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1. Introduction

Algebraic manipulation of mathematical expressions is a
common but tedious part of most research in physics. Sym-
bolic computer algebra software has been used from the early
days to help with this, and many special-purpose systems
have been built to deal with expression manipulations spe-
cific to particular areas in physics. This is in particular true
for research in gravity; for a recent review of the many uses
of symbolic computer algebra in this field, see Ref. [1].

Cadabra is a relatively new, free and open-source stan-
dalone computer algebra systemi, which was designed from
the ground up to manipulate mathematical expressions which
occur in classical and quantum field theory [2-5]. In con-
trast to many special-purpose systems written for sometimes
very specific tasks, it aims to provide a wide variety of basic
field-theory building blocks, not only to tackle gravity com-
putations but also to provide support for things like fermions
and anti-commuting variables, algebra-valued objects, com-
ponent and abstract computations, tensor symmetries and
various others. Its main philosophy is to provide a simple-to-
use ‘scratchpad’ for computations in field theory in its widest
sense, to help with computations which are too tedious to
do by hand, while keeping them close in form to what those
computations would look like on paper. It is programmable in
Python , yet also accepts mathematical expressions in stan-
dard LATEX notation. It has been used in a wide variety of
computations in high-energy physics and gravity, but also in
different fields such as nuclear physics [6].

BecauseCadabra tries to encourage and support a
work-flow which is close to how computations are done with
pencil and paper, it sometimes differs quite strongly from
other computer algebra systems with a wide scope. In the
present paper, and its followup companion [7], our goal is to
show how gravity computations (which will at least in spirit
be familiar to many readers) can be done withCadabra .
For a deeper look into using the system for advanced gravity
computations, seee.g. [9].

The approach ofCadabra is that (geometrical) objects
are first declared by assigningproperties to objects, af-
ter which they can then be manipulated withalgorithms ,
which act according to the previously assigned properties. A
brief example is in orderii,

b (a + b + ab) , ba + bab, (1)

In the above example,a and b are the objects,
and we assign the propertiesNonCommuting and
Distributable to them, and additionally assign the prop-
erty SelfAntiCommuting to the objectb. The first as-
signment forbids the rearrangement ofbab asab2, while the
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last assignment ensures thatb2 = 0. Notice that output is
shown only when a command ends with a semicolon (; ).

This paper is organised as follows. Section 2 briefly intro-
duces the basic concepts of General Relativity (see Sec. 2.1)
and their implementation inCadabra (see Sec. 2.2). The
code in Sec. 2.2 is intended to serve as aheaderfile, which
can be called from otherCadabra notebooks in order to
avoid the declaration of “standard” properties. In Sec. 3 we
exemplify the manipulation of tensor expressions by writ-
ing down explicit expressions for the Lanczos–Lovelock La-
grangians in Sec. 3.1, and their field equations in Sec. 3.2.
In Sec. 4 we explore the capabilities ofCadabra to manip-
ulate differential forms. Specifically, we obtain the Bianchi
identities from the structural equationsiii. Next, in Sec. 5
the variational principle is exemplified by extremising the
Einstein–Hilbert action.For reasons of space, the variation of
the Lanczos–Lovelock action is not addressed in this paper.
We then deal with the resolution of Einstein field equations
in Sec. 6, solving in particular the Schwarzschild spacetime.
Some conclusions are drawn in the Sec. 7. In Appendix A we
introduce a tool that could help to improve the performance
of calculations or long routines.

2. Formalism

2.1. Introduction to the formalism of General Relativity

Let us start by giving a brief reminder of the ingredients of
General Relativity, both to set our conventions and to prepare
for the discussion of its properties formulated inCadabra ’s
language. General Relativity is currently the best model
of gravitational interactions, and was proposed in 1915 by
A. Einstein [9,10], as an attempt to conciliate the concepts
introduced by the special theory of relativity with those of
gravitation. In his model, Einstein proposed that the gravi-
tational interaction is an effect of the curvature of the space-
time. Meanwhile, the matter distribution determines how the
spacetime curves. This is sometimes called the geometrisa-
tion of gravity.

Since the theory has to be invariant under general coordi-
nate transformations, its building blocks aretensors(or more
generallytensor densities). In General Relativity the space-
time is assumed to be a pseudo-Riemannian manifold, whose
geometry is completely characterised by the metric tensor,
gµν . In order for the derivative of a tensor to be a tensor, the
concept of connection (Γλ

µν) has to be introduced, allowing
to define acovariant derivative(∇µ = ∂µ +Γ•µ•). The con-
dition of metricity, i.e. ∇g = 0, relates the connection (the
Levi-Civita connection) to the metric and partial derivatives
of it,

Γµ
ντ =

1
2
gµσ(∂τgνσ + ∂νgτσ − ∂σgντ ). (2)

The Levi-Civita connection is symmetric in its lower indices,
Γµ

ντ = Γµ
τν , this property is referred astorsion-free condi-

tion.

The action of the commutator of covariant derivatives on
a vector yields an algebraic operator, dubbed thecurvature
tensor,

[∇µ,∇ν ]V τ = Rτ
σµνV σ,

where

Rτ
σµν = ∂µΓτ

νσ − ∂νΓτ
µσ

+ Γτ
µλΓλ

νσ − Γτ
νλΓλ

µσ. (3)

The curvature tensor, also known as the Riemann tensor, is
skew-symmetric in the last two indices, and additionally sat-
isfies the algebraic and differential Bianchi identities,

Rτ
σµν + Rτ

µνσ + Rτ
νσµ = 0,

∇λRτ
σµν +∇µRτ

σνλ +∇νRτ
σλµ = 0.

The contraction of the Riemann tensor are interesting geo-
metrical quantities,

Rσν = Rτ
στν and R = gµνRµν , (4)

called the Ricci tensor and Ricci scalar (curvature) respec-
tively.

From a physics perspective, the relevant geometrical ob-
ject is theEinstein tensor,

Gµν = Rµν − 1
2
gµνR. (5)

The field equations of General Relativity are obtained by ex-
tremising the Einstein–Hilbert action,

S =
1
2κ

∫
d4x

√−g (R− 2Λ) , (6)

whereκ is the coupling constant of gravity (inversely pro-
portional to the gravitational Newton constantGN ), Λ is the
cosmological constant, and the symbolg stands for the deter-
minant of the metric tensoriv.

The interaction between matter and gravity is (formally)
achieved through the minimal coupling mechanism,i.e. start-
ing from the action on a flat spacetime and replacing the par-
tial derivative by covariant derivative, the Minkowski metric
by the curved metric, and the flat volume measured4x by the
invariant volume measured4x

√−g. Hence, to the action in
Eq. (6) one adds the matter action for a generic fieldψ,

Smat =
∫

d4x
√−gLmat(ψ, g,∇ψ). (7)

This then leads to Einstein’s equations, which set the Ein-
stein tensorGµν proportional to the energy-momentum ten-
sor,Tµν , which encodes the properties of the matter distribu-
tion.
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FIGURE 1. Organisation of notebooks discussed in the present paper.

2.2. Introduction to the formalism of Cadabra: The
header.cnb library

The code presented in this article is organised as a project
containing a notebook for each chapter, as well as a separate
library with twoCadabra packages which can be re-used in
other computationsv. The structure of the project is depicted
in Fig. 1.

Theheader.cnbnotebook is included at the start of some
of the notebooks and defines a set of objects and related prop-
erties which will be used throughout the discussion of tensor
perturbations in General Relativity. Providing this structure
also allows us to define a useful workflow for the follow-up
to this paper [7]. The purpose of this is to avoid repetitive
declarations and ensure consistency between the notebooks.
The file begins by importing the global dependencies:

The last three imports are from theCadabra stan-
dard library [11], and provide common operations. The
cdb.core.comp library is useful for component calcu-
lations andcdb.sympy.solvers is a simpleCadabra
wrapper for the equation solvers provided in theSymPy li-
brary [12].

Although these imports appear to be regularPython
packages, they are in factCadabra notebooks and can be
found at<cadabra-root-dir>/lib/python3.x/site-
packages/cdb . WhenCadabra finds animport state-
ment, it will not only do a standard search insys.path
for Python packages, but it will also search for notebook
files, which are automatically converted intoPython scripts
and imported using the native functionality. Not only does
this make writing packages forCadabra very natural, but
it also makes these packages very easy to read, as the doc-
umentation is written next to the code in LATEX cells using
the \algorithm command, and test code can be written

under the exported functions in ghost cells which are ignored
when imported, similarly to how if __ name__ ==

" __main __ " statements are used inPython .

After this, theheader.cnbfile defines one main function
init_properties , which accepts acoordinates pa-
rameter containing the range of coordinates used through the
notebooks and ametrics parameter with the names of the
metric tensors required, and uses this to inject appropriate
property declarations into theCadabra kernel. It begins by
declaring the coordinates and indices used in the notebooks:

The use of the pull-in syntax @(...) allows
us to use Cadabra expressions inside other ex-
pressions, similarly to how curly brackets are used
in Python strings to include other objects (e.g.
’This is some {}’.format(’text’)) . As the
::Property syntax expects aCadabra expression on the
left-hand side, not a variable name, we use it here to declare
properties on these expressions which are not hard-coded.
As well as assigning theIndices property to our index
list, we also assign theInteger property which makes the
number of coordinates countable, allowing functions like
eliminate_kronecker which makes the substitution
δµ
µ → D to work. One final thing to note is the#, which

declares an infinite set of labelled indices (i.e. \lambda1 ,
\lambda2 ) which is useful to ensure that spare indices are
always available (useful when running code in loops and
when doing higher perturbative orders of a computation, for
which it is not always easy to estimate how many dummy
indices will be required).

The function then associates the relevant properties to the
metrics defined in themetrics parameter:
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Here thefor loops act over the two indices of the met-
ric, lowering them for theMetric declaration and raising
them for theInverseMetric declaration. Note that the
(1, 1) forms of the metric tensor (e.g. gµ

ν) must be declared
asKroneckerDelta . After this, some standard symbols
are defined

Finally, we introduce some of the standard General Rel-
ativity objects. For each one, multiple properties must be
defined—we begin by assigning aCadabra identifier to
each one and assigning aLaTeXForm to it, which controls
how it will be rendered in LATEX. The symmetries and depen-
dencies of each are then defined; asCadabra makes very
few assumptions about the objects one uses any dependence
on derivatives must be explicitly stated.

This completes theinit_properties function, and
the remainder of theheader.cnb file are some algebraic
definitions of the General Relativity objects that are used
throughout the notebooks, allowing them to be substituted for
each other. One can check the sanity of the definition with a
few testing lines,

As some of them depend on definitions of symbols
as derivatives in order for index consistency to be main-
tained, they are defined as functions returning expression

objects so that they are only parsed when called (after
init_properties has been invoked) and not during im-
port where they would raise a parsing error

These correspond to the relations/definitions

Γµ
νρ =

1
2
gµσ(∂ρgνσ + ∂νgρσ − ∂σgνρ), (8a)

Rτ
σµν = ∂µΓτ

νσ − ∂νΓτ
µσ

+ Γτ
µλΓλ

νσ − Γτ
νλΓλ

µσ, (8b)

Rσν = Rτ
στν , (8c)

R = gµνRµν , (8d)

Gµν = Rµν − 1
2gµνR. (8e)

3. Manipulation of tensorial expressions

3.1. Explicit form of the Lanczos–Lovelock Lagrangian

The Lanczos–Lovelock Lagrangians [13,14] are build in ar-
bitrary dimensions to satisfy the same requirements as the
Einstein–Hilbert Lagrangian in General Relativity: (i) In-
variance under general coordinate transformations; (ii) local
Lorentz symmetry, and; (iii) Provide field equations that are
second order partial differential equations.

In four dimensions, the Lanczos–Lovelock Lagrangian is
that of Einstein–Hilbert (with cosmological constant) with
the addition of topological terms, the Gauß–Bonnet La-
grangian [14]. The generic Lanczos–Lovelock Lagrangian
density inD dimensions is given by a sum [15,16]

L =
n∑

p=0

ap L(D,p), (9)

with n = [D/2], ap denoted the coupling constant of thep-th
term, and

L(D,p) =
√

g
1
2p

δ
b1···b2p
a1···a2p

×Ra1a2
b1b2 · · ·Ra2p−1a2p

b2p−1b2p . (10)
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The purpose of this example is to find the form of the
elements of the series,i.e. Eq. (10) after eliminating the gen-
eralised delta.

Notation and definitions

In this example, the position of the indices (unlike in Gen-
eral Relativity) carry no meaning, and we shall write all of
them as upper indices. Hence, for this example, the default
behaviour of indices will be enough. In this example, we do
not use theheader.cnb file from Sec. 2.2, consequently,
we shall explain some of the declarations as they appear.

We start by declaring the indices, Kronecker delta, Levi-
Civita epsilon, and the partial derivative.

The hash symbol after thea, b, s and t indices de-
notes that either of them followed by a number is a valid
index. The delta argument of the Levi-Civita symbol
(EpsilonTensor ) serves to declare the signature of the
metric. In the example above, the value-\delta implies
that the—undeclared—metric is Lorentzian.

Next, we declare the dependencies and symme-
tries of the curvature tensors. In addition to the
TableauSymmetry property, Cadabra has the
Symmetric andAntiSymmetric properties, which en-
dow the symmetry to all the indices of the object.

In order to simplify the final expressions, we define a set
of substitution rules for the contractions of the curvature ten-
sor,

Zeroth order in curvature

From the Eq. (10), it is obvious that the zeroth curvature term
is the cosmological constant monomial in the action. Thus,
no further work is needed.

Linear curvature Lagrangian

From the Eq. (10), the linear curvature Lagrangian is

L(D,1) =
√

g
1
2

δb1b2
a1a2

Ra1a2
b1b2 . (11)

Since the measure (
√

g) does not carry indices, let us focus
on the remaining expression. The general strategy is to ex-
pand thegeneralisedKronecker delta, consider all possible

contractions, and use the substitution rules in order to present
the result in a simpler form. However, we need a few extra
manipulations in the middle as shown below.

Ra1a2b1b2δa1b1a2,b2 (12)

R. (13)

In the definition of the expressionLL1 , the factor2 in the
numerator is to compensate a(2p)! factor in the definition
of the generalised delta inCadabra . The result of Eq. (13)
is the scalar curvature, which corresponds to the Einstein–
Hilbert Lagrangian.

Before moving toward terms with higher order in cur-
vature, let us introduce the programming capability of
Cadabra . The manipulations above, can be turned in to a
Python -like function, that contain the set of algorithms to
be applied to an input expression. Hence, the above code will
be replaced by,

and finally, we define the linear curvature term of the
Lanczos–Lovelock series, and apply the newly define algo-
rithm,

Ra1a2b1b2δa1b1a2b2 ,

R. (14)
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Quadratic curvature Lagrangian

From the Eq. (10), the quadratic curvature Lagrangian is

L(D,2) =
√

g
1
22

δb1b2b3b4
a1a2a3a4

Ra1a2
b1b2R

a3a4
b3b4 . (15)

We proceed as in the previous case,

6Ra1a2b1b2Ra3a4b3b4δa1b1a2b2a3b3a4b4 (16)

R2 − 4Ra1a2Ra1a2 + Ra1a2a3a4Ra1a2a3a4 (17)

The result of Eq. (17) is the scalar combination quadratic
in the curvature tensor known as Gauß–Bonnet term. Al-
though in four dimensions this is a topological term, in di-
mensions higher than four it generates dynamical field equa-
tions.

Cubic curvature Lagrangian

From the Eq. (10), the cubic curvature Lagrangian is

L(D,3) =
√

g
1
23

δb1b2b3b4b5b6
a1a2a3a4a5a6

×Ra1a2
b1b2R

a3a4
b3b4R

a5a6
b5b6 . (18)

And repeating the procedure above we get,

90Ra1a2b1b2Ra3a4b3b4Ra5a6b5b6

× δa1b1a2b2a3b3a4b4a5b5a6b6 , (19)

R3 − 12RRa1a2Ra1a2 + 3RRa1a2a3a4Ra1a2a3a4

+ 16Ra1a2Ra1a3Ra2a3 + 24Ra1a2Ra3a4Ra1a3a2a4

− 24Ra1a2Ra1a3a4a5Ra2a3a4a5

+ 2Ra1a2a3a4Ra1a2a5a6Ra3a4a5a6

− 8Ra1a2a3a4Ra1a5a3a6Ra2a6a4a5 . (20)

This Lagrangian is known as the M̈uller-Hoissen term [17].

In Appendix B we present the Lanczos–Lovelock La-
grangian of order four in curvature.

3.2. Field equations of the Lanczos–Lovelock La-
grangians

The field equations derived from the Lanczos–Lovelock La-
grangians are [17-19]

G(p)n

m=− 1
2p+1

δ
nb1···b2p
ma1···a2p Ra1a2

b1b2 · · ·Ra2p−1a2p
b2p−1b2p

=

− (2p+1)!
2p+1

δn
[mRa1a2

a1a2 · · ·Ra2p−1a2p
a2p−1a2p].

(21)

We can use the same functionLLmanip to obtain the
expressions for the field equations. Note that in the output
below, in order to shrink the expressions, we have written the
piece accompanying the Kroneckerδ as a Lagrangian itself.

As before, the term independent of the curvature needs
no calculation,

G(0)n
m = −1

2
δn
m. (22)

While the field equations for the linear, quadratic and cu-
bic are shown below,

− 3
2
Ra1a2b1b2δmna1b1a2b2 , (23)

Rmn − 1
2
Rδmn. (24)

− 15Ra1a2b1b2Ra3a4b3b4δmna1b1a2b2a3b3a4b4 (25)

2RRmn − 4Ra1a2Rma1na2 − 4Rma1Rna1

+ 2Rma1a2a3Rna1a2a3 − 1
2
δmnL(D,2). (26)

− 315Ra1a2b1b2Ra3a4b3b4Ra5a6b5b6

× δmna1b1a2b2a3b3a4b4a5b5a6b6 , (27)
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3R2Rmn − 12RRa1a2Rma1na2 − 12RRma1Rna1

+ 6RRma1a2a3Rna1a2a3 + 24Rna1Ra2a3Rma2a1a3

+ 24Ra1a2Ra1a3Rma2na3 − 12Ra1a2Rma1a3a4Rna2a3a4

− 12RmnRa1a2Ra1a2 + 24Rma1Rna2Ra1a2

+ 24Rma1Ra2a3Rna2a1a3 + 24Ra1a2Rma3na4Ra1a3a2a4

− 24Ra1a2Rma3a1a4Rna3a2a4 − 12Rma1Rna2a3a4Ra1a2a3a4

+ 3RmnRa1a2a3a4Ra1a2a3a4 − 12Rna1Rma2a3a4Ra1a2a3a4

− 12Rma1na2Ra1a3a4a5Ra2a3a4a5

− 24Rma1a2a3Rna4a2a5Ra1a5a3a4

+ 6Rma1a2a3Rna1a4a5Ra2a3a4a5 − 1
2
δmnL(D,3). (28)

4. Language of differential forms

A very useful calculation tool in physics is the exterior differ-
ential calculus, which—unlike tensor calculus—deals only
with the set of completely antisymmetric (differentiable) ten-
sors of(0, p)-type, for0 ≤ p ≤ D = dim(M). For a given
value ofp, the elements are calleddifferential forms of degree
p or p-forms, and they form anF(M)-module denoted by
Ωp(M)vi. The generalisation of the tensor product to a prod-
uct that preserves the antisymmetry of the result is dubbed
wedgeproduct,∧ : Ωp(M) × Ωq(M) → Ωp+q(M), and
provides structure of algebra to the space of all exterior dif-
ferential forms,

Ω(M) =
D∑

p=0

Ωp(M), (29)

known as exterior algebra. One can endow the exterior alge-
bra with more structure by defining theexterior derivative,
a smooth mapd : Ωp(M) → Ωp+1(M) satisfying the (su-
per)Leibniz rule,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ, (30)

for α ∈ Ωp(M) and β ∈ Ωq(M), and nilpotency,i.e.
d2 = 0, and theHodge star operator, a map? : Ωp(M) →
ΩD−p(M), which allows defining a symmetric scalar prod-
uct amongp-forms,

(α, β) =
∫

α ∧ ?β for α, β ∈ Ωp(M). (31)

A clear advantage of using differential forms over ten-
sors is that there are only a finite set of independent forms.
However, in order to encode the information within symmet-
ric or mixed tensors, one has to allow differential forms to
be valued on a Lie algebravii. Hence, in the following, we
consider that the Lie algebra behind the gravitational theory
is the Lorentz algebra.

In this formalism, the geometric information carried by
the metric and affine connection is encoded in the vielbein 1-
form (ea) and the spin connection1-form (ωab). From them,
one can calculate the curvature and torsion2-forms using the
structural equations of Cartan,

dea + ωa
b ∧ eb = Ta,

dωa
b + ωa

m ∧ ωm
b = Ra

b. (32)

4.1. Bianchi identities from Cartan structural equations

Definitions

As in previous examples, for this example we won’t use the
declarations in theheader.cnb file. Hence, we need to de-
clare the indices, derivative (in this case the exterior deriva-
tive), and the geometrical objects—i.e. the differential forms.

In the above code, we have introduced the prop-
erty DifferentialForm , which through its argument
degree=p assigns the propertyp-form to a given object or
set of them, andExteriorDerivative which defines the
exterior derivative to the symbold.

Cartan structural equations

Now, we define the structural equations.

dea + ωa
b ∧ eb − Ta = 0,

dωa
b + ωa

m ∧ ωm
b − Ra

b = 0. (33)

In the following, we will also use the structural equations
as definitions of the exterior derivatives of the vielbein
and spin connection 1-forms. Therefore, we shall utilise
the isolate algorithm—from the cdb.core.manip
library—to define substitution rules.

dea = −ωa
b ∧ eb + Ta, (34)

dωa
b = −ωa

m ∧ ωm
b + Ra

b. (35)
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Bianchi identities

The bianchi identities are obtained by applying the exterior
derivative to the structural equations.

First Bianchi identity.- We apply the exterior derivative to
the expressionstruc1 , and then distribute and apply the
Leibniz rule (product_rule ),

d
(
dea + ωa

b ∧ eb − Ta
)

= 0, (36)

dωa
b ∧ eb − ωa

b ∧ deb − dTa = 0. (37)

Now, the expression has the exterior derivative of the viel-
bein and spin connection. Hence, we substitute the rulesde
anddomega,

Ra
b ∧ eb − ωa

b ∧ Tb − dTa = 0. (38)

In tensor form, the above relation is expressed as

Rλ
[ρµν] −∇[µTλ

νρ] − Tλ
σ[ρT

σ
µν] = 0. (39)

The above expression is thealgebraicBianchi identity, which
in the absence of torsion takes the well-known form,

Rλ
[ρµν] = Rλ

µνρ + Rλ
ρµν + Rλ

νρµ = 0. (40)

Second Bianchi identity.- Applying the exterior derivative
to struc2 , we get

d (dωa
b + ωa

m ∧ ωm
b − Ra

b) = 0, (41)

dωa
m ∧ ωm

b − ωa
m ∧ dωm

b − dRa
b = 0. (42)

Here, only the exterior derivative ofω appears, then

Ra
c ∧ ωc

b − ωa
c ∧ Rc

b − dRa
b = 0. (43)

The above result is thedifferential Bianchi identity, that
is written in tensor form as

Rλ
σ[µν;ρ] + Rλ

στ [ρT
τ

µν] = 0, (44)

which in the absence of torsion takes the well-known form,

Rλ
σ[µν;ρ] = Rλ

σµν;ρ + Rλ
σνρ;µ + Rλ

σρµ;ν = 0. (45)

5. Einstein equations from a variational prin-
ciple

In this example, we derive the field equations of General Rel-
ativity from Einstein–Hilbert action.

5.1. Definitions

For this example, we shall import ourheader file from
Sec. 2.2. Note that although the indices are declared as four-
dimensional, and the coordinates as spherical, the result is
valid for a generic choice of coordinates and dimension.

Then, we declare the LATEX output of a variety of expres-
sions that will show up in the process.

5.2. Variational problem

Our starting point is the Einstein–Hilbert action, amended
with a cosmological constant term.

S=
∫ (

1
2
√−gκ−1R−√−gκ−1Λ+

√−gLmat

)
dx. (46)

Next, we build the variation of the objects (fields) present in
the action.

The variation of the metric determinant is given by

δ
√−g = −1

2
√−ggµνδgµν . (47)

By definition, the variation of the matter Lagrangian with
respect to the metric gives the stress tensor,
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√−gTµνδgµν = −2δ
(√−gLmat

)
, (48)

√−ggµνδgµνLmat−2
√−gδLmat=

√−gTµνδgµν . (49)

Next comes the variation of the Christoffel symbols. We
then isolate the derivative of the variation, as that object will
appear in the variation of the Riemann tensor.

∇σδΓµ
ντ = ∂σδΓµ

ντ + Γµ
σγδΓγ

ντ

− Γγ
σνδΓµ

γτ − Γγ
στδΓµ

νγ , (50)

∂σδΓµ
ντ = −Γµ

σγδΓγ
ντ + Γγ

σνδΓµ
γτ

+ Γγ
στδΓµ

νγ +∇σδΓµ
ντ . (51)

The variation of the Riemann tensor involves covariant
derivatives of the variation of the Christoffel connection.

δRτ
σµν = ∂µδΓτ

νσ − ∂νδΓτ
µσ + δΓτ

µλΓλ
νσ

+Γτ
µλδΓλ

νσ−δΓτ
νλΓλ

µσ−Γτ
νλδΓλ

µσ, (52)

δRτ
σµν = ∇µδΓτ

νσ −∇νδΓτ
µσ. (53)

From the last expression one obtains the variation of the
Ricci tensor, dubbedPalatini identity:

δRσν = δRτ
στν , (54)

δRσν = ∇τδΓτ
νσ −∇νδΓτ

τσ. (55)

Similarly, the variation of the scalar curvature yields

δR=∇ν (δΓν
τσgτσ)−∇ν (δΓτ

τσgνσ)+Rνσδgνσ. (56)

We can now vary the action,

δS =
∫ (

1
2
δ
√−gκ−1R +

1
2
√−gκ−1δR

− δ
√−gκ−1Λ + δ

√−gLmat +
√−gδLmat

)
dx, (57)

δS =
∫ (√−gδgµν

[
− 1

4
gµνκ−1R +

1
2
κ−1Rµν

+
1
2
gµνκ−1Λ−1

2
Tµν

]
+
√−g

[
1
2
κ−1∇µ

{
δΓµ

ντgντ
}

− 1
2
κ−1∇τ {δΓµ

µνgτν}
])

dx. (58)

The terms proportional toδgµν are the Einstein equa-
tions, the rest is a total derivative. In order to rewrite this term
in the familiar form, let us first assign to a variable the term
in the first bracket on the right-hand side. To select a piece
of an expression one uses the array notation ofpython : (i)
the first level of the expression is an equality, therefore the
[0] and [1] components represent the left-hand side and
right-hand side respectively, thus we chose the[1] compo-
nent; (ii) now the top-level is an integration, and the[0]
and[1] components represent the argument and integration
variable respectively, thus we have to select the[0] com-
ponent; (iii) the argument of the integral is the sum of two
terms, since we are interested in the first, we have to select the
[0] component, and finally; (iv) from that term the bracket
is the[2] component. Therefore, the expression of interest
is deltaAction[1][0][0][2] . Hence,

2κ

(
− 1

4
gµνκ−1R +

1
2
κ−1Rµν

+
1
2
gµνκ−1Λ− 1

2
Tµν

)
= 0, (59)

−1
2
gµνR + Rµν + gµνΛ = κTµν . (60)

These are the Einstein equations, which can be written in
terms of the Einstein tensor,Gµν ,
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Gµν + gµνΛ = κTµν , (61)

or in the Ricci form, which is obtained after eliminating the
scalar curvature from the Einstein equations. Therefore, we
first calculate the trace to isolate the scalar curvature

gµν

(
− 1

2
gµνR + Rµν + gµνΛ

)
= gµνκTµν , (62)

R = −Tκ + 4Λ, (63)

and substitute into the field equations,

1
2
gµνTκ− gµνΛ + Rµν = κTµν , (64)

Rµν = gµνΛ + κ

(
Tµν − 1

2
gµν , T

)
, (65)

Note that in the above manipulation we have used that
δµ
µ = 4viii, and consequently the field equations in the form

of Ricci in arbitrary dimension gets factor modifications, un-
like the standard Einstein’s form.

6. Spacetime solutions: Schwarzschild space-
time

In 1916, a few months after the publication of Ein-
stein’s equations, the first non-trivial solution was found by
Schwarzschild, who intended to model the gravitational field
of an isolated spherically symmetric object.

The metric compatible with the three-dimensional spher-
ical symmetry has a line element given by

ds2(g) = − exp(A(t, r))dt2

+ exp(B(t, r))dr2 + r2dΩ2
(2), (66)

wheredΩ2
(2) is the line element of a two-dimensional sphere,

i.e.,

dΩ2
(2) = dθ2 + sin2(θ)dφ2. (67)

The above metric will be the starting point of our calcula-
tion, with the exception that for simplicity, we shall consider
the functionsA andB as time-independent. Such condition
could be derived from the field equations, and is a corollary
of the dubbedBirkhoff theorem[20-23].

Definitions

In this section, we solve Einstein field equations for
Schwarzschild spacetimes. In this example, we upload the
definitions on ourheader file, described in Sec. 2.2.

Calculating the field equations

The Einstein equations in vacuum are equivalent to the van-
ishing Ricci tensor,Rµν = 0. Hence, we proceed to calculate
the Ricci tensor from the ansatz in Eq. (66).

In Cadabra , the metric is defined through a series
of substitutions, and the inverse metric is calculated—by
SymPy algorithms—from the same substitutions. For this
end, the algorithmcomplete is used. Notice below the use
of the LATEX notation for the exponential function.

[
gtt = − exp A, grr = exp B,

gθθ = r2, gφφ = r2(sin θ)2,

gtt = − exp (−A) , grr = exp (−B) ,

gφφ =
(
r2(sin θ)2

)−1

, gθθ = r−2

]
. (68)

With the metric (and its inverse) defined, one proceeds
to calculate the components of the Levi-Civita, Riemann and
Ricci tensors, and the scalar curvature. This is performed
by the algorithmevaluate , which accepts as second argu-
ment a series of substitution rules to execute the evaluation.
For the Levi-Civita connection the rules are the components
of the metric,i.e., ss .
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Γµ
ντ = ¤ντ

µ





¤φr
φ = r−1

¤φθ
φ = (tan θ)−1

¤θr
θ = r−1

¤rr
r =

1
2
∂rB

¤tr
t =

1
2
∂rA

¤rφ
φ = r−1

¤θφ
φ = (tan θ)−1

¤rθ
θ = r−1

¤rt
t =

1
2
∂rA

¤φφ
r = −r exp (−B) (sin θ)2

¤φφ
θ = −1

2
sin (2θ)

¤θθ
r = −r exp (−B)

¤tt
r =

1
2

exp (A−B) ∂rA

(69)

Since the Riemannian curvature is expressed in terms of the connection, one should first substitute the algebraic expression
of the Levi-Civita connection in terms of the metric (using thesubstitute algorithm), and finally evaluate the curvature by
passing the substitution rules of the metric.

The output of theevaluate command is large, and useless for our purpose in this section. Therefore, in the following some
output lines are avoided intentionally.

The Ricci tensor is defined from the Riemann tensor, one should substitute its expression (notice that at this stage the
Riemann tensor is defined in terms of the metric, its derivative and the metric inverse) before calculating with the algorithm
evaluate .

Rσν = ¤νσ





¤tt =
(

r

(
1
4
(∂rA)2 − 1

4
∂rA∂rB +

1
2
∂rrA

)
+ ∂rA

)
exp (A−B) r−1

¤θθ =
1
2

(−r∂rA + r∂rB + 2 exp B − 2) exp (−B)

¤φφ =
1
2

(−r∂rA + r∂rB + 2 exp B − 2) exp (−B) (sin θ)2

¤rr =
(

r

(
−1

4
(∂rA)2 +

1
4
∂rA∂rB − 1

2
∂rrA

)
+ ∂rB

)
r−1

(70)

Solving the field equations

At the end of the last section, we manage to calculate the
Ricci tensor derived from the Schwarzschild metric anzats.
Since the Einstein equations in vacuum (without cosmologi-
cal constant) are equivalent to the vanishing Ricci tensor, in
this section, we shall manipulate the results above to solve
the field equations.

The packagecdb.core.component —imported in
the header file—defines functions that allows one to access

components of ageometrical object. In particular, the func-
tion get_component , extracts a single component of an
expression (aka geometrical object).

Now, we can assign the calculated components to expres-
sions, sayr00 andr11.
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(
r

[
1
4
(∂rA)2 − 1

4
∂rrA∂rB +

1
2
∂rA

]

+ ∂rA

)
exp (A−B) r−1, (71)

(
r

[
−1

4
(∂rA)2 +

1
4
∂rA∂rB − 1

2
∂rrA

]

+ ∂rB

)
r−1. (72)

The symbol[1] at the end of theget component
function restricts our selection to the right-hand side of the
expression.

By looking at the Eqs. (71) and (72), one notices that
their arguments in the inner brackets are opposite. Hence, we
consider the combination

r (exp(B −A)Rtt + Rrr) = 0. (73)

There are several ways of simplifying the above result.
Below, we use the functionmap sympy to expand the ex-
pression.

∂rA + ∂rB. (74)

Then the first expression,i.e. expr1 , requires that
B(r) = −A(r) + C. For the sake of simplicity, we shall
setC = 0, nonetheless, in general grounds this choice repre-
sents a scaling on the time coordinate.

Now consider theθθ-component of the Ricci tensor, after
substitutingB(r) = −A(r).

The ordinary differential equation looks nicer if
one transforms even furtherexp(A) → f or equivalently
A → ln(f).

−r∂rf − f + 1. (75)

The cdb.sympy.solvers package provides wrap-
pers to makeSymPy solvers available fromCadabra . It
was imported in theheader , therefore, we use the algorithm
dsolve to solve the differential equation.

−r∂rf − f + 1 = 0, (76)

f = (C1 + r)r−1. (77)

Therefore, the (static) spherically symmetric Ricci flat so-
lution of Einstein field equations requires the metric tensor to
be

ds2(g)=−
(

1 +
C1

r

)
dt2+

dr2

(
1 + C1

r

) + r2dΩ2
(2). (78)

The constantC1 is fixed to−2m by the Newtonian limit.

7. Discussion and conclusions

Along the paper, we have introduced (through examples)
some of the basic functionalities ofCadabra2 , focusing
on applications to the analysis of gravitational models. We
believe that once the user surpasses the initial barrier of the
philosophy—in which all the properties of the objects have to
be declared—, the notation and manipulation of these objects
using the built-inalgorithms is straightforward. More-
over, one can stack a sequence of these algorithms into a cus-
tom function or even build algorithms from scratch, to ease
the tasks during the process of solving problems.

In Sec. 2.2 we mentioned the advantage of creating a (per
project) header file, to facilitate the declaration of variables.
That file could—in principle–be shared between projects, but
we recommend avoiding such practice, since the personal no-
tation might change (depending for example of the collabo-
rators of the projects).

The tensor manipulation exemplified in Sec. 3 shows the
simplicity behind the action of the algorithms on expressions.
Nonetheless, we should highlight the fact that in order to
achieve that simplicity, one has to relax the mathematical for-
malities. Notice for example that in our example the Einstein
sum convention was dropped in favour of the simplicity of
the substitution rules.

More refined tensor manipulations were shown in
Sec. 5, in which we used widely the substitution of
expressions, and the librarycdb.core.manip to ac-
complish our goal. It is important to make an allu-
sion to the fact that within the current version of the
software, thesubstitute algorithm is unable to dis-
tinguish the expressionchˆ{\rho}_{\mu \nu} from
\Gammaˆ{\rho}_{\mu \nu} (despite the fact that we
specify the\Gammatypography for thech expression). This
might cause undesired results.

We show the operational and computational capabilities
of Cadabra2 in handling tensor components, and interact
with thePython library SymPy. Through Sec. 6 we man-
aged to find and solve the Einstein field equations for the
Schwarzschild ansatz. Although we stick toSymPyas com-
putational backend, if installed in the system, one could use
Mathematica ’s kernel as computational backend.
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In Sec. 4 we showed a first application of the ability of
Cadabra2 to operate with differential forms. Even though
our example was very simple, it is possible to go further with
the current competence with the exterior calculus. However,
there is room for several improvements, as for example man-
aging algebra valued differential forms.

To conclude, we want to remark that given the extensi-
ble potential ofCadabra2 throughPython , it is possible
to use the software to target research problems. Future work
will focus on applying the above concepts to the analysis of
gravitational waves [7].

Appendix

A. Benchmarking in Cadabra

Benchmarking is useful for a variety of purposes; locating
bottlenecks, optimisation, examining complexity, compari-
son again other software packages: the list goes on. In per-
turbative calculations many of these become relevant and so
we developed a timing module which is distributed with this
paper.

The basic principle is simple:Timer objects measure
the time taken between reaching variouscheckpoints, and ac-
cumulate these into named bins. For example

In this snippet we have three functions;foo and bar
which we want to measure, andboring which we need to
run but we are not very interested in. After callingstart
on our timer, we cycle through somefoo routines then call
checkpoint with the “foo” label. We then do ourboring
routine, and to avoid this cluttering up our final timing re-
sults once we’re done with this we callcheckpoint with
an empty label. We then call and checkpointbar , followed
by a second cycle offoo s which accumulates to the time the
first call tocheckpoint("foo") registered.

FIGURE 2. Bar chart showing the amount of time spent in execut-
ing each routine.

We can have a look at the amount of time spent do-
ing each routine by callingplot bar chart which uses
matplotlib to produce a plot of the results (see Fig. 2):

We can also see how long the entire routine took
by calling total elapsed . If we want to include
the time spent in ourboring function, then passing
include idle=True adds this to the total:

timer.total_elapsed(False):
0.5009605884552002

timer.total_elapsed(True):
1.5020785331726074

B. Fourth-order curvature Lagrangian of the
Lanczos–Lovelock series

As a complementary material, we present the termL(D,4) of
the Lanczos–Lovelock series. It is shown in a separated ap-
pendix because obtaining it is not relevant for the purpose of
the article, however it could be useful for the reader inter-
ested in this research topic. The code below follows from the
developed in Sec. 3.1.

2520Ra1a2b1b2Ra3a4b3b4Ra5a6b5b6Ra7a8b7b8δa1b1a2b2a3b3a4b4a5b5a6b6a7b7a8b8 , (B.1)

R4 − 24R2Ra1a2Ra1a2 + 6R2Ra1a2a3a4Ra1a2a3a4 + 64RRa1a2Ra1a3Ra2a3 + 96RRa1a2Ra3a4Ra1a3a2a4

− 96RRa1a2Ra1a3a4a5Ra2a3a4a5 + 8RRa1a2a3a4Ra1a2a5a6Ra3a4a5a6 − 32RRa1a2a3a4Ra1a5a3a6Ra2a6a4a5
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+ 48Ra1a2Ra1a2Ra3a4Ra3a4 − 24Ra1a2Ra1a2Ra3a4a5a6Ra3a4a5a6 − 96Ra1a2Ra1a3Ra2a4Ra3a4

− 384Ra1a2Ra1a3Ra4a5Ra2a4a3a5 + 192Ra1a2Ra1a3Ra2a4a5a6Ra3a4a5a6 + 96Ra1a2Ra3a4Ra1a3a5a6Ra2a4a5a6

− 192Ra1a2Ra3a4Ra1a5a2a6Ra3a5a4a6 + 192Ra1a2Ra3a4Ra1a5a3a6Ra2a5a4a6 + 192Ra1a2Ra1a3a2a4Ra3a5a6a7Ra4a5a6a7

− 96Ra1a2Ra1a3a4a5Ra2a3a6a7Ra4a5a6a7 + 384Ra1a2Ra1a3a4a5Ra2a6a4a7Ra3a7a5a6

+ 3Ra1a2a3a4Ra1a2a3a4Ra5a6a7a8Ra5a6a7a8 − 48Ra1a2a3a4Ra1a2a3a5Ra4a6a7a8Ra5a6a7a8

+ 6Ra1a2a3a4Ra1a2a5a6Ra3a4a7a8Ra5a6a7a8 − 96Ra1a2a3a4Ra1a2a5a6Ra3a7a5a8Ra4a8a6a7

+ 48Ra1a2a3a4Ra1a5a3a6Ra2a7a4a8Ra5a7a6a8 − 96Ra1a2a3a4Ra1a5a3a6Ra2a7a5a8Ra4a7a6a8 , (B.2)

while the field equations are given by

− 11340Ra1a2b1b2Ra3a4b3b4Ra5a6b5b6Ra7a8b7b8δmna1b1a2b2a3b3a4b4a5b5a6b6a7b7a8b8 , (B.3)

G(4)mn = 4R3Rmn − 24R2Ra1a2Rma1na2 − 24R2Rma1Rna1 + 12R2Rma1a2a3Rna1a2a3 + 96RRna1Ra2a3Rma2a1a3

+ 96RRa1a2Ra1a3Rma2na3 − 48RRa1a2Rma1a3a4Rna2a3a4 − 48RRmnRa1a2Ra1a2 + 96RRma1Rna2Ra1a2

+ 96RRma1Ra2a3Rna2a1a3 + 96RRa1a2Rma3na4Ra1a3a2a4 − 96RRa1a2Rma3a1a4Rna3a2a4

− 48RRma1Rna2a3a4Ra1a2a3a4 + 12RRmnRa1a2a3a4Ra1a2a3a4 − 48RRna1Rma2a3a4Ra1a2a3a4

− 48RRma1na2Ra1a3a4a5Ra2a3a4a5 − 96RRma1a2a3Rna4a2a5Ra1a5a3a4 + 24RRma1a2a3Rna1a4a5Ra2a3a4a5

− 192Rna1Ra1a2Ra3a4Rma3a2a4 + 96Ra1a2Ra1a2Ra3a4Rma3na4 − 96Ra1a2Rma1a2a3Rna4a5a6Ra3a4a5a6

− 24Ra1a2Rma1na2Ra3a4a5a6Ra3a4a5a6 − 192Ra1a2Ra3a4Rma1a2a5Rna3a4a5 − 192Ra1a2Ra1a3Ra2a4Rma3na4

+ 192Ra1a2Ra3a4Rma1a3a5Rna2a4a5 + 192Ra1a2Ra3a4Rma1na5Ra2a3a4a5 − 48Ra1a2Rma1a3a4Rna2a5a6Ra3a4a5a6

+ 96Ra1a2Rma1na3Ra2a4a5a6Ra3a4a5a6 − 192Rna1Ra2a3Ra2a4Rma3a1a4 + 96Ra1a2Ra1a3Rma2a4a5Rna3a4a5

+ 96Rna1Ra2a3Rma2a4a5Ra1a3a4a5 + 192Ra1a2Rma1a3a4Rna5a3a6Ra2a6a4a5 + 96Rma1Rna1Ra2a3Ra2a3

− 48Ra1a2Ra1a2Rma3a4a5Rna3a4a5 + 64RmnRa1a2Ra1a3Ra2a3 − 192Rma1Rna2Ra1a3Ra2a3

− 192Rma1Ra2a3Ra2a4Rna3a1a4 − 192Ra1a2Ra1a3Rma4na5Ra2a4a3a5 + 192Ra1a2Ra1a3Rma4a2a5Rna4a3a5

− 192Rma1Ra1a2Ra3a4Rna3a2a4 + 96RmnRa1a2Ra3a4Ra1a3a2a4 + 192Ra1a2Ra3a4Rma5na1Ra2a3a4a5

+ 96Ra1a2Ra3a4Rma5a1a3Rna5a2a4 + 96Rma1Ra1a2Rna3a4a5Ra2a3a4a5 − 192Rma1Rna2Ra3a4Ra1a3a2a4

− 192Rma1Ra2a3Rna4a1a5Ra2a4a3a5 + 96Rma1Ra2a3Rna2a4a5Ra1a3a4a5 + 192Rma1Ra2a3Rna4a2a5Ra1a4a3a5

− 96RmnRa1a2Ra1a3a4a5Ra2a3a4a5 + 96Rna1Ra1a2Rma3a4a5Ra2a3a4a5 − 192Rna1Ra2a3Rma4a1a5Ra2a4a3a5

+ 192Rna1Ra2a3Rma4a2a5Ra1a4a3a5 + 96Ra1a2Rma3a4a5Rna6a4a5Ra1a3a2a6 + 96Ra1a2Rma3na4Ra1a3a5a6Ra2a4a5a6

− 192Ra1a2Rma3na4Ra1a5a2a6Ra3a5a4a6 + 192Ra1a2Rma3a4a5Rna3a4a6Ra1a5a2a6

+ 192Ra1a2Rma3na4Ra1a5a3a6Ra2a5a4a6 + 192Ra1a2Rma3a4a5Rna6a1a4Ra2a3a5a6

+ 96Ra1a2Rma3na1Ra2a4a5a6Ra3a4a5a6 − 96Ra1a2Rma3a1a4Rna3a5a6Ra2a4a5a6

− 192Ra1a2Rma3a1a4Rna5a4a6Ra2a5a3a6 − 192Ra1a2Rma3a4a5Rna1a4a6Ra2a5a3a6

− 96Ra1a2Rma3a4a5Rna3a1a6Ra2a6a4a5 + 192Ra1a2Rma3a1a4Rna5a2a6Ra3a6a4a5

+ 96Ra1a2Rma3a4a5Rna1a2a6Ra3a6a4a5 − 24Rma1Rna1Ra2a3a4a5Ra2a3a4a5 + 96Rma1Rna2Ra1a3a4a5Ra2a3a4a5

− 48Rma1Rna2a3a4Ra1a2a5a6Ra3a4a5a6 + 192Rma1Rna2a3a4Ra1a5a3a6Ra2a6a4a5

+ 96Rma1Rna2a1a3Ra2a4a5a6Ra3a4a5a6 + 8RmnRa1a2a3a4Ra1a2a5a6Ra3a4a5a6 − 32RmnRa1a2a3a4Ra1a5a3a6Ra2a6a4a5
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+ 96Rna1Rma2a1a3Ra2a4a5a6Ra3a4a5a6 − 48Rna1Rma2a3a4Ra1a2a5a6Ra3a4a5a6 + 192Rna1Rma2a3a4Ra1a5a3a6Ra2a6a4a5

+ 96Rma1na2Ra1a3a2a4Ra3a5a6a7Ra4a5a6a7 − 48Rma1na2Ra1a3a4a5Ra2a3a6a7Ra4a5a6a7

+ 192Rma1na2Ra1a3a4a5Ra2a6a4a7Ra3a7a5a6 − 192Rma1a2a3Rna4a5a6Ra1a5a2a7Ra3a4a6a7

− 96Rma1a2a3Rna4a5a6Ra1a5a4a7Ra2a3a6a7 − 96Rma1a2a3Rna4a2a5Ra1a5a6a7Ra3a4a6a7

− 48Rma1a2a3Rna4a2a3Ra1a5a6a7Ra4a5a6a7 + 192Rma1a2a3Rna4a2a5Ra1a6a3a7Ra4a6a5a7

− 192Rma1a2a3Rna4a2a5Ra1a6a4a7Ra3a6a5a7 − 48Rma1a2a3Rna4a5a6Ra1a7a2a3Ra4a7a5a6

+ 96Rma1a2a3Rna4a5a6Ra1a7a2a4Ra3a7a5a6 + 24Rma1a2a3Rna1a4a5Ra2a3a6a7Ra4a5a6a7

− 96Rma1a2a3Rna1a4a5Ra2a6a4a7Ra3a7a5a6 − 96Rma1a2a3Rna1a2a4Ra3a5a6a7Ra4a5a6a7

+ 12Rma1a2a3Rna1a2a3Ra4a5a6a7Ra4a5a6a7 − 1
2
δmnL(D,4). (B.4)
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i. The official site for Cadabra is https://cadabra.
science , and the actual code is hosted athttps://
github.com/kpeeters/cadabra2 .

ii. In order to distinguish the output of the code blocks, from the
(natural) equations of the paper, we use a light-yellow back-
ground for the former.

iii. The content of this section is available on the user contributed
notebooks section of the officialCadabra webpage.

iv. The minus sign in front of the determinant is necessary because
the spacetime has a Lorentzian signature.

v. The project can be downloaded from it official Git-
Lab repository https://gitlab.com/cdbgr/
cadabra-gravity-I .

vi. Note that the zero-forms onM are just functions on the mani-
fold, and thereforeΩ0(M) = F(M).

vii. For gauge theories this algebra corresponds to the algebra of
the gauge group, while for General Relativity it is the algebra
of the Lorentz group. It is worth mentioning that there are mod-
ified theories of gravity which consider extended algebras of
the gravitational sector, such as the de Sitter, Anti de Sitter or
Poincaŕe algebras.

viii. The values of the indices have been set in theheader file.
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