} .
The code presented in this article is organised as a proje(" € (index_List) ¢ sTndiges positien- ndependent,

values=@ (coordinates)) .

containing a notebook for each chapter, as well as a separa Integer (index_1ist, Ex(rf"l..{len(coordinates)}")

library with two Cadabra packages which can be re-used in

other computatioris The structure of the project is depicted )

in Fig. 1. The use of thepull-in syntax @() allows
The header.cninotebook is included at the start of some US 10 use Cadabra  expressions inside other ex-

of the notebooks and defines a set of objects and related propressions,  similarly to how curly brackets are used

erties which will be used throughout the discussion of tensol? _Python  strings  to include other objects e.g

perturbations in General Relativity. Providing this structure’l-_rhiS is some {}.format('text)) . As the
also allows us to define a useful workflow for the follow-up -Property  syntax expects @adabra expression on the

to this paper [7]. The purpose of this is to avoid repetitive'eft'hand side, not a variable name, we use it here to declare
declarations and ensure consistency between the notebool0Perties on these expressions which are not hard-coded.

The file begins by importing the global dependencies: As well as assigning théndices  property to our index
list, we also assign thimteger  property which makes the

y dmpork syney _ _ number of coordinates countable, allowing functions like
2 import cdb.core.manip as manip eliminate_kronecker which makes the substitution
B FHEEEE Gelb.GEGE,GRPOnCIE 48 Song 8% — D to work. One final thing to note is th#, which
! import cdb.sympy.solvers as solv declares an infinite set of labelled indiceg(\lambdal |,
The last three imports are from th@adabra stan- \lambda2 ) which is useful to ensure that spare indices are
dard library [11], and provide common operations. Thealways available (useful when running code in loops and
cdb.core.comp library is useful for component calcu- When doing higher perturbative orders of a computation, for

lations andcdb.sympy.solvers is a simpleCadabra ~ Which it is not always easy to estimate how many dummy

wrapper for the equation solvers provided in SgmPyli-  indices will be required).

brary [12]. The function then associates the relevant properties to the
Although these imports appear to be regulython metrics defined in thenetrics  parameter:

packages, they are in fa€adabra notebooks and can be

found at<cadabra-root-dir>/lib/python3.x/site- & IR ————

packages/cdb . WhenCadabra finds animport state- ie for niekiio An metrioss

ment, it will not only do a standard search sgs.path 17 # Both lower indices: Metric

for Python packages, but it will also search for notebook 1 for index in metric.top().indices():

files, which are automatically converted irRgthon scripts i index.parent_rel = parent_rel t.sub

@ (metric) : :Metric(signature=@ (siqg)) .

and imported using the native functionality. Not only does
this make writing packages f@@adabra very natural, but . .

2 # Both upper indices: InverseMetr

it also makes these packages very easy to read, as the doc,; fors Lodex in r&étric.&o& ) .indices() :
umentation is written next to the code WIEX cells using 24 index.parent_rel = parent_rel_t.super
the \algorithm command, and test code can be written 2 @(metric) : :InverseMetric(signature=@(sig)) .
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26
27 # Mixed i1naices: RKroneckerDelta

28 for index in metric.top().indices() :

29 index.parent_rel = parent_rel_t.sub
30 @ (metric) : :KroneckerDelta.

31 index.parent_rel = parent_rel t.super

Here thefor loops act over the two indices of the met-
ric, lowering them for theMetric  declaration and raising

them for thelnverseMetric declaration. Note that the
(1,1) forms of the metric tensoe(g ¢*,) must be declared
asKroneckerDelta . After this, some standard symbols
are defined

33 # )

34 i::ImaginaryT.

35 \delta{#}: :KroneckerDelta.

36 \partial{#}::PartialDerivative.

37 \nabla{#}: :Derivative.

38 d{#}: :Derivative.

objects so that they are only parsed when called (after

init_properties has been invoked) and not during im-
port where they would raise a parsing error
58 def ch():
59 return $ch™{\mu}_{\nu\tau} = \frac{1}{2} g” {\mu\
sigma} (\partial {\tau}{g {\nu\sigma}} + \
partial {\nu}{g_{\tau\sigma}} - \partial {\
sigma} {g_{\nu\tau}})$
o  def rm():
61 return $rm” {\tau}_{\sigma\mu\nu} = \partial {\mu}{
ch™ {\tau}_{\nu\sigma}} - \partial {\nu}{ch"{\

tau}_{\mu\sigma}} + ch”{\tau}_{\mu\lambda} ch
“{\lambda}_{\nu\sigma} — ch”{\tau}_{\nu\
lambda} ch”{\lambda}_{\mu\sigma}$

62 def rc():

63 return Src_{\sigma\nu} = rm"{\tau}_{\sigma\tau\nu}
$

64 def rs():

65 return $sc = g” {\mu\nu} rc_{\mu\nu}$

66 def ei():

67 return $ei {\mu\nu} = rc_{\mu\nu} - \frac{1l}{2} g_

{\mu\nu} sc$

These correspond to the relations/definitions

Finally, we introduce some of the standard General Rel- 1
ativity objects. For each one, multiple properties must be ', = 29" (0p9ve + Ovgpoe — OcGup)s (8a)

defined—we begin by assigning @adabra identifier to

each one and assigning.aTeXForm to it, which controls
how it will be rendered iPAIEX. The symmetries and depen-

2
R ourv — a/_LFT vo — ayl-\‘r no

: , 7 2T o —T7 2 8b
dencies of each are then defined;Gadabra makes very Tl e VAT pes (8b)
few as_surr_lptions about the_o_bjects one uses any dependence Ry, = R 570, (8c)
on derivatives must be explicitly stated. 5

40 # T.aTeX Tvooaraohy R = g/"' R,LLV’ (8d)
4 # LaleX 1ypograpny

41 ch{#}: :LaTeXForm (" \Gamma") . _ 1

42 {rm{#}, rc{#},sc}: :LaTeXForm("R") . Gl“’ - R#V QQ#VR' (86)
43 ei{#}: :LaTeXForm("G") .

44 Lmb{#}: :LaTeXForm("\Larmbda") .

45

46 # S

47 ch™{\rho };{ \mu\nu} : :TableauSymmetry (shape={2},

indices={1,2}).
48 rm” {\rho}_{\sigma\mu\nu}: :TableauSymmetry (shape={1
,1}, indices={2,3}).
49 rc_{\mu\nu}: :Symmetric.
50 ei_{\mu\nu}: :Symmetric.
This completes thénit_properties function, and

the remainder of théeader.cnb

3. Manipulation of tensorial expressions
3.1. Explicit form of the Lanczos—Lovelock Lagrangian

The Lanczos-Lovelock Lagrangians [13,14] are build in ar-
bitrary dimensions to satisfy the same requirements as the
Einstein—Hilbert Lagrangian in General Relativity: (i) In-
variance under general coordinate transformations; (ii) local
Lorentz symmetry, and; (iii) Provide field equations that are

rer file are some algebraic gecond order partial differential equations.
definitions of the General Relativity objects that are used

In four dimensions, the Lanczos—-Lovelock Lagrangian is

throughout the notebooks, allowing them to be substituted fohat of Einstein-Hilbert (with cosmological constant) with

each other. One can check the sanity of the definition with 3he addition of topological terms, the GauR—

few testing lines,

init_properties(coordinates=5t, x,y,z$, metrics=[$g_
{\mu\nu}$, S$\eta_{\mu\nu}s$])

assert elmugatAe > metric($g_{ \mu\rho}x“{\rho\ﬁum) ==

$x_{\mu} "~ {\nu}$

assert eliminate kronecker ($g_{\mu} " {\rho}x_{\rho\nu
}$) == $x_{\mu\nu}$

assert eliminate kronecker($\eta” {\mu}_{\mu}$) ==
$43

assert eliminate kronecker (Sg_{\mu}"{\mu}$) = $4$

As some of them depend on definitions of symbols

Bonnet La-
grangian [14]. The generic Lanczos—-Lovelock Lagrangian
density inD dimensions is given by a sum [15,16]

L= Z a, LPP), 9)
p=0

with n = [D/2], a,, denoted the coupling constant of thx¢h
term, and

1 gy
P = /g o sor e

as derivatives in order for index consistency to be main-

tained, they are defined as functions returning expression X R0,

.. Ra2p—1a2p b2p71b2p' (10)
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The purpose of this example is to find the form of the contractions, and use the substitution rules in order to present
elements of the seriesg. Eq. (10) after eliminating the gen- the result in a simpler form. However, we need a few extra

eralised delta. manipulations in the middle as shown below.
) o 2 LLl :=2/2 R*{al a2 bl b2} \delta“{al bl a2 b2};
Notation and definitions 13 expand delta(LLl)

14 distribute(LL1)
In this example, the position of the indices (unlike in Gen- 5 eliminate kronecker (LL1)
eral Relativity) carry no meaning, and we shall write all of 1 canonicalise(LLl)
them as upper indices. Hence, for this example, the default 7~ rename dummics (LL1)

. L . . 18 substitute(LLl, toR)
behaviour of indices will be enough. In this example, we do b ——
not use theneader.cnb  file from Sec. 2.2, consequently, ., .o roduer i)
we shall explain some of the declarations as they appear. 2 sort_sum(LL1)

We start by declaring the indices, Kronecker delta, Levi- 2  canonicalise(LL1)

Civita epsilon, and the partial derivative. v e o
24 collect_factors(LLl);

| {a#,b#, s#,t#,m, n}: :Indices.
2 {a#,b#, s#,t#,m n}: :Integer(l..D).
3 \delta{#}: :KroneckerDelta.

4 \epsilon{#}: :EpsilonTensor (delta=—\delta) . Ratazbibz gaibiaz;bz (12)
The hash symbol after tha, b, s andt indices de- R. (13)
notes that either of them followed by a number is a valid
index.  The delta argument of the Levi-Civita symbol In the definition of the expressidri1, the factor in the

(EpsilonTensor ) serves to declare the signature of the numerator is to compensate(2p)! factor in the definition
metric. In the example above, the valddelta  implies  of the generalised delta iBadabra . The result of Eq/13)

that the—undeclared—metric is Lorentzian. is the scalar curvature, which corresponds to the Einstein—
Next, we declare the dependencies and symmenijlbert Lagrangian.
tries of the curvature tensors. In addition to the pgefore moving toward terms with higher order in cur-

TableauSymmetry  property, Cadabra has the yatyre, let us introduce the programming capability of
Symmetric andAntiSymmetric  properties, which en-  cadabra . The manipulations above, can be turned in to a

dow the symmetry to all the indices of the object. Python -like function, that contain the set of algorithms to
5 R7{sl s2 s3 s4}::TableauSymmetry( shape={2,2}, be applied to an input expression. Hence, the above code will
indices={0,2,1,3} ). be replaced by,

6 R™{sl s2}::Symmetric.

v def Llmanip(ex) :

In orQer_ to simplify the final expr_essions, we define a set i expand _delta (ex)

of substitution rules for the contractions of the curvature ten- 14 distribute (ex)
sor, 15 eliminate kronecker (ex)

7 toR := {R°{sl s2 sl s2} = R, R°{sl s2 s2 sl} = - R}; 16 CerORLoaL1se (5X)

8§  toRic := {R"{sl s2 sl s3} = R"{s2 s3}, 17 rename_dunmies (ex)

9 R {s2 sl s3 sl} = R"{s2 s3}, 18 substitute(ex, toR)

10 R™{sl s2 s3 sl} = - R"{s2 s3}, 19 substitute(ex, toRic)

1" R™{s2 sl sl s3} = - R"{s2 s3}}; 20 sort_product (ex)

21 sort_sum(ex)
Zeroth order in curvature = SRR )
23 rename_dummies (ex)

From the Eq.10), it is obvious that the zeroth curvature term 2 collect factors(ex)
is the cosmological constant monomial in the action. Thus, » return (ex)
no further work is needed. and finally, we define the linear curvature term of the

) . Lanczos—Lovelock series, and apply the newly define algo-
Linear curvature Lagrangian rithm,
From the Eq.10), the linear curvature Lagrangian is 2 LL1 := 2/2 R"{al a2 bl b2} \delta"{al bl a2 b2};

27 LImanip(LL1);
1
D,1 b1b
£ = V3 5 O BT oyt (11)

Since the measurg(g) does not carry indices, let us focus R1a2b1b2 garbrazbz

on the remaining expression. The general strategy is to ex-

pand thegeneralisedKronecker delta, consider all possible R. (14)
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6

Quadratic curvature Lagrangian

From the Eq./10), the quadratic curvature Lagrangian is

1
£(D:2) — \/§272 Sbibabsba R0, , R34, ,

ajazazaq

(15)

We proceed as in the previous case,

3 LL2 := 4x3x2/2/2 R"{al a2 bl b2} R"{a3 a4 b3 b4} \
delta”{al bl a2 b2 a3 b3 a4 b4};
Llmanip(LL2);

29

6Ra1a2b1b2 Ra3a4b3b45a1b1a2b2a3b3a4b4 (16)

R2 — AR™ a2 paiaz 4 RO102a304 [a1a20304 (17)

The result of Eq.17) is the scalar combination quadratic

in the curvature tensor known as Gauf3—Bonnet term. Al-
though in four dimensions this is a topological term, in di-
mensions higher than four it generates dynamical field equa-

tions.

Cubic curvature Lagrangian

From the Eq./10), the cubic curvature Lagrangian is

a1a2a30a4050¢

L(D,3) — \/g% §b1b2b3babsbe

aia asza asa
x R 2b1b2R ’ 4b3b4R Gbsba' (18)

And repeating the procedure above we get,

30 LL3:=6+5%4%3x2/2/2/2R"{al a2 bl b2}R"{a3 a4 b3 b4}

R™{a5 a6 b5 b6} \delta"{al bl a2 b2 a3 b3 a4
b4 a5 b5 a6 bb};
31 LImanip(LL3) ;

90Rl11 aobibsy Ra3a4 b3by RGSGG bsbe

« 50,1b1a2b2a3b3a4b4a5b50«6b6’ (19)

R3 — 12RR192 Ra1a2 | 3R Q41020304 501020304
+ 16R‘1102 Ralaa RGZU«S + 24Rala2 Ra3a4 Ra1a3a2a4
— 24Ru1a2 Ra1a3a4a5 Ra2a3a4a5

+ 2Rfl1a2a3a4Ra1a2a5a6Ra3a4a5a6

_ 8Ra1 a2a3a4 Ral asazae Ra2a6a4a5. (20)
This Lagrangian is known as theiMer-Hoissen term [17].

In Appendix B we present the Lanczos—Lovelock La-
grangian of order four in curvature.

O. CASTILLO-FELISOLA, D. T. PRICE, AND M. SCOMPARIN

3.2. Field equations of the Lanczos-Lovelock La-

grangians

The field equations derived from the Lanczos—Lovelock La-
grangians are [17-19]

1

n bi---b ) )
G(p)m:_ op+1 5:1;1'“212);: R bibay """ Razpilanbzp—lbzp =
(2p+1)!
B 2P+1 6E;nRa1a2 aiaz”’ ,Ra2p71a2p a2p—la2p] :
(21)

We can use the same functidthmanip to obtain the
expressions for the field equations. Note that in the output
below, in order to shrink the expressions, we have written the
piece accompanying the Kroneclkeas a Lagrangian itself.

As before, the term independent of the curvature needs
no calculation,

0)n 1 n
GOn — _—gn. (22)
2
While the field equations for the linear, quadratic and cu-
bic are shown below,
) feqlLl := - 3x2/2/2 R™{al a2 bl b2} \delta"{m n al

bl aZ b2} ;
Llmanip (feqlll) ;

o §Ra1a2b1b25mna1b1a2b2’ (23)
mn 1 mn
R™ — S RE™. (24)

34 feqll2 := — 5%4%3%2/2/2/2 R"{al a2 bl b2} R"{a3 a4
b3 b4} \delta™{m n al bl a2 b2 a3 b3 a4 bd};

35 LImanip (feqll2)

36 factor_out (_, $\delta”{m n}$)

37 substitute(_, $@(LL2) —> L°{(D,2)1}$);

_ 15Ra1a2b1b2 Ra3a4b3b45mna1b1a2b2a3b3a4b4 (25)
2RRmn _ 4Ra1a2Rma1na2 _ 4Rma1 Rna1
+ 2Rma1a2a3R’ﬂa1a2a3 _ léan(DrQ) (26)
2

38 feqll3 := — 7x6%5%4x3%2/2/2/2/2 R™{al a2 bl b2} R"{
a3 a4 b3 b4} R™{a5 a6 b5 b6} \delta™{m n al bl
a2 b2 a3 b3 a4 b4 a5 b5 ab bb6};

39 LImanip (feqLL3)

factor_out (_, $\delta”{m n}$)

41 substitute(, $@(LL3) —> L™{(D,3)1}$);

40

_ 315Ra1a2b1b2 Ra3a4b3b4 Ra5a6b5b6

mnai b1 a2b2a3b3a4b4a5b5a6b6
X 0 ,

(27)
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3RZR™" — 12RR™ R™®1"% — 19RR™ R
L GRRM@ 205 prarasas | g4 pnoy gasa; pmasaias
L 94 Raas paras pmasnas _ g pa1as pma:ases pnasases
— 12R™" R™172 R 4 24 RM ™ g2 R
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4. Language of differential forms

A very useful calculation tool in physics is the exterior differ-

ential calculus, which—unlike tensor calculus—deals only

with the set of completely antisymmetric (differentiable) ten-
sors of(0, p)-type, for0 < p < D = dim(M). For a given
value ofp, the elements are calletifferential forms of degree

p or p-forms, and they form atF (A )-module denoted by

7

In this formalism, the geometric information carried by
the metric and affine connection is encoded in the vielbein 1-
form (e%) and the spin connectioiform (w). From them,
one can calculate the curvature and torddorms using the
structural equations of Cartan,

de® +wy Aeb =T,

dw®p +w o Aw™p =R, (32)

4.1. Bianchiidentities from Cartan structural equations

Definitions

As in previous examples, for this example we won't use the
declarations in theeader.cnb  file. Hence, we need to de-
clare the indices, derivative (in this case the exterior deriva-
tive), and the geometrical objects-e- the differential forms.

{a,b,c,1,m,n}::Indices.

d{#}: :ExteriorDerivative; .

d{#}: :LaTeXForm("\mathrm{d}") .

T{#}: :LaTeXForm("\mathrm{T}") .

R{#}: :LaTeXForm("\mathrm{R}") .

{e"{a}, \omega”{a}_{b}}::DifferentialForm(degree=1);
{T"{a}, R {a}_{b}}::DifferentialForm(degree=2);

9 v R W -

In the above code, we have introduced the prop-
erty DifferentialForm , which through its argument
degree=p assigns the properfy-form to a given object or
set of them, ané&xteriorDerivative which defines the

QP(M)vi. The generalisation of the tensor product to a prod-exterior derivative to the symbodl.
uct that preserves the antisymmetry of the result is dubbed

wedgeproduct, A : QP(M) x Q4(M) — QPT4(M), and

Cartan structural equations

provides structure of algebra to the space of all exterior dif-

ferential forms,

Q(M) (29)

Now, we define the structural equations.

strucl := d{e"{a}} + \omega"{a}_{b} "~ e"{b} - T {a}
=0;

struc2 := d{\omega”{a}_{b}} + \omega“{a}_{m} " \
omega” {m}_{b} - R"{a}_{b} = 0;

8

9

known as exterior algebra. One can endow the exterior alge-

bra with more structure by defining ttexterior derivative
a smooth mapl : QP(M) — QP+L(M) satisfying the (su-
per)Leibniz rule,

d(aApB) =daAp+ (-1)Pandg, (30)

fora € QP(M) and g € Q9(M), and nilpotency,i.e.
d? = 0, and theHodge star operatqra mapx : QP (M) —
QP=r(M), which allows defining a symmetric scalar prod-
uct amongp-forms,

(a,ﬁ)z/aA*ﬂ for «,0 € QP(M). (31)

A clear advantage of using differential forms over ten-

sors is that there are only a finite set of independent forms.

However, in order to encode the information within symmet-
ric or mixed tensors, one has to allow differential forms to
be valued on a Lie algebid. Hence, in the following, we

de® +wy Ae? —T* =0,

dw®p +w m Aw™p — R = (33)

In the following, we will also use the structural equations
as definitions of the exterior derivatives of the vielbein
and spin connection 1-forms. Therefore, we shall utilise
the isolate algorithm—from the cdb.core.manip
library—to define substitution rules.

10 from cdb.core.manip import isolate
de:= @(strucl):

isolate(de, $d{e”{a}}$);

12

consider that the Lie algebra behind the gravitational theory

is the Lorentz algebra.

de® = —w%, Ae® + T2, (34)
13 domega := @(struc2):
14 isolate (domega, $d{\omega”{a}_{b}}$);
dw®y = —w®  Aw™p +R%. (35)
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8 O. CASTILLO-FELISOLA, D. T. PRICE, AND M. SCOMPARIN

Bianchi identities 5. Einstein equations from a variational prin-
T . , . ciple
The bianchi identities are obtained by applying the exterior b

derivative to the structural equations. In this example, we derive the field equations of General Rel-

ativity from Einstein—Hilbert action.
First Bianchi identity.- We apply the exterior derivative to

the expressiorstrucl , and then distribute and apply the o
Leibniz rule product_rule ), 5.1. Definitions
15 Bianchil := d{ @Q(strucl) };
16 distribute (Bianchil)
17 product_rule( );

For this example, we shall import otmeader file from
Sec. 2.2. Note that although the indices are declared as four-
dimensional, and the coordinates as spherical, the result is
valid for a generic choice of coordinates and dimension.
d (dea T+ Wiy A et — Ta) =0, (36) 1 from libraries.header import =

2 init_properties(coordinates=$t, r, \theta, \phi$)

a b a b a
— —dT* =0. .
dwfpne’ —wip Ade” —d 0 (37) Then, we declare théTgX output of a variety of expres-

Now, the expression has the exterior derivative of the viel-sions that will show up in the process.
bein and spin connection. Hence, we substitute the ddes
anddomega,

18 substitute (Bianchil, de, repeat=True)

19 substitute (Bianchil, domega, repeat=True)

Lm: :LaTexXForm("\mathcal{L}_{\text{mat}}").
Dg: :LaTeXForm("\sqgrt{—-g}") .
dg{#}::LaTexForm("\delta{g}") .

® N o v kW

i distribute () dLm: :LaTeXForm("\delta{\mathcal{L}_{\text{mat}}}").
21 rename_dummies () ; dDg: :LaTeXForm("\delta{\sart{-g}}").
dCn{#}: :LaTeXForm("\delta{ \Gamma}") .
9 dR{#}::LaTexForm("\delta{R}").
R A€’ —w?y AT —dT? = 0. (38)
In tensor form, the above relation is expressed as 5.2. Variational problem
R o) = Vi T — T2 5,17 1) = 0. (39)  Our starting point is the Einstein—Hilbert action, amended

The above expression is thgebraicBianchi identity, which with a cosmological constant term.

in the absence of torsion takes the well-known form, 1 action :=S =\int{Dg [ \frac{1}{2 \kappa} ( sc -2
\Lambda) + Im ]}{x}.
R)\[PILV] = R)‘pr + R)\p/w + R)\l/pu =0. (40) 1 distribute();
Second Bianchi identity.- Applying the exterior derivative
tostruc2 , we get 1 1 1
' S= —v/- R—/— Av/—gL dz. (46
»  Bianchi2 := d{ @(struc2) }; / (2 " gr AtV =gLma ) dz. (46)
23 distribute (Bianchi2)
24 product_rule(); Next, we build the variation of the objects (fields) present in
the action.
a a m a . . . . . .
d(dw*p +w*m Aw™p —R*) =0, (41) The variation of the metric determinant is given by
dw® , Aw™y —w®y Adw™p —dR, = 0. (42) 12 deltaMetricDeterminant := dDg = — \frac{1l}{2} Dg

. . . g_{\mu\nu} dg”{\mu\nu};
Here, only the exterior derivative af appears, then

5 substitute (Bianchi2, domega, repeat=True)

1
6 distribute () 0/—g=— 5\/ —gg,w5g””~ (47)

i rename_dummies () ;

(SRS

By definition, the variation of the matter Lagrangian with

R Aw —w*cAR%p —dR"y = 0. 43 oo

cMWbT W b b (43) respect to the metric gives the stress tensor,
. T_he apove result is theifferential Bianchi identity, that 5 matterlagrangianVariation := Dg T_{\mu\nu}
is written in tensor form as dg” {\mu\nu} = - 2 d{Dg Lm};

A A o 14 product_rule ()

R ool + B or(p T ) = 0, (44) 15 distribute()

which in the absence of torsion takes the well-known form, 16 substitute(_, $d{Dg} —> dDgs)
N \ N N 17 substitute(_, deltaMetricDeterminant)
R olpvip] = R ouv;p +R ovpiu +R opuy — 0. (45) 18 manip.swap_sides () ;
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V=9T,,8¢" = =26 (v/=9Lmar) , (48) SR=V, (6T" 154") =V, (6T +56"%) +Ry06g"°. (56)

V=99,09"" Lmatr—2v/~g0 Lonar=v/— g1, 09" . (49) We can now vary the action,
Lo i 35 deltaAction = vary( $@(action):$, $Dg —> dDg, sc —>
Next comes the variation of the Christoffel symbols. We dR, Im —> d{Im}, S —> d{S}$);
then isolate the derivative of the variation, as that object will 3  substitute(, deltaMetricDeterminant)
appear in the variation of the Riemann tensor. v  substitute(, matterlagrangianvariation)
38 substitute( , deltaScalarCurvature)

19 deltaDerivativeCn := \nabla_{\sigma} {dCn" {\mu}_{\nu\

39 distribute( )
tau}} = \partial {\sigma}{dCn"{\mu}_{\nu\tau}} % Toname dmmiesi )
20 + ch” {\mu}_{\sigma\ganma} dCn” {\gamma}_{\nu\tau} 41 factor out(_, SagA{\mu\nu}, Dg$) ;
21 — ch™{\gamma}_{\sigma\nu} dcn” {\mu}_{\gamma\tau} - -
b2 — ch” {\gamma}_{\sigma\tau} dCn”{\mu}_{\nu\gamma}; 1 1
23 manip.isolate(_, S$\partial {\sigma}{dCn"{\mu}_{\nu\ _ -1 -1
) 181 08 /<25\/ gk R+ 2\/7911 0R

—6v/=gk ' A+ 6v/=gLmar+ \/Tgéﬁmm) dz, (57)
VU(SF/L v — 8061—‘“ vr + r# O"Y(SF’Y vT
v 1 _ 1 _
— 17 g, 01" YT T I 5 00" 2% (50) 05 = / <\/jg6g“ [ - ng,,,‘{ 'R + 5'% 1Rm/

Og0I'" 7 = —T'* a'y5Iw vr + 17 5, 6TH %s 1 1 1
+gW/£1A—2TW} +v—g [21431VH{5F“ wrg”"

+T7 57 0TH . 4+ V0T . (51) 2
The variation of the Riemann tensor involves covariant ~ — %K*IVT {or# ;wg”’}D da. (58)
derivatives of the variation of the Christoffel connection.
24 deltaRiemannTensor = vary( mm(), $ch”{\mu}_{\nu\tau} The terms proportional tég"” are the Einstein equa-
—>dCn” {\mu}_{\nu\tau}, rm”{\tau}_{\sigma\mu\nu} tions, the rest is a total derivative. In order to rewrite this term

i} Sortizdﬁt{jau},{ \sigma\mu\nu}$) ; in the familiar form, let us first assign to a variable the term
% substitute( ,deltaDerivativeCn) in the first bracket on the right-hand side. To select a piece
v meld); of an expression one uses the array notatiopytiion : (i)

the first level of the expression is an equality, therefore the
[0] and[1] components represent the left-hand side and
SR gy = 0,017 o — 0,007 1y + 01" MFA o right-hqnd side respectively,. thus we choge[ﬂje compo-
nent; (ii) now the top-level is an integration, and &
+I7 2O0TA =07 2T, —T7 36T ,p, (52) and[1l] components represent the argument and integration
- B - - variable respectively, thus we have to select [lBle com-
ORT oy = Vyol™ o = VioI™ o (53) ponent; (iii) the argument of the integral is the sum of two
terms, since we are interested in the first, we have to select the
?O] component, and finally; (iv) from that term the bracket
is the[2] component. Therefore, the expression of interest

From the last expression one obtains the variation of th
Ricci tensor, dubbeBalatini identity.

28 deltaRicciTensor = vary( rc(), $rm”{\tau}_{\sigma\ . .
tau\nu} —> drR™{\tau}_{\sigma\tau\nu}, rc_{\ IS deltaActlon[l][O][O][Z] . - Hence,
sigma\nu} —> dR_{\sigma\nu}$); 42 tl = deltaAction[1] [0] [0] [2]
2 substitute( , deltaRiemannTensor); 43 eom:= 2 \kappa @(tl) = 0;

44 distribute ()
45 collect_factors( )
16 manip.to_rhs(_, $\kappa T_{\mu\nu}$);

6RO’ZI =0R" oTV) (54)
0Rs, =V, 0I'7 o — V07 1o. (55)
L L. . 2 -1 Lo
Similarly, the variation of the scalar curvature yields 2“< 1wt R4 ohT Ry
30 deltaScalarCurvature = vary( rs(), $sc—> dR, rc_{\ 1 1
sigma\nu} —> dR_{\sigma\nu}, g”{\mu\nu}->dg”{\ -1z _
mu\nu}$) ; +§g’“jﬁ A 2T“V> =0 (59)
31 substitute(_, deltaRicciTensor)
3 distribute() 1 —
3 substitute(_, $\nabla_{\sigma}{dCn"{\mu}_{\nu\tau}} 7§QIWR + RIW + glwA - ’%T/W' (60)
g~ {\gamma\lambda} —> \nabla {\sigma}{dCn" {\mu}_ ) ) . . ] )
{\nu\tau} g"{\gamma\larbda}}$) These are the Einstein equations, which can be written in
®  canonicalise(); terms of the Einstein tensag,,,,

Rev. Mex. Fis. E22010202



10 O. CASTILLO-FELISOLA, D. T. PRICE, AND M. SCOMPARIN

47 Einsteinkq := €(eom): The above metric will be the starting point of our calcula-
L e o R e e L tion, with the exception that for simplicity, we shall consider
the functions4 and B as time-independent. Such condition
could be derived from the field equations, and is a corollary
Guv + guwh = KT}, (61)  of the dubbedBirkhoff theoren{20-23].

or in the Ricci form, which is obtained after eliminating the _
scalar curvature from the Einstein equations. Therefore, w@€finitions
first calculate the trace to isolate the scalar curvature
49 trEinsteinEqg := @ (eom) :
50 manip.multiply_through(_, $g” {\mu\nu}$);

In this section, we solve Einstein field equations for
Schwarzschild spacetimes. In this example, we upload the
definitions on ouheader file, described in Sec. 2.2.

51 distribute ()

52 substitute(,, $g”{\mu \nu} T_{\mu \nu} = T$) ! from libraries.header import

25 substitute(, manip.swap_sides(rs())) 9 init_properties (coordinates=$t, r, \theta, \phis,
54 eliminate metric() metrics=[$g_{\mu\nu}$, $\eta_{\mu\nu}$])
55 eliminate kronecker( )

56 manip.isolate(trEinsteinEq, $sc()$);

Calculating the field equations

The Einstein equations in vacuum are equivalent to the van-

g ( _ lg#VR + Ry, + QWA) = g" KT, (62) ishing Ricci tensorR,,, = 0. Hence, we proceed to calculate
2 the Ricci tensor from the ansatz in EG£Y.

R = —Tk + 4A, (63) In nga}bra, the metrjc is defineq through a series

_ _ _ _ of substitutions, and the inverse metric is calculated—by
and substitute into the field equations, SymPy algorithms—from the same substitutions. For this

57 RicciFormEq := @ (eom): end, the algorithncomplete is used. Notice below the use

58 substitute(,, trEinsteinkq) of the ETEX notation for the exponential function.

59 distribute(); A B.£}::D d

o  manip.isolate(_, $rc_{\mu \nu}$) } {A/B, £}: :Depends (r) .

61 factor_out (_, $\kappa$); ¢ ss 1= { g {t t} = - \exp(d),

5 g_{r r} = \exp@®B),

6 g_{\theta\theta} = r*x2,

7 hi\phi} = r*x2 in(\th *%2 }.
%ngﬁ — g+ Ry = KT, (64) ) a-{\phitphi] b ks }
1 9 complete(ss, $g~{\mu\nu}$);
pr = gm/A +K (T;w - ig;wv T) ) (65)
Note that in the above manipulation we have used that

st = 4v" and consequently the field equations in the form {9“ =—expA, g =expB,

of Ricci in arbitrary dimension gets factor modifications, un- ) o 2

like the standard Einstein’s form. 9o9 =717, g =17 (sind)",

9" =—exp(-4), ¢ =exp(-B),
6. Spacetime solutions: Schwarzschild space- .
time g% = (7’2(8111 9)2) , 9% = 7”2]- (68)

In 1916, a few months after the publication of Ein-  \wjt the metric (and its inverse) defined, one proceeds

stein’s equations, the first non-trivial solution was found by, ~5iculate the components of the Levi-Civita, Riemann and
Schwarzschild, who intended to model the gravitational fieldgici tensors. and the scalar curvature. This is performed

of an isolated spherically symmetric object.

- " ; - ) by the algorithmevaluate , which accepts as second argu-
The metric compatible with the three-dimensional spher

ment a series of substitution rules to execute the evaluation.

ical symmetry has a line element given by For the Levi-Civita connection the rules are the components
ds%(g) = — exp(A(t, r))dt2 of the metricji.e., ss.
10 evaluate(ch(), ss, rhsonly=True);
+ exp(B(t,r))dr? + r2dQ%2), (66)
wheredeQ) is the line element of a two-dimensional sphere,
ie,

1 rc_comp = substitute(rc(), rm)
dQ(Qz) = df” + sin®(0)d¢”. (67) 2 evaluate (rc_comp, ss, rhsonly=True);
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D¢r¢ =r!
|:|¢9¢ = (tan 9)_1
Dﬁre = r_l
1
D’I‘TT =35 ’I”B
25
0, = 18 A
tr — 2 T
|:|T¢(1Z$ = 7“_1
e, =0,.#{ og® = (tang) ™! (69)
Drﬁe = T_l
1
O, = 58744
Oge" = —rexp(—B) (sinf)>
1
|:|¢¢0 = —5 sin (29)
Oog" = —rexp (—DB)
1
Dttr = 5 exp (A - B) 5TA

Since the Riemannian curvature is expressed in terms of the connection, one should first substitute the algebraic expressio
of the Levi-Civita connection in terms of the metric (using substitute algorithm), and finally evaluate the curvature by
passing the substitution rules of the metric.

1 rm _comp = substitute(rm(), ch())
12 evaluate (rm_comp, ss, rhsonly=True);

The output of theevaluate command is large, and useless for our purpose in this section. Therefore, in the following some
output lines are avoided intentionally.

The Ricci tensor is defined from the Riemann tensor, one should substitute its expression (notice that at this stage the
Riemann tensor is defined in terms of the metric, its derivative and the metric inverse) before calculating with the algorithm
evaluate

1 1 1
O, = (r <4(8TA)2 - Z&A&,B + 28MA> + QTA) exp(A—B)r!
1
Oog = = (—r0,A+710.B + 2exp B — 2) exp (—B)
Roy = 0,0 ? (70)
Opg = 3 (—r0, A+ 1r0,B + 2exp B — 2) exp (—B) (sin §)*
O, = (r (i(@,ﬁA)2 + i@rA&nB - ;&TA) + GTB) rt

Solving the field equations

) components of geometrical objectIn particular, the func-
At the end of the last section, we manage to calculate thgg, get_component , extracts a single component of an
Ricci tensor derived from the Schwarzschild metric anzatsexpress?on (aka geom’etrical object).

Since the Einstein equations in vacuum (without cosmologi-
cal constant) are equivalent to the vanishing Ricci tensor, in Now, we can assign the calculated components to expres-
this section, we shall manipulate the results above to solvgions’ say-00 andr11.

the field equations.

The packagecdb.core.component  —imported in

the header file—defines functions that allows one to access !  r00 = comp.get_component (rc_comp, $t,t$) [1];
2 rll = comp.get_component (rc_comp, $r,r$) [1];
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12 O. CASTILLO-FELISOLA, D. T. PRICE, AND M. SCOMPARIN

(v |37 - J0.40.5+ 0,4] = +1=0, (76)
f=(C1+r)r (77)
—1
+ a’”A) exp (A= B)r™, (72) Therefore, the (static) spherically symmetric Ricci flat so-
) ) ) lution of Einstein field equations requires the metric tensor to
— (0, A)? + =8,48,B — =0,, A be
(r{ 1(0rA)" + 70, A0, B — S0, } : i
ds?(g)=— <1 + 1)dt2+T +r2d0G,).  (78)
+ @.B) Pt (72) r (1 + g)

The symbol[1] at the end of theget component The constan€’; is fixed to—2m by the Newtonian limit.

function restricts our selection to the right-hand side of the
expression. 7. Discussion and conclusions
By looking at the Egs. [11) and (72), one notices that
their arguments in the inner brackets are opposite. Hence, wdlong the paper, we have introduced (through examples)

consider the combination some of the basic functionalities @adabra2 , focusing
on applications to the analysis of gravitational models. We
r(exp(B — A)Ry + R,,) = 0. (73)  believe that once the user surpasses the initial barrier of the
philosophy—in which all the properties of the objects have to
| exprl :=r \exp(B — A) @(r00) + r @(rll); be declared—, the notation and manipulation of these objects

o using the built-inalgorithms s straightforward. More-
There are several ways of simplifying the above result e one can stack a sequence of these algorithms into a cus-
Below, we use the functiomap.sympy to expand the ex-  y5m function or even build algorithms from scratch, to ease
pression. the tasks during the process of solving problems.
1 map_sympy(exprl, "expand"); In Sec. 2.2 we mentioned the advantage of creatimga (
projecf) header file, to facilitate the declaration of variables.
That file could—in principle—be shared between projects, but
9.4+ 0.B. (74) we recommend avoiding such_ practice, since the personal no-
tation might change (depending for example of the collabo-
Then the first expression,e. exprl , requires that rators of the prOJect§). . e
B(r) = —A(r) + C. For the sake of simplicity, we shall . The_ tensor manlpulgtlon exempl|f|e.d in Sec. 3 show_s the
simplicity behind the action of the algorithms on expressions.

setC’ =0, nc.)netheless,.ln genera} grounds this choice re‘prel_\lonetheles:s, we should highlight the fact that in order to
sents a scaling on the time coordinate.

. e achieve that simplicity, one has to relax the mathematical for-
N‘.JW _consMerth@é)—component of the Ricci tensor, after malities. Notice for example that in our example the Einstein
substitutingB(r) = —A(r). sum convention was dropped in favour of the simplicity of
r22 = comp.get_component (rc, $\theta, \theta$s) [1]; the substitution rules.
f?.fjff:tf‘m); 5 ns); More refined tensor manipulations were shown in
St e ’ Sec. 5, in which we used widely the substitution of
The ordinary differential equation looks nicer if expressions, and the librargdb.core.manip to ac-
one transforms even furthemp(A) — f or equivalently complish our goal. It is important to make an allu-

[

A — In(f). sion to the fact that within the current version of the

i substitute(_, $A —> \log(f)$) software, thesubstitute algorithm is unable to dis-

2 map_sympy(_ , "expand"); tinguish the expressioh™{\rho}_{\mu \nu} from
\Gamma™{\rho} {\mu \nu} (despite the fact that we
specify theGammatypography for theh expression). This

—ro. f— [+ 1. (75) might cause undesired results.
. We show the operational and computational capabilities
The cdb.sympy.solvers package provides wrap- of Cadabra2 in handling tensor components, and interact

pers to mak§ymPy solvers available fronCadabra . It with the Python library SymPy. Through Sec. 6 we man-
was imported in théeader , therefore, we use the algorithm aqeq to find and solve the Einstein field equations for the

dsolve to solve the differential equation. Schwarzschild ansatz. Although we stick3pmPyas com-
I eq2 := @(expr2) = 0; putational backend, if installed in the system, one could use
> solA = solv.dsolve(eq2, $£$); Mathematica s kernel as computational backend.
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In Sec. 4 we showed a first application of the ability of
Cadabra2 to operate with differential forms. Even though
our example was very simple, it is possible to go further with
the current competence with the exterior calculus. However,
there is room for several improvements, as for example man-
aging algebra valued differential forms.

To conclude, we want to remark that given the extensi-
ble potential ofCadabra2 throughPython , it is possible e
to use the software to target research problems. Future work™
will focus on applying the above concepts to the analysis of
gravitational waves [7].

0.20 A

e[s]

0.10 A

0.05 A

Appendix

0.00 -

bar foo

FIGURE 2. Bar chart showing the amount of time spent in execut-

A. Benchmarking in Cadabra , ,
ing each routine.

Benchmarking is useful for a variety of purposes; locating We can have a look at the amount of time spent do-
bottlenef:ks, optimisation, examining complexity, compari—ing each routine by callinglot _bar chart which uses
son again other s_oftware packages: the list goes on. In peFhatplotlib to produce a plot of the results (see Fig. 2):
turbative calculations many of these become relevant and so p el bR EhEis
we developed a timing module which is distributed with this T ’
paper.
The basic principle is simpleTimer objects measure

the time taken between reaching variehgckpointsand ac-

We can also see how long the entire routine took
by calling total _elapsed If we want to include
the time spent in ourboring function, then passing

cumulate these into named bins. For example include  -idle=True  adds this to the total:
14 print ("timer.total elapsed(False):", timer.
from libraries.timing import Timer total_elapsed(False))
15 print ("timer.total elapsed(True):", timer.

© ® N U R W N =

S = o

timer = Timer()
timer.start()

fool()

timer.checkpoint ("foo")
boring()
timer.checkpoint ()
bar()

timer.checkpoint ("bar")
foo()

timer.checkpoint ("foo")

In this snippet we have three function®o and bar
which we want to measure, atdring which we need to
run but we are not very interested in. After calliatart
on our timer, we cycle through sonfieo routines then call
checkpoint  with the “foo” label. We then do ouvoring

total _elapsed(True))

timer.total_elapsed(False):
0.5009605884552002

timer.total_elapsed(True):
1.5020785331726074

B. Fourth-order curvature Lagrangian of the
Lanczos—Lovelock series

As a complementary material, we present the t€f4) of

the Lanczos—Lovelock series. It is shown in a separated ap-
pendix because obtaining it is not relevant for the purpose of
the article, however it could be useful for the reader inter-
ested in this research topic. The code below follows from the

routine, and to avoid this cluttering up our final timing re- developed in Sec. 3.1.

sults once we’re done with this we calheckpoint  with
an empty label. We then call and checkpdiar , followed

by a second cycle dbo s which accumulates to the time the

first call tocheckpoint(“foo") registered.

ajazbibe pasasbsb asaebsb aragbrbg sa1biazbaasbsasbsasbsasbsarbragh
252OR1212R3434R5656R787851122334455667788’

1= 8xT%6%5%4x3%2/2/2/2/2 R"{al a2 bl b2}

R™{a3 a4 b3 b4} R"{a5 a6 b5 b6} R"{a7 a8 b7 b8}
\delta”{al bl a2 b2 a3b3 a4 b4 a5 b5 a6 b6 a7
b7 a8 b8};

42 Llmanip(LL4);

41  LL4

(B.1)

R4 _ 24R2RG1G2R(110«2 + 6R2Ra1a2asa4Ra1a2a3a4 _|_ 64RRa1a2Ra1a3Ra2a3 + QGRRalaZRa3a4Ra1a3a2a4
_ 96RRa1a2 Ra1a3a4a5 Ra2a3a4a5 _|_ 8RRa1a2a3a4RalagasaGRa3a4a5a6 _ 32RRa1a2aga4RalasagaGRa2a6a4a5
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+ 48Ra1a2 Ralag Ra3a4Ra3a4 _ 24Ra1a2 RalagRa3a4a5a6Ra3a4a5a6 _ 96Ra1a2Ra1a3 Ra2a4Ra3a4

_ 384Ra1a2 Ra1a3 Ra4a5 Ra2a4a3a5 + 192Ra1a2 RalagRa2a4a5a6Ra3a4a5a6 + 96Ra1a2Ra3a4 Ra1a3a5a6Ra2a4a5a6

_ 192R0102 Rasa4Ra1a502a6Ra3a5a4as + 192R0102Ra3a4 Ralasa306Ra2asa4as + 192R01¢12Rala30204Ra3a5aea7Ra405¢16a7

_ 96Rala2Ra1a3a4a5 Ra2a3a6a7Ra4asasa7 + 384Ra1a2 Ra1a3a4a5 Ra2a6a4a7Ra3a7a5a6

+ 3Ra1a2a3a4Ra1a2a3a4Ra5a5a7a3Ra5a6a7a8 _ 48Ra1a2a3a4Ra1a2a3a5Ra4a6a7a8Ra5a5a7a8

+ 6Ra1a2a3a4Ra1a2a5a6 Ra3a4a7a8 Ra5a6a7a8 _ 96Ra1a2a3a4Ra1a2a5a5Ra3a7a5a8 Ra4aga5a7

+ A8 R*1020304 1050306 [A207A408 PA5ATA6AS _ G RA1020304 1050306 2070508 11':5‘14“7‘15“87 (B.2)

while the field equations are given by

b1b 3a4b3b 5a6b5b bzb biazbzaszbzasbsasbsasbsarbragh
— 11340 R*1a25102 Ra3a4b304 pasaebs506 A7agbzds §Mnai61a202a303a4404a505a606a707a8 87 (83)

G(4)mn

— 4R3Rmn _ 24R2Ra1a2 Rmalnag _ 24R2Rma1 Rna1 + 12R2Rma1a2a3 Rnalagag + 96RRna1 Ragag Rma2a1a3

4+ 9 RR®102 Raras pmazxnas _ /g p Q0102 RMA103a4 [na2a3as _ [Q [ MN [e102 Ra142 4 gG R RMA1 Rha2 [a1a2

4 96 RR™MA1 Ra20s Rnaz01a3 | gg R RO102 RMA3nas RA1a30204 _ F R RA102 RMa3a104 [Ra3aza,

— A8 RR™M®1 RNa20304 [a1020304 | |9 [ RMN RA1G20304 [A1020304 _ AQ [3 pNG1 [MA20304 [301020304

_ A8 RR™M@1na2 QO103G405 [A2030405 _ G R R1M010203 [NG4a2G5 RA1G5G304 | 9/ [3 [PMA10203 [NA1G405 2030405

— 192 R101 RA1a2 QAsa4 [Masads 4 g RA102 [0102 RA3Gs [MAZNGs _ gG RA102 [RMA1a203 RNA4GS506 203040506

_ 94 R%1a2 RMainaz pazaiasas RAsa4dsas _ Q9 RA102 RA3G4 RMA1a2as PNA3A4as _ 199 Q4102 RA143 RA2AG4 [PMA3NA4

4 192 R142 Rasas pMa1azas pnazasds + 192 R142 RA3a4 PMA1NAs RA2A3A4A5 _ 4 Q 4142 [PMA1G3G4 RPNA2A506 RA3A40506
+ QG R4z RMa1Nas RA2a4a506 [A3A4A5A5 _ QY RNA1 R4243 RA2a4 RIMA3A1A4 + 0B R4z RA1a3 RMA2a4as PNA3A4As

4 QG RNO1 RO203 RMA20405 A103a4G5 | ]9 RA102 RMA1G304 RRA5A3as [12060405 | G RTMA1 QRa1 [A203 [a2a3

_ A8 R102 Ra1a2 PMA3asas [NAsa4ds | G MN [A102 [A103 RA2a3 ]9 RMA1 Rnas [a1a3 Ra2as

— 192 RMa1 Ra2as Ra2a4 [RaGsa1as _ 19 RA102 RA103 RIMA4NAs [A204a305 | ]9 Q4102 QRA103 [pMaG4a205 [NA4A3as

— 192 RMa1 RAa1a2 Rasas [nasazds 4 ggRMM RA102 [A3G4 RA1G3a2G4 | 1Q9 RA102 QG304 RIMASTAL 2030405

4 QG R®102 RsA4 RIMA5G1Gs [NA5A2G4 | g RTMA1 [RA1G2 PNA3G4A5 RA20304G5 _ ]9 RTMA1 [Na2 304 [301030204

— 192 R'Ma1 Ra2a3 pna4ai1as paza4a3as + Qg R™MA1 RA2a3 RNA2a4a5 [A1a3A445 + 192 R™Ma1 RA2a3 RNa4a2a5 [A1a4a305

— Qg R™™ RA142 RA1a3G405 RA2a3a4a5 4 Qg RO RA1a2 RMA3A4G5 RA2a3A405 _ |9 RNA1 4203 RPMA4G105 [A2a4a305

+ 192 Q141 RA243 RIMa4azas [a1a4asas + QG R4192 RMA3a405 PNAGA4A5 A1G30206 4 G RA102 QMA3NA4 [A1a30506 [A2040506
— 192 R@102 pMasnas [a1a50206 RA3A5A406 | ]9 Q0102 RMA3Q4a5 RNA3A4AG [01050206

4 192 R102 RMasnas Ra1a5a3a6 [02050406 | | (Q Q4102 RMA3A4As [HNAGA10s 12030506

4 96 R®102 RMasnal 2040506 [A3040506 _ G Q0102 RMA30104 Ra3asas [a2040506

— 192 Q4102 RMasaias pnasasas [azasazds _ Q9 Q4142 RMA3G4A5 [NA1G4a46 [3A2a5a0306

— QG RY102 QMasa4as PNA3A1G6 [A2060405 | ]Q9 Q4102 [MA30104 NA5G206 3060405

4 9 R%102 RMA3a4as pNA1a2a6 RA3A6A4A5 _ 94 [MA1 PNA1 RA2a3044a5 02030405 + 9f R™MA1 RMa2 RA14304a5 [A2A3A405

_ 48 R™Ma1 Qnaza3a4 [a1a2a5as RA3a4asae + 192 R™Ma1 Rnazasza4 RA1a5a306 [A24644a5

4 9GR™MA1 Qna201a3 [G2040506 [RA3G4A506 + { R RA41G2a3a4 [A1a2A546 PA3A4A506 _ 39 RMN RA14204344 PA145a306 RA20644A5
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4+ QR RMA20103 [A204a506 [A3040506 _ 48 PNG1 [NG20304 01020506 RA3A4G506 | 109 RNG1 RMa20304 RG1050306 [A2060405

+ 96Rma1na2Ra1a3a2a4Ra3a5asn,7Ra4a5asa7 _ 48Rma1na2 Ra1a3a4a5 Ra2a3a6a7Ra4a5a6a7

+ 192Rma1na2 Ra1a3a4a5 Ra2a6a4a7Ra3a7a5a6 _ 192R771a1a2a3Rna4a5a6Ra1a5a2a7Ra3a4a6a7

_ 96Rma1a2a3Rna4a5a6Ra1a5a4a7Ra2a3a6a7 _ 96Rma1a2a3 Rna4a2a5 Ra1a5a6a7Ra3a4a6a7

_ 48Rma1a2a3Rna4a2a3Ra1a5a6a7Ra4a5a6a7 + 192Rma1a2a3Rna4a2a5Ra1a6a3a7Ra4a6a5a7

_ 192Rma1a2a3Rna4a2a5Ra1a5a4a7Ra3a6a5a7 _ 48Rma1a2a3Rna4a5a6Ra1a7a2a3Ra4a7a5a5

+ 96Rma1agaana4a5a5Ra1a7a2a4 Ra3a7a5a6 + 24Rma1a2a3 Rna1a4a5 Ra2a3a6a7Ra4a5a5a7

_ 96Rma1aga3Rna1a4a5 Ra2a6a4a7Ra3a7a5a6 _ 96Rma1a2a3 Rna1a2a4Ra3a5aGa7Ra4a5a5a7

+ 1Q RMa1azas pnaiazaz pa4asaear RA4AsA6AT _ léan(DA).
2
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The official site for Cadabra is |https://cadabra. 1.
science |, and the actual code is hosted [aktps://
github.com/kpeeters/cadabra2

In order to distinguish the output of the code blocks, from the 2.
(natural) equations of the paper, we use a light-yellow back-
ground for the former.

The content of this section is available on the user contributed
notebooks section of the offici@ladabra webpage. 3

The minus sign in front of the determinant is necessary because
the spacetime has a Lorentzian signature.

it official Git- 4
Lab repository https://gitlab.com/cdbgr/

cadabra-gravity-|

Note that the zero-forms ol are just functions on the mani-
fold, and therefor®® (M) = F(M).

For gauge theories this algebra corresponds to the algebra of.
the gauge group, while for General Relativity it is the algebra
of the Lorentz group. It is worth mentioning that there are mod-
ified theories of gravity which consider extended algebras of
the gravitational sector, such as the de Sitter, Anti de Sitter or 7
Poincag algebras. '

vite. The values of the indices have been set intthader file.
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