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An experiment for the study of projectile motion
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The classic demonstration experiment of the motion of a point mass thrown at an angle to the horizon is studied. Several measurements
of the range of a projectile launched sphere are carried out and compared with the results that were obtained by an analytical approach.
The sphere’s motion can be treated as two independent movements: a linear uniform movement in the horizontal direction and a uniformly
accelerated motion in the vertical direction. The value of the launching velocity obtained from kinematics is compared with those predicted
by the law of mechanical energy conservation. The conclusion is that the model of a frictionless sliding sphere is far from explaining the
experimental result. The model could be improved proposing that the sphere rolls without sliding (pure rolling) on the platform including
the rotational kinetic energy. Finally, the fact that the sphere does not settle completely on the launch rail was considered using an effective
radius of rotation. Observed from the three proposed models, the last one is the closest to the obtained experimental value. These activities
can also improve students’ understanding of the concept of projectile motion.
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1. Introduction

The problem of the motion of a projectile is an important
topic and of great interest to teachers and students. Under-
standing projectile motion is necessary for students in mid-
dle schools, high schools, and universities. It is, therefore,
significant for students to have some knowledge of the me-
chanical characteristics of projectile motion. There are a lot
of publications that include numerical simulations with ana-
lytical solutions of this problem. The study of parabolic mo-
tion, in the absence of any drag force, is a common example
in introductory physics courses. The theory of parabolic mo-
tion allows you to analytically determine the trajectory and
all-important characteristics of the movement of the projec-
tile. The solution of the projectile motion under the uniform
gravitational field and without any resistant force, which is a
“parabola”, is well known [1,2]. However, including the air
resistance forces into the study of the motion complicates the
problem and makes it difficult to obtain analytical solutions.
Many such solutions of a projectile motion with quadratic re-
sistance have been obtained [3-6]. For the construction of the
analytical solutions various methods are used - both the tradi-
tional approaches [7-11], and the modern methods [12]. So,
the solution of the projectile motion by means of simple ap-
proximate analytical formulas under air resistance has great
methodological and educational importance.

Here is a new simple and convincing demonstration based
on the energy concept that we use to introduce the topic of
projectile motion. It consists of the projectile launching-
platform and a mechanism that permits varying angles of
launch angle. The experiment can be effectively integrated
into classroom demonstrations or become part of laboratory
activities. It can be used to show interesting connections be-

tween topics such as rolling motion, conservation of mechan-
ical energy, and projectile motion. This experiment’s design
could become a solid addition to students’ lab experiences.

2. The apparatus

An inexpensive apparatus for demonstrating the laws of pro-
jectile motion is shown in Fig. 1. It consists of a launch-
ing platform and a mechanism that permits varying the an-
gle of elevation (the angleα degrees from the horizontal
0 < α < 90◦C). A smooth spherical ball with radiusR is
positioned at heightH on the launching platform. Note that
three positions were drawn: the first one at the start position
at the heightH of the launching platform; the second one
at the bottom of the curved path with heighth; and the third
one when the sphere reaches the workbench. This experiment
permits a quantitative study of the motion of the projectile; it
is interesting to compare the initial launching velocity value
obtained by kinematics with those predicted by the mechani-
cal energy.

As you can see in Fig. 1, the apparatus consists of two
wooden boards, horizontal and vertical, that form a right an-
gle. This is a stand on which a plastic launching platform
is mounted. In our experiment, as a plastic launching guide,
we used the lid part of the channel that is used to fix cables
on the walls of the rooms (cross-section is shown in Fig. 2).
This is inexpensive and it can be found for 1 euro per meter.
One end of the plastic guide is attached to the vertical part of
the tripod, while the other end is bent at a certain angle (the
angle can be changed using the angle positioner). At this end
of the rail plastic guide, there is a platform in the horizontal
plane where the distance D of the ball can be easily measured.
As a projectile, we used a wooden ball that is common in the
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FIGURE 1. Apparatus dedicated to the study of projectile motion.

children’s toy sets. We chose the ball so that its dimensions
correspond to the width of the plastic rail that we used as a
jumping platform.

First, it is required that the launching platform be hor-
izontally leveled. The experimental procedure must ensure
that the experiment is always conducted under the same con-
ditions, that is to say, the same starting heightH for the
sphere (this point is labeled with 1 in the Fig. 1).

3. The governing equation

In projectile motion, a particle is launched into the air with
a speedv0 and at an angleα (as measured from a horizontal
x-axis). The sphere’s motion can be treated as two indepen-
dent movements, a linear uniform movement in the horizontal
direction and a uniformly accelerated motion in the vertical
direction. During flight, its horizontal acceleration is zero
and its vertical acceleration is−g (downward on a vertical
y-axis). If air resistance is neglected, the equations of motion
for the particle (while in flight) can be written as

x = v0xt = (v0 cos α)t, (1a)

y = v0yt− gt2

2
= (v0 sin α)t− gt2

2
, (1b)

vx = v0x = v0 cos α, (1c)

vy = v0y − gt = v0 sin α− gt, (1d)

v2
y = (v0 sin α)2 − 2gy. (1e)

The trajectory (path) of a particle in projectile motion is
parabolic and is given by

y = x tan α− gx2

2(v0 cos α)2
. (2)

The particle’s horizontal rangeD, which is the horizon-
tal distance from the launch point to the point at which the
particle returns to the launch height, is

D =
v2
0

g
sin 2α. (3)

4. Projectile motion and conservation of en-
ergy: Results and discussion

We will let the sphere slide down on a frictionless incline
(launching platform) to measure the range of the projectileD
(Fig. 2). In practical realization a spherical object rolls along
a track made of a plastic U-shaped strip. The width of the
groove in the platform isL. The sphere used in the experi-
ment was a wooden ball of diameter2R. At the beginning,
the starting position of the ball on the platform is at height
H. Since the sphere’s diameter is larger than the groove’s
width (2R > L) (see Table I), the sphere has contact with
the groove only at two points as shown in Fig. 2.

From the horizontal range formula, which derives from
the kinematic equations, we can express the initial launching
velocity as

v0 =

√
gD

sin 2α
. (4)

For an elevation angleα = 19.5◦C, we obtained the ini-
tial velocity of v0 = 2.48 m/s. It is interesting to compare
this value ofv0 obtained from kinematic equations with the
velocity of the sphere’s center of massvCM predicted using
mechanical energy conservation. Three models were consid-
ered: the frictionless sliding sphere model, the model that in-
cludes the rotation of the sphere, and finally the model with
the sphere of radiusR that rolls down the groove of widthL
and has an effective radius,K, which should be used to relate
both the angular velocity and the CM velocity.

TABLE I. Numerical values obtained by measurements and calculations.

H (m) h (m) D (m) R (m) L (m)
Sphere velocity

(the initial velocityvCM )

0.7 0.13 0.394 0.0239 0.0188 v0 (m/s)
vCM − v0

v0
(%)

The result obtained from the kinematic equations 2.48

Law of conservation of mechanical energy:Model 1 3.34 34.8

Law of conservation of mechanical energy:Model 2 2.83 14

Law of conservation of mechanical energy:Model 3 2.66 7.2
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FIGURE 2. Rolling ball for projectile motion. Measurement of rangeD of projectile and effective radius of rotationK (K < R).

Model 1: The spherical ball of massm and radiusR
starts moving from a heightH (point 1 in Fig. 2) and has
the initial potential energymgH. Leaving the groove (point
2 in Fig. 2), the sphere’s potential energy ismgh, and its ki-
netic energy ismv2

0/2 (it’s assumed thatv0 = vCM ). In this
model, the movement of the sphere ball corresponds to the
frictionless sliding of the sphere. When the sphere rolls down
an incline on a track, the final mechanical energy should be
equal to the initial one, considering the sphere as a particle
that slides without friction over the platform. The law of con-
servation of mechanical energy has the following form:

mgH = mgh +
mv2

CM

2
. (5)

From this equation the velocityvCM is given by

vCM =
√

2g(H − h). (6)

Using the height of the platformH = 0.7 m and the
heighth = 0.13 m, and the standard value of the local ac-
celeration of gravity, we obtain the estimate of the CM ve-
locity as vCM = 3.34 m/s. Comparing this result to the
value obtained from Eq. (4), we find a high relative error:
(vCM − v0)/v0 = 34.8%. We can conclude that the model
of a sphere sliding without friction down the steep plane’s
groove is far from explaining the experimental result and is
not adequate for determining the initial launch velocity of the
projectile motion. We can improve this model by proposing
that the sphere rolls without sliding (pure rolling) on the plat-
form.

Model 2: This model considers the rotation of the sphere
as it rolls down the steep plane’s groove. To fulfill this con-
dition, we need to include the rotational kinetic energy on
the left side of the Eq. (5) (the rotation energy of sphere is
Erot = Iω2, whereI = 2mR2/5 is the moment of inertia in
relation to the axis of rotation passing through the center of
the sphere, andω is the sphere’s the angular velocity). With
the rotation considered, the law of conservation of mechani-
cal energy has the form:

mgH = mgh +
mv2

CM

2
+

1
2

(
2
5
mR2

)
ω2. (7)

Remembering that in the case of pure rollingvCM = ωR, the
solution of Eq. (7) can be written as:

vCM =

√
10
7

g(H − h). (8)

Using the values ofg, H andh cited before, we obtain
vCM = 2.83 m/s. Applying the analogous procedure, we
find that this still corresponds to a considerable relative er-
ror of (vCM − v0)/v0 = 14%. It is obvious that this model
gives a much smaller relative error compared to the result in
Model 1. Further improvement of the model is the fact that
the sphere does not settle completely on the launch rail, as
can be seen in detail of the scheme presented in Fig. 2.

Model 3: When the sphere of radiusR rolls down the
groove of widthL, it has contact with the edges of the groove
at only two points (Fig. 2). Figure 2 shows that there is
an effective radius,K, which should be used to relate both
the angular velocity and the CM velocity. From Fig. 2 we
find that the effective radius of rotation of the sphere is
K = (R2 − L2/4)1/2, whereL is the width of the launch
rail. Even when considering the pure rolling, the relation
for angular velocityω = vCM/R needs to be replaced by
ω = vCM/K. In this case, the law of conservation of me-
chanical energy becomes:

mgH = mgh +
mv2

CM

2
+

1
2

(
2
5
mR2

)
v2

CM

K2
. (9)

After some algebraic manipulations we can write CM veloc-
ity vCM (initial launching velocity) as

vCM =

√√√√√
2

1 +
2

5[1− (L/2R)2]

g(H − h). (10)

Using the values ofR and L that given in Table I, we
obtainvCM = 2.66 m/s, which corresponds to a reasonably
low relative error when compared with the experimental data

Rev. Mex. Fis. E21020217
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in Eq. (4): (vCM − v0)/v0 = 7.2%. The estimated relative
error is the smallest, and this model seems to get closer to the
obtained experimental value.

Frequently, this experiment is presented in experimental
physics handouts assuming that the sphere always executes
a pure rolling all the way until being launched, allowing the
use of the mechanical energy conservation. This assumption
is the reason for the systematic difference between the pre-
dicted energy balance and the one obtained by experimental
measurements. From the experimental point of view, it is
necessary to have a data acquisition system in real time to
provide the sphere’s position at every instant. The experi-
ment can be improved by introducing the sensors and video
analysis but that wouldn’t be an inexpensive tool. This could
reveal interesting characteristics of the movement that are fre-
quently overloaded with the traditional approach. From the
mathematical point of view, the curved platform implies a
continuous variation of the inclination angle of the launching
rail, causing the variation of both the normal and the friction
force along the way. Then, the equations of motion are non-
linear, and its analytical solutions are not available, which
prevents the dynamic modelling.

5. Conclusion

This paper describes an inexpensive experiment that provides
a demonstration of a projectile motion. The experiment is
used to determine the initial (launch) velocity of the ball
launched from the inclined launching platform. This demon-
stration consists of a spherical ball rolling down the launch-
ing ramp, gaining the initial velocity. This paper describes
the three different models of projectile motion for the physics
classroom. These models are based on the mechanical energy
conservation. The motion on an incline provides an effective
means for the discussion of the conservation of mechanical
energy and the transformation of potential into kinetic en-
ergy. The energy concept is fundamentally important for de-
scribing and analyzing projectile motion. Within the subject
that is regarded in this work, it should be pointed out that,

strictly speaking, the conservation of mechanical energy is
valid only when no energy is transferred across the bound-
ary of the system being considered. Here, the system being
considered is a small sphere moving down an inclined plastic
launching platform. The spherical ball has contact with the
platform at only two points. In this scenario, very little en-
ergy is transferred to the track due to low friction. Through
this experiment, the activities of students were emphasized
to enhance students’ understanding of the scientific concept
of mechanical energy conservation. First was determined the
initial velocity v0 of the projectile motion by kinematic equa-
tions. The value ofv0 was compared with the values of the
vCM obtained by the energy concept in the proposed mod-
els. From the three proposed models, when considering the
pure rolling of a sphere on the rail of the platform using the
effective radiusK, this model seems to get the closest to the
obtained experimental value. This simple apparatus will pro-
vide a verification of the projectile theory that is acceptable to
most students. When implementing this laboratory investiga-
tion, we propose to assign each student group a particular an-
gle for their experiment. After performing the measurement
of the projectile range, the students are challenged to use con-
servation of energy and kinematic equations to compare the
calculations of the initial velocity. Then the students carry
out the comparison to see how close the initial velocityv0

obtained by kinematic equations is to thevCM velocity pre-
dicted by mechanical energy conversation. This experiment
can provide the basis for more advanced experiments such as
the study of two-dimensional projectile motion in which the
resistance acting on an object moving in air is proportional to
the square of the velocity of the object (quadratic resistance
law).
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