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1. Introduction which are grouped as leptons, (u, 7, ve, v, v,) and
quarks{, d, s, ¢, b, t) and their anti-particles, and bosons,
Matrix element computation is crucial to determine the crosssuch as the scalar spin-zero Higgs Bosfh) &nd the spin-1
section of a particle physics process. This requires one tgauge bosongy( g, Z, W+, W~). One of the main goals of
evaluate for example, the so-called tree-level or Leading Orparticle physics experiments since then is to study the SM at
der (LO) Feynman diagram contribution. Many a calcula-the precision frontier at high energy collider experimergs
tions in the present times require particle physicist to evalto measure the SM observables at a better precision while the
uate Next-to-Leading Order (NLO) matrix element for un- other major goal is to look for new physics beyond the SM
derstanding the underlying physics that is observed at thas several fundamental physics questions remain unanswered
collider experiments. These calculations are usually autowithin the SM. In recent years the precision studies, as well
mated in particle physics and makes use of mathematicaearches for new physics, has necessitated that the predic-
based softwares such as for example FeynCalc [1]. Thisions of theory are obtained at higher-orders in perturbation
paper explores the underlying physics and mathematics th#éteory rather than the tree-level computations.
is used when computing both the LO and NLO matrix el-  One of the motivations for NLO computation is that it
ements in the ABC model in a semi-automated method usleads to newer channels which may be useful in discovery of
ing Computer Algebra System (CAS) Rython , which is  new physics. As an example, consider one of the clean Higgs
because of the free and easy availabilityRyfthon . We  boson discovery channél — ~~ [2, 3]. The tree-level SM
have provided all the programs within this paper, whichdoes not allow this decay as photons are massless, and the
readily allows the reader to reproduce the results presentddiggs boson does not couple directly to photons. However,
here. All the python programs are also available as indeperthis channel is possible if there exists a loop of fermion as
dentjupyter  notebooks fronhttps://github.com/ shown in Fig. 1. This loop is just one of the NLO contribu-
amanmdesai/ABC _NLQsympy _calculation | tions to the Higgs decay width.

For pedagogical reasons, we have used the ABC model to One of the problems faced in computing matrix elements
present a way in which one can evaluate the matrix elemerfif scattering processes at higher-orders is that the integrals
at the LO and NLO. Before diving into physics framework tend to infinity. Often this leads to integrals of the form (Note
developed here, we shall highlight major motivation whichthat in this papep, p;, ¢, ¢; represent the four-momenta):
necessitates NLO computations in particle physics. 00 0o

Particle physics aims to study the fundamental particles / d*q/q* / ¢>dq/q* log(q)|>. 1)
and their interactions. It has been instrumental in develop-
ing the so-called Standard Model (SM) of particle physics It is apparent from the above equation that the result is
that describes all known interactions among matter with theénfinity, and this is often referred to as the “ultraviolet diveg-
exception of gravity. The SM has thus far survived all exper-ence” [4]. In general, whether a Feynman diagram (i.e., the
imental tests throughout the years. The theoretical predictioamplitude for a given process) is divergent or convergent can
of Higgs Boson in the 1960's was corroborated by the re-be determined using the concept known as Superficial degree
centdiscovery in 2012 by the ATLAS and CMS collaboration of divergence [5]. This is quantified by counting the power
at Large Hadron Collider, thereby establishing the SM as @f momentum in the numerator subtracted by the power of
credible theory [2, 3]. The SM framework includes fermions, momentum in the denominator of the amplitude for a given
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2 A. DESAI
2. Toy ABC Model

The ABC toy model is primarily used in particle physics
when introducing new concepts viz. Feynman diagrams,
renormalization, dimensional regularisation [4, 8, 9]. More-
over, recently the model was used to introduce the techniques
of Monte Carlo Event Generator at the Leading Order [10].
The model name, “ABC”, refers to the three scalar particles
(called A, B, C) that comprise it and any interaction be-
tween these patrticles is only allowed when all three particles
share a common vertex (interaction point). The Lagrangian
for the ABC model is given by the following equation [4]:

1 1 1
L= 5 a0 o + 53;#)33“4)3 + §aﬂ¢03”¢c

FIGURE 1. Representative Feynman diagram for the decay process 1 1 1 )
H — v atNLO. — SmAdh — §m23¢23 - §m20¢% —igpadpgc. (2)
Each term in the Lagrangian has a dimension of mass 4

) ) ) . (assumingi = ¢ = 1) owing to the fact that the action given
process and denoted d3. Accordingly, if D is positive g _ [ £d*z is dimensionless in the natural units. Look-
or zero, the integral is certainly divergent, otherwise if themg at the termigé 4 d5 6o, we see that for dimensional con-
value of D is negative for the given Feynman diagram and sogjstency the coupling constant of the theogy fnust also
its sub-diagrams also, then the integral is convergent as r'§jaye a dimension of mass. This has direct consequences
quired by the Weinberg'’s theorem; the reason for using ‘suynen computing the matrix elements at NLO [9].

perficial’ is that not only the complete diagram but also the | the ABC theory, the free Lagrangian is given as fol-
sub-diagrams must have < 0. The parameter D is usefulin |qys:

identifying whether the theory has a finite number of diver- 1 1

gent diagrams, then one can ‘regularise2 . isolate the ul- Liree = Z (28ﬂ¢iau¢i — megbf) , 3)
traviolet divergences) and ‘renormalise’ the theory to obtain i=A,B,C

finite amplitudes; if the number of divergent diagrams is notanq the interaction term is given by:

finite then one knows that that the theory is renormalisable.

Techniques have been developed to overcome this situation Ling = igpadpodc- 4

and they require one to invoke the ideas related to dimen-  |n order to obtain the equation of motion of free particles
sional regularization, renormalization, among others [6]. Injy the ABC model, one uses the Euler-Lagrange equation,
addition, one often also uses mathematical techniques Sugfich for a Lagrangiart(¢;, 9,¢;) is given by:
as the Feynman parametric integrals, that separates the finite 5 or or
part of the integral from the divergent part. - = = (5)
oxH 6(8ﬂ¢l) 8¢z

In this article, we have used the ABC model [4] that ~ The Feynman rules of a theory as obtained from Quan-
consists of three scalar particles to illustrate methods thaum field theory are a mnemonic for calculating the matrix
help in semi-automation of calculation with a CAS such aselement (dynamics) of a physics process. A summarized pro-
sympy package [7]. We have evaluated the expressions fogedure to obtaining these rules from the Lagrangian is:

the amplitudes of decay and the scattering processes at the  Remove the fields (particle wave-functions) from the
LO and NLO. .The organization of this paper is as follows: interacting part of the Lagrangian. The quantities
In Sec. 2, we introduced the ABC model and some theoret- which remain form the vertex contributions.

ical background. In Sec. 3, we have calculated the matrix

element for the decay and scattering processes at the tree- ® Apply Euler-Lagrange’s equation on the Free La-
level using the CAS irPython . We have also shown how grangian. This gives the inverse of the propagator (ad-
one can obtain the decay-width/cross-section for a given de-  ditional factor of complex numbemeeds to be multi-
cay/scattering process. In Sec. 4, we have demonstrated how  plied).

one could obtain the matrix E|emen.t expreSSion at NLO for The interaction Lagrangian E(ﬂ)(contains the constant
decay process, and NLO for scattering processes such as thg,, which is effectively the vertex contribution to a Feyn-
triangle, bubble, and box diagrams, all of which were imple-man diagram. Applying the Euler-Lagrange Equatis) (

mented withPython . In Sec. 5, we have presented someyg the free Lagrangian Eq3), we obtain the Klein-Gordon
useful mathematical techniques and their computational imgquation:

plementation are useful in isolating the infinities that occur in " 5 5
the computation of NLO diagrams. "0 —m”¢” = 0. (6)
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AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 3

Thus, we see that each free particle in the ABC model
follows the Klein-Gordon equation. In the momentum spacerag_e I. Feynman rules of the ABC model.
(p, = —1i0,,) this reduces to:

Diagram Component Feynman Rule
) 5 External Lines 1.0
pm—m”=0. Q) Vertex —ig
_ _ o Propagator P
The propagator of the theory is then given by taking in- o400 conservation 54 (k1 + k2 + k3) where

verse of the above equation and multiplying it by a factat. of . .
k; is momenta of lines at vertex

L (8) where the above equation is the expanded version of the
p? —m? Klein-Gordon Equatiorfd”d,, — m?)¢ = 0.
The Feynman rules of the ABC model are summarized in
The procedure to obtain the Klein-Gordon equation fromTable I. In addition, one also needs to include the Feynman
the free Lagrangian can also be performed ussympy). rules that are required to conserve four-momentum at each
We illustrate this procedure by considering the free part olvertex. This is ensured by introducing a four-dimensional
the Lagrangian for particle A. The computing environmentDirac delta function for each vertex.

may be setup as follows: In order to automate matrix element calculations at LO
and NLO for decay and scattering processes in the ABC
+ from sympy import Symbol,Function model, we adapt the Feynman rulessiimpy syntax. As in

» Erow Syupy Inport emler cquatiens the previously implemented syntax, we import the necessary

sympy modules and define the symbols:

where we imported the necessary submoduleywipy . We

then define the symbols and the wavefunction from sympy import Symbol, symbols
> from sympy import I, simplify,pi
v from sympy import DiracDelta

it o= Symbol(lt‘) . from sympy import integrate,oo,factor
+ X = SYmb°1(IX‘) s mA,mB,mC = symbols('m A m B mC') # masses
sy = Symbol(ly‘) ¢ g = Symbol('g')# coupling
7 = Symbol(lz ). 7q = Symbol('q') # internal momentum
7 M = zymgoig'ng ) s pl,p2,p3,p4 = symbols('p_1:5') #externalmomenta
s g = Symbo g
phi = Function('\\phi_A')

The module defining the Feynman rules is then developed

. , ) as a class with each Feynman rule implemented as a function.
The Lagrangian for the free particle A can be imple-

n1ent6d|nsyn1py as follows: o # Feynman rules for the ABC model
v class FeynmanRules:
L — (1/2)+=(phi(x,y,z,t) difE(t)=+2 def Sdnit ():

1 — phi(x,y,z,t).diff(x)==2 12 pass
— phi(x,y,z,t).diff(y)==2 3
— phi(x,y,z,t).diff(z)*%2 1« def propagator(q,m):

14 — (m=phi(x,y,z,t))=*2) 15 prop = I/(qg##2 — m#x2)

5 print (L) 16 return prop

. . . .15 def vertex():

Euler-Lagrange equation is provided as a submodule in,, return -Txg

sympy and this package may be called as follows: x

def external_line():
return 1

result = euler_equations(L, phi(x,y,z,t),
1 [x,y,z,t])

" print(result [@]) def delta(kl, kz, k3):

delta = (2#pi)==4=DiracDelta(kl + k2 + k3)
return delta

The output of this program is then given as:
» def remove_factor():
2 2 2 return I/((2#pi)=#=4=DiracDelta(8))

0

2

—-m T, Y, 2, t)— == T, Y, 2, t)+—=—= z,Y,2,t

A¢A( Y ) 3t2¢A( Y ) 5$2¢A( Y ) i def integral factor():
2 92 2 return 1/((2#pi)==4)

+ aygqu(I7yvz7t)+ 822¢A(I7yvz7t) = 03 (9)

We have now introduced and also developed the neces-
sary minimum tools/modules that allows us to carry out ma-
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4 A. DESAI

trix element computation at the Leading order as well as ats M = g, which is the expected result. The decay width
the NLO in the ABC model. is given as a product of available phase space and square of
Note that one may also use the superficial degree of diabsolute matrix element [4]:
vergence introduced in the previous section to determine if a
diagram is divergent or convergent. For the ABC model, one r— P4l 2
. ’ o . . = —2 % |M7, (10)
may use the following expression fé&r which is derived in 8rm?
polar coordinates (which is simpler to interpret) in Ref. [8]:
wherep , is absolute three-momentum of the decaying parti-

D=3— V. FE cle andm 4 is mass of the particle. Substituting the value of
22 matrix element obtained, the decay widths given by:
whereV is number of verticesF is the number of exter-
nal lines. A given Feynman diagram is said to be diver- I — 9%l (11)
gentif D > —1 (note the condition is slightly different from 8mm?
Weinberg’s theorem owing to different coordinate system, the
physics interpretation remains unchanged). The above equation can also be implemented using the
following sympy code:
3. Semi-automating tree-level computation s DA 2 Symbelle" | \NiextbE(p] A

) . . . 7 gamma = pA/(8xpi #(mA=xx2)) % abs(ME)#x=2
With the implementation of Feynman rules in tegmpy

package, we now evaluate the matrix element for decay pro-
cess and for a scattering process at the tree-level. This allows ) _
us to test the software and compare the results with books [48-2-  Scattering processes at the leading order

3.1. Decay width process at leading order We now evaluate the scattering amplitude forsachannel
process in the ABC model, whesechannel is defined such

A decay process of a particle refers to its transformation intahat the four-momenta of internal particle is sum of four-

two or more daughter particles. Owing to the type of interac-momenta of incoming particles. In particular, we consider

tion in the ABC model, a given particle for instange can  the following processd B — C — A B. The Feyn-

only decay to particle's3 and C' at the tree-level. Let us man diagram of this process is given in Fig. 3. One can use

assume that the mass, > mp + mc in which case the theFeynmanRules module prepared earlier to evaluate the

decay is kinematically feasible. The Feynman diagram fomatrix element for this process using the following snippet:

the decay procesda — B C'is given in Fig. 2. As given

in Grifiths [4], we expect the matrix element for the decay . ,

process to be\l = ¢. To evaluate the matrix element for ' flf‘““ ?Zmﬁaiﬁﬂfi it 00

decay process usirgympy, one can use the following script | ,; fr)_’extemal_line () esd

in conjunction with theFeynmanRules module prepared ., ME = NE # fr.vertex()##2

in the previous section: s ME = ME # fr.propagator(q,mC)
s« ME = ME = fr.delta(pl,p2,-q)
i fr = FeynmanRules 7 ME = ME = fr.delta(-p3,-p4,q)
: ME = fr.external line ()#=3 s ME = integrate(ME, (q,-00,00))#fr.integral_factor ()
3 ME = ME=fr.vertex()=fr.delta(pl,-p2,-p3) o ME = ME # fr.remove_factor()
+ ME = ME.subs({pl:p2+p3})=fr.remove factor() 0 ME_s = ME.subs({p3: —p4 +pl + p2})
s print (ME)

where we have integrated over the internal momentum. This
integration in principle is carried over a four-dimensional
"Birac delta function using d*q as the variable for integra-

where we have substitutesy = ps + p3 to enforce the
energy-momentum conservation. The output of this progra

P2 -
57 N 2 P3 -
// \\ q //
- B -
A. <1/ B A \\ — ,// A
,,,,,,, R
—— % i By B OB
P1 N y .
~ e b
p3 RN A P2 D4 Sa,

FIGURE 2. Representative Feynman diagram for the decay process-IGURE 3. Representative Feynman diagram for the scattering pro-
in the ABC model. cess in thes-channel.
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AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 5

where E.,,, is the center of mass energy of a given pro-

\‘\ A B ,/ cess andi? is the angular area. Her#1 refers to the sum
\\ 7 of M,, M, if the process occurs in the — ¢ channel or
]k‘ i S /A: M;, M, if the process happens in the- v channel. The
| t-channel matrix element is given by:
I
[ 2
C. |4 M, = g 5. (14)
| —m% + (—p2 + pa)
PQ/’ e Yj . . .
’ o Therefore one obtains the following expression for the
o /A B . differential cross section for the procedsB — A B:
2 2 2
do . |pf| ’m%7(511727p4)2 + mé,f(‘;]njtpg)z

FIGURE 4. Representative Feynman diagram for the scattering pro- (15)

a0 2
cess in the-channel df 12872 Ecpy [P
The method can be implemented sgmpy as follows

(assuming process occurs in thandt channels):

p-f = Symbol('\\textbf{p}_f")

\\\ A B //
\\\\Qx ;;;//’ > p-i = Symbol('\\textbf{p}_i")
T ; Ecm Symbol('E_{cm} ')
) ~
P ( P4 . diff_xsec =abs(p_f)abs(1/p.i) \

5 #(1/(128+pi**2 *Ecm))*abs(ME_s + ME_t)*x2

I
C, |4
|
P2 AN D3 4. Introduction to semi-automated NLO com-
/ \ putations
S & B %% . . . . .
. N The techniques discussed in the previous sections may also

be adapted to work for semi-automated determination of ma-
FIGURE5. Representative Feynman diagram for the scattering pro-trix element at NLO. For the tree-level decay process and for
cess in the:-channel. the tree-level scattering process discussed in Sec. 3, the num-
) _ ] ber of possible processes rises at NLO. Each diagram at NLO
tion. However, in CAS, we have evaluated the integral ovefiniroduces new internal lines and additional vertices. For in-
1p Dirac delta function andgq being the integration variable. stance, in the decay process at NLO, there are two additional
Finally, we substitutgs = p1 + p2 — pa, which ensures the yertices and three internal lines. On the other hand, an NLO

energy-momentum conservation. scattering diagram includes four internal lines or two addi-
The program finally gives as output: tional vertices. This implies that the possible number of di-
5 agrams increases to eight for a given scattering process in a
9 -, (12)  channel.
—mg + (p1 + p2) In this section we will show usingympy how one can

hich is th trix el N Id obtain 14 obtain matrix element expressions for the decay process at
which s the _ma rix element as one would obtain [4]. NLO as well as the matrix element for the vertex correction,
As exercises one may repeat the above procedure for Capg'ropagator correction and box diagram, which are the possi-

culating t-channgl andi-channel matrix.eler.nents. T ple contributions at the NLO for a given channel in the ABC
andu-channel diagrams are presented in Figs. 4 and 5. Thﬁmdel.

t—channel refers to the channel where the internal momenta

is given as; = p; — p3, Whereas for the—channel the inter- 4.1. Decay Width Amplitude at NLO

nal momenta is given as= p; —p4. Moreover, au—channel

process is viable only when there are identical particles in th¢y Sec. 3, we evaluated the decay width amplitude at the tree-

final state. level and the Feynman diagram for the tree-level process is
The differential cross-section for a scattering process igjiven in Fig. 2. A possible NLO contribution to this process

given as a product of phase-space (kinematics) and square igfgiven in Fig. 6. As a first step, we evaluate the decay width

absolute amplitude (dynamics) by [4]: amplitude for the Feynman diagram given in Fig. 6 assuming,
as previously thatn 4 > mp + mc.

do — [Py IM[? (13) This diagram involves a triangular loop which consists of

dQ 128722 |p;| 7 three internal lines. There are three vertices in this diagram,
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6 A. DESAI

/ The following scripts are used to construct the matrix el-

¥ 13 ement for this diagram witeympy package:
k2 S
7T i fr = FeynmanRules
7 27 By » ME = fr.external_line ()==3
1\ g ,A As
— K i 3 ME = ME=xfr.vertex () =3
P \\ . ME = ME+fr.delta(pl,—k1,k2)

k1

\ s ME = ME=fr.delta(kl,-p2,-k3)
\ < 6« ME = MEsfr.delta(k3,-k2,-p3)
B 7 ME = ME=fr.propagator (kl,mC)
\ s ME = ME=fr.propagator (k2,mB)
) ME = ME=fr.propagator (k3,mA)
FIGURE 6. Representative Feynman diagram for the decay processs ME = integrate (ME, (kl,-00,00))
at NLO. i ME = ME # fr.integral_factor ()
2 ME = integrate (ME, (k2,—-00,00))
which is, two more compared to the Decay width at the Lead:: ME = ME.subs ({pl:p2+p3})=fr.remove factor ()
ing Order. Each vertex brings in a factor-eig, and, there-
fore, we are evaluating the matrix element at an ordgfof ~ The matrix element obtained (before carrying out any inte-
| gration) is of the form:

1930 (—k1+ka+p1) 8 (ki—ks — p2) 6 (—k2 + ks—p3)
M= /d4k /d4k /d4k Y9 . (16)
R (k3 —mZ) (K3—m3%) (k3—m?%)

The result before integrating the varialigis of the following fornt:

16im g®
M ox — / d*ks————, 17
o 3 F k) a7)
where the denominator (the functiéf(ks)) is given by:
F(ks) = (ks —ma) (ks +ma) (ks + mp + p3) (ks + mp — p3) (ks — mc + p2) (k3 + mc + p2). (18)

For carrying out the last integral, we have to take into ac-
count that we are integrating over a 4D space whgére= The triangle diagram that we are considering here is also
@+ + 3+ known as the vertex correction diagram, because the vertex

In Sec. 5, we will discuss some ways in which one canin a tree-level diagram is now replaced by a triangle, which
evaluate integrals as above. But before going through thds effectively a correction to the vertex.
we would like to explore the various scattering processes that The following program is used to obtain expression for
can occur at one loop in the ABC model. matrix element by applying the Feynman rules to the Feyn-

man diagram in Fig. 7:

4.2. Scattering at NLO: Vertex Corrections or Triangle i fr = FeynmanRules

diagrams » ME = fr.external_line ()==4

3 ME = ME=fr.vertex ()==4

In scattering processes, there are possible types of contribi « ME = MExfr.delta(pl,p2,-q)
tions viz. triangular, bubble and box diagrams. To begin with, * ME = MExfr.delta(q,-k1,-k2)
we consider triangular NLO diagram contribution (Fig. 7) to EE B ﬁggji::gﬁﬁ;ﬁ‘l;)
the s—channel process{ B — A B) as in Fig. 3, whichis ¢ _ ME;fr:propagat(’Dr(q:mE)
similar to the triangle as seen in the previous section. While ;, yg - ME+«fr.propagator (k1,mC)
we consider the triangular region on the right vertex in the.w ME = ME«fr.propagator (k2 ,mB)
Feynman diagram, there is also another possibility to have thi ME = ME:fr.propagator (k3 ,mA)
triangular diagram at the left vertex. However, the scattering” ME = ME=fr.integral factor ()4
process discussed here is different from the decay process " ﬁ B iﬁ;:gizti EE ’ 8:; :22 ' zgig
NLO. For instance, it has an additional vertex which leads tc o _ integrate(m (q’ioo oo
an additional internal line (propagator).

Rev. Mex. Fis. E21 020207



AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 7

.
.
A S
.
.
.
p1 7 D1

5 wier
A % q e |

FIGURE 7. Representative Feynman triangle diagram for the scattering process at NLOsiclihanel.

16 (—k1 — ko +q) 8 (ky — ks —p3) 6 (ko + k3 —pa) 6 (p1 +p2 — q)
M = /d4k /d4k: /d4k J , (19)
' ’ ’ (K —mg) (k3 — mB) (k§ — m%) (-m¢ + ¢°)
which after integrating over all internal momenta excepgives:
4
_ 4, 970 (p1+p2 —p3 —pa)

where the functiorF'(ks) is given by:
F(ks) = (ks —ma) (ks + ma) (ks — mp — pa) (ks + mp — ps)
X (mc —p1 —p2) (me + p1 +p2) (ks —me +p1 +p2 — pa) (ks + mc +p1 +p2 — pa) . (21)
As noted earlier in the case of decay width matrix element, we see that the last integral will lead to infinities.
4.3. Scattering at NLO: Propagator correction or Bubble diagrams

In this section, we study the corrections to the propagator by evaluating the matrix element of the process given in Fig. 8.
We apply the procedure to evaluating Feynman diagrams and make use of the following python snippet to evaluate the
matrix element for the bubble diagram in Fig. 8.

1 fr = FeynmanRules

> ME = fr.external_line ()==x4

3 ME = ME * fr.vertex ()*x4

+ ME = ME = fr.propagator (kl,mC)

s ME = ME = fr.propagator (k2,mA)
ME = ME = fr.propagator (k3,mB)

7 ME = ME = fr.propagator (k4 ,mC)

s ME = ME = fr.delta(pl,p2,-k1)

o ME = ME = fr.delta(kl,-k2,k3)

o ME = ME = fr.delta(k2,-k3,-k4)

i ME = ME = fr.delta(k4,-p3,-p4)

2 ME = ME =fr.integral factor ()=#=4

5 ME = integrate(ME, (kl1,-00,00))
i+ ME = integrate(ME, (k2,-00,00))
s ME = integrate(ME, (k4,-00,00))

where the matrix element before integrating is given as:

M= /d4k1/d4k2/d4k3/d4k4

« g*6 (k1 + p1 + p2) 6 (k1 — ko + k3) 6 (ko — k3 — k4) 6 (ks — p3 — pa)

(K7 — %) (R — %) (R — %) (kG — %) ’ (22)

and after performing the integral over the three internal momenta, nakaely;, andk,, we obtain the following expression:

4
_ 4, 90 (P14 P2 — p3 — pa)
M x /d ks F k) , (23)
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8 A. DESAI

P ke y A A
RS T T AN ps A ¢
i k1 AT k4 7 . B -

------- | R N 2 -

= ¢ '\\]i/// ¢ — 1 \r ---------- (’
: B

& ks PN

ky

FIGURE 8. Representative Feynman Bubble diagram for the scat-

g Ct |k
tering process at NLO in thechannel. ;

A
. . . P2 g T S P4
where the functiorF'(k3) is given by: ks .
F(ks) = (ks —mg) (ks + mp) (mc — p1 — p2)° B 3 h B

2
X (me +p1 +p2)” (ks —ma + p1 + p2 : : :
( ) ) FIGURE 9. Representative Feynman Box diagram for the scattering

X (ks +ma +p1 +p2) . (24)  process at NLO.

It may be noted that this correction is also possible in any
of the external lines. Therefore, the total number of bubble

diagrams in any gives—, t— or u— channels is 5. fr = FeynmanRules

> ME fr.external_line ()=

3 ME ME = fr.vertex()»‘~f.<4

1+ ME = ME = fr.propagator(kl,mC)

. . . . . s ME = ME = fr.propagator (k2,mB)
Box diagrams are important in particle physics. In QED NE = HE % Br.Deopag i el al)

for instance, Delbruck scatterﬁng or scattgring of photon-by- ME = ME # £r.propagator(k,mC)
photon ¢y — ~v) proceeds via the box diagram and hence . ug = ME « fr.delta(pl,-k1,-k2)
evaluating such diagrams is important, since photon-photoi« ME = ME = fr.delta(k2,-p3,-k4)
scattering is not known to occur at the tree-level processes. © ME = ME = fr.delta(k4,k3,-p4)
In the ABC model, there exists only one box diagram for ' ME = ME x fr.delta(p2, ki,-k3)
eachs-, t- andu-channel process at the NLO. The following ~ ME = ME +£r. integral factor O
hon snippet is used to evaluate the matrix element for th* - - integrate (e, (kl,~oo, 00))
pyt 0, PP ) L s ME = integrate(ME, (k2,-00,00))
box d|agram as given in Fig. 9. | s ME = integrate(ME, (k4,-00,00))

4.4. Scattering at NLO: Box diagrams

where the matrix element before integrating is given as:

4 —_— —_— —_— —_— - J—
M:/d4k1/d4k2/d4k3/d4k495( Fu— ks £ p1) 0 ks — ks +po) (ke —ka —pa) (ks t ke —pa) (5

(k7 = mZ) (k3 — m3) (k§ —m?) (k3 — m3)
and after performing the integral over the three internal momenta, nakaely;, andk,, we obtain the following expression:
g D —
/d4k;3 5 (p1 +p(2kB)P3 p4)’ (26)

where the functiorF'(ks) is given by:
F(ks) = (ks —ma) (ks + ma) (ks — mc — pa) (k3 + mc — pa) (ks — mp — p3 — pa)

X (ks +mp —p3 —pa) (k3 — mc +p1 — p3 — pa) (k3 +mc + p1 — p3 — pa) . (27)
We will explore methods to integrate the above expression.

5. Some Mathematical techniques to overcome infinities at NLO

In this section we present some techniques that aid in separating the infinite part of the integral from the finite part, thereby
reducing the answer as a sum of finite and infinite parts. To illustrate the techniques involved, we use the matrix element for
the bubble diagram which was obtained in E2R)(and factors given in Eq24). The reader is encouraged to apply all the
techniques discussed in this section to other NLO processes.

5.1. Wick’s Rotation
The numerator in Eq2Q) has a term of the typei*q whereq is the four momentum of the propagator. From special relativity

we know thaty? = —¢2 + ¢? + ¢3 + ¢3,

Rev. Mex. Fis. E21 020207



AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 9

where the subscripts 0 stands for the time coordinate andtherep = p; + po.
1,2,3 represent the spatial coordinate. By Wick's rotation =~ We now identify « = (¢* — m%) and b =
we mean to perform a rotation which allow us the rein-((q +p)? — mi‘), which implies that:
terpret Minkowski coordinate to the Euclidean coordinate. L -
Accordingly, letgy — igy. We therefore see thaf> = / dm/dQ/ g
@@ + ¢ + g3 + ¢2, which is the 4 dimension equivalent to 0 0
the 3 dimension radiug? = x? + y? + 22 in the Euclidean 1
space. One can then wriéq asq>dqdS). X N
This leads to Eq/23) to the following form, where for (»T <—m23+ (p+q) ) + (1-2) (—m23+q2)>
simplicity we replace the variablg with ¢:

. (33)

) One then needs to collect the terms as per the order of
M f/dQ/q?’dqg 6 (p1 +p2—p3— p4), 28 ¢ and expand the equation, and then finally, factorize again.

F(q) The above steps can be carried ousympy with the fol-
lowing program:

with F'(¢) given as:

i from sympy import symbols

F(k3) = (¢ —mp) (¢ +mp) (mc —p1 — p2)2 > from sympy import simplify,expand, factor
9 ; from sympy import latex
X(mc+p1+p2) (q_mA+p1+p2) +q, p,Xx =symbols('q p x')

smA, mB = symbols('m A mB")
X (q+ma+p1+p2). (29)

X . . . . .. 7 def feynman_integral (A, B):
Owing to Wick’s rotation, the integration limits have inzegrand - 91/(;;:::(1-;:) R

changed td to oo instead of—oo to co. The Wick’s rotation return integrand
as yet does not allow us to integrate the quantities, but makes:.

the expression more convenient to deal with than before. %“tegragd = feyg;nanfintegral (g##2 — mB#=2,
2 (q+p)#%2 — mB#x

; factor(expand(integrand).collect('q"'))

5.2. Feynman Integrals

The concept of Feynman integrals (parameters) is introduced 1 1€ output of this program is:

here. It is a useful step towards integrating the quantities ob- 1 <
tained in the last section. The Feynman parameters are given / dl‘/dﬂ/ q°dq
in the following form [9]: 0 0 ,

S|P N 30 T &9

— = . —m X x

ab /0 CE[a:errb(l—z)]Q (30) 5P P
This identity can be verified by integrating the right hand

side. Alternatively, one may also use CAS systeyn{py)

to test the identify as illustrated in the program below: 1

Now we substitute the following variablé= ¢+ xp and
find the following:

(35)

2 2
i from sympy import symbols,simplify,integrate (=12 + mp + p2a? — p*x)

>a, b, x = symbols('a b x") . .
; integrand = 1/(x#a + (1-X)#b)#x2 In the above equation, let us name all terms not contain-

+ result=integrate(integrand, (x,8,1)) ing [ as some constari.
s simplify(result) 1

(36)
As we see the expressio@3), parameters like a, b are

useful in bubble diagrams. However, for triangle or box di-with
agrams, we need parameters such a, b, ¢, and d. We focus s 99 o
on applying the case for two parameters. We now apply the A =mB” +pa” —p-a. 37)
Feynman identity to the bubble diagram under consideration.

For simplicity we only write the terms containing a factor of -3 Cut-off Method

q. Therefore the function to be integrated is:

Moc—/q3dq

with F'(q) given as:

One of the methods to carry out the momentum integral is
the cut-off method. The motivation of the cut-off procedure
is to integrate the internal momentum franto A instead of
infinity and take the limit:lim, ., at the end of the calcu-
lation. The main idea is that we do not know a priori if we
F(k3) = (g—mp)(g+mp)(g+p—ma)(g+p+ma) are fully aware of the dynamics of physics beyond certain en-

) ) ) ) ergies. Carrying out the integration over thisvith the new

= (¢" —m3p) ((a+p)* —m3) ., (32)  Jimit, we find (using the definition of\ as above):

)’ 31)
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L Em(aE) (T
4

Mo T AN 4
ﬁ log (—A2 ﬁ + A) ﬁ log (A2 ﬁ + A)
1 + 1 ) (38)

and the integrationf d<2 in 4-dimension isiz. We also need
to take into account the/(27)* factor that arises due to the 'whereA is given by Eq.87). Our focus will be to integrate
dq integral. The final result will also take the factors from over the variablé. For generalisation of the problem we have
Eqg. (32) that did not contain the variable introduced a factom in the power of denominator. For this
One should then be able to isolate the infinities from finitecase, one can substitute = 1 at the end of the calculation.
terms. Actually, what we present here is a simple techniqud@he angular integral of d?~'Q, which represents a sphere
to isolate infinities from finite terms. The infinities them- in d dimension is given a&7%2)/(I'(d/2)) and one check
selves need to be addressed by renormalization where in thkis function of some known casesds- 1, 2, 3... [8].
Lagrangian is required to contain additional ‘counter-terms’  Apart from the angular factor which can be integrated in-
that keep the infinities ‘under the rug’. dependently, the part of the integral in EG9) is evaluated
Thesympy code to carry out the steps in this section isand found as:

as fO”OWS 2_d7r_dAA_2,rnA%_1F (%) F (_% + 2m>
from sympy import Symbol,symbols QF(QﬂQ) ) (40)
> from sympy import simplify,expand, factor
: from sympy import integrate,latex which in our casen = 1, reduces to the following form:
1 q, p,%X,1 =symbols('q p x 1"
s mA, mB = symbols('m_A m_B') 2—d7T7T—dA%—1 (d— 2)
s lamb = Symbol('\Lambda') — (42)
7 delta = Symbol('\Delta') 4Assin (7)

s ded ey ool AN S The following program can be used to integrate:

1 integrand = 1/(A«(1-X) + x#B)=:2 . from sympy import Symbol,symbols

! return integrand ; from sympy import integrate,simplify

: ; from sympy import pi,oo

: integrand = feynman_integral (g##2 — mB##2, 21, d, m = symbols('l d m',positive=True)
11 (q+p)##2 — mBwx2) s delta = Symbol('\Delta',positive=True)
s result=factor(expand(integrand).collect('q')) eps = Symbol('\epsilon')

s result=result.subs({q: 1 -xxp}) ; integral = ls#(d—1)/(lxx2 + delta)=x(2=m)
17 result=result.expand().collect('l"').factor() . integral integral/(2+pi)++d

s result=result.subs) o integral = integrate(integral,(l,0,00))

1o ({mB#%2 + (pxx)*%x2 — p**2 xx: delta}) simplify(integral)

w0 result = integrate(result, (1,0,lamb))

Note that whenn = 1 (which is the case we are dealing

In the next section we provide a glimpse ofimplementingwith) one gets a factor of(¢/2) which is defined as (see
dimensional regularization isympy. e.g [’5]).

4. i i izati 4—d 2
5.4. Dimensional Regularization r ( 5 ) -r (g) ==- v+ 0(e), (42)
One of the alternative procedures to isolate the infinities of

the integral in Eq.34) involve the technique of dimensional Where,y is the Euler-Macheroni constant and the linhit 4
regularization. The motivation here is to write the integral inis carried at the end of computation. The divergent terms are

the d-dimensional abstract space and introduce a parametéfierefore collected by the/e factor and other terms are fi-
e such thatd = 4 — ¢ and then at the end of the calculation hite. The idea then is to renormalize the ABC Lagrangian
take the limitd — 4. In this section, we highlight the im- and renormalization factors are defined such that the infini-

portant steps involved in dimensional regularization and itdies are absorbed by the counter diagrams. The last part is not
implementation irsympy. The expression that we want to covered in this paper.
integrate is given as:

6. Exercises

1 o]
1
/ dx / Al (39) ,
0 0 (12— A)2m e Evaluate the matrix element fat-channel andu-
channel processes at Leading Order.
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e Obtain an expression for matrix element for a bubble
diagram when the “bubble” is present on an external
line.

i
2 ME
3 ME
4+ ME
s ME
s ME

(See Appendix for Solutions to the Exercises)

7. Conclusions

1 ME
s ME

We have presented a semi-automd®gthon Computer Al-
gebra Systems{ympy) framework, which can be used to
evaluate the LO matrix element as well as the expressions fc -
NLO matrix elements such as the triangle, bubble and box
diagrams in the ABC model. Moreover, we explored some of

the techniques such as implementing Feynman integrals, cut-

off method and dimensional regularization techniques in this
semi-automated framework. Given the open-source python-
based ecosystem, our computation will be useful in teach-
ing how theory computation in particle physics can be imple-
mented in python at an early stage.

In the future, we aim to present another paper which will

11

= FeynmanRules
= fr.external_line ()=x4
= ME % fr.vertex (D=2
= ME = fr.propagator(q,mC)
= ME % fr.delta(pl,-p4,-q)
= ME = fr.delta(p2,-p3,q)
= integrate(ME, (q,-00,00)) = fr.integral_factor()
= ME = fr.remove_factor()
9 ME_u = ME.subs({p3: —p4 +pl + p2})

print(latex(ME_u))

which results in

2
My = ——7 .
—mc+(p1—p4)

(A.2)

e For the bubble diagram with a bubble in an external
arm (Fig. 10):

be based on carrying out semi-automatgohpy based com-

putation for Quantum Electrodynamics. Moreover, a further ks

automation can be introduced by building a framework that, T

by using techniques of combinatorics and conservation of i e i - P
guantum numbers, is able to predict the possible Feynman ey, S B k1 B F\

diagram for a given process. by q A e

< k
: ) . B
Appendix \
2 D2 P4 R

A. Solutions to exercises
FIGURE 10. Representative Feynman triangle diagram for the scat-

e For t-channel process (Fig. 4) the matrix element cariering process at NLO in the-channel with bubble in an external
be computed as follows: arm.

fr = FeynmanRules The following program can be used:
» ME = fr.external line ()#=4
3 ME = ME % fr.vertex()#=2
+ ME = ME = fr.propagator(q,mC) i fr = FeynmanRules
s ME = ME = fr.delta(pl,-p3,-q) > ME = fr.external _line ()#=4
s ME = ME * fr.delta(p2,-p4,q) s ME = ME = fr.vertex()==4
7 ME = integrate(ME, (q,-00,00)) # fr.integral_factor() y ME = ME = fr.propagator (q,mC)
s ME = ME = frl;remov'e,factor() . ME = ME # fr.propagator (kl,mA)
¥ MEjttaMi'Sl(lMSE(El;i' ~p4 +pl + p2P) s ME = ME = fr.propagator(k2,mB)
g - LIRSS A 7 ME = ME = fr.propagator (k3,mC)
s ME = ME % fr.delta(pl,p2,—-q)
Wh|Ch results |n MES=0ME = fr.delta(q,—kl,—p4)
o ME = ME * fr.delta(kl,k2,-k3)
9 I ME = ME = fr.delta(-k2,k3,p3)
g 2 = * 1 %
M, = 5 (A.l) 12 ME 1‘.‘IE fr.integral_factor ()
_m% + (_p2 _|_p4) 3 ME = }ntegrate(ME, (q,-00,00))
+ ME = integrate(ME, (kl,-o00,00)
e For u-channel process (Fig. 5) the matrix element can s ME = integrate(ME, (k2,-o00,00)
be computed as follows:
| which gives

g*0 (p1+p2+p3—pa)
(ks—mc) (ks+me) (ma—ps3) (ma+ps) (ks — mp+ps) (ks+mp+ps) (mc—ps+pa) (me+ps—pa)

M= (A.3)
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