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1. Introduction

Matrix element computation is crucial to determine the cross-
section of a particle physics process. This requires one to
evaluate for example, the so-called tree-level or Leading Or-
der (LO) Feynman diagram contribution. Many a calcula-
tions in the present times require particle physicist to eval-
uate Next-to-Leading Order (NLO) matrix element for un-
derstanding the underlying physics that is observed at the
collider experiments. These calculations are usually auto-
mated in particle physics and makes use of mathematica
based softwares such as for example FeynCalc [1]. This
paper explores the underlying physics and mathematics that
is used when computing both the LO and NLO matrix el-
ements in the ABC model in a semi-automated method us-
ing Computer Algebra System (CAS) inPython , which is
because of the free and easy availability ofPython . We
have provided all the programs within this paper, which
readily allows the reader to reproduce the results presented
here. All the python programs are also available as indepen-
dentjupyter notebooks fromhttps://github.com/
amanmdesai/ABC NLOsympy calculation .

For pedagogical reasons, we have used the ABC model to
present a way in which one can evaluate the matrix element
at the LO and NLO. Before diving into physics framework
developed here, we shall highlight major motivation which
necessitates NLO computations in particle physics.

Particle physics aims to study the fundamental particles
and their interactions. It has been instrumental in develop-
ing the so-called Standard Model (SM) of particle physics
that describes all known interactions among matter with the
exception of gravity. The SM has thus far survived all exper-
imental tests throughout the years. The theoretical prediction
of Higgs Boson in the 1960’s was corroborated by the re-
cent discovery in 2012 by the ATLAS and CMS collaboration
at Large Hadron Collider, thereby establishing the SM as a
credible theory [2,3]. The SM framework includes fermions,

which are grouped as leptons (e, µ, τ, νe, νµ, ντ ) and
quarks(u, d, s, c, b, t) and their anti-particles, and bosons,
such as the scalar spin-zero Higgs Boson (H) and the spin-1
gauge bosons (γ, g, Z, W+, W−). One of the main goals of
particle physics experiments since then is to study the SM at
the precision frontier at high energy collider experimentsi.e.
to measure the SM observables at a better precision while the
other major goal is to look for new physics beyond the SM
as several fundamental physics questions remain unanswered
within the SM. In recent years the precision studies, as well
searches for new physics, has necessitated that the predic-
tions of theory are obtained at higher-orders in perturbation
theory rather than the tree-level computations.

One of the motivations for NLO computation is that it
leads to newer channels which may be useful in discovery of
new physics. As an example, consider one of the clean Higgs
boson discovery channelH → γγ [2, 3]. The tree-level SM
does not allow this decay as photons are massless, and the
Higgs boson does not couple directly to photons. However,
this channel is possible if there exists a loop of fermion as
shown in Fig. 1. This loop is just one of the NLO contribu-
tions to the Higgs decay width.

One of the problems faced in computing matrix elements
of scattering processes at higher-orders is that the integrals
tend to infinity. Often this leads to integrals of the form (Note
that in this paperp, pi, q, qi represent the four-momenta):

∫ ∞
d4q/q4 ∝

∫ ∞
q3dq/q4 log(q)|∞. (1)

It is apparent from the above equation that the result is
infinity, and this is often referred to as the “ultraviolet diveg-
ence” [4]. In general, whether a Feynman diagram (i.e., the
amplitude for a given process) is divergent or convergent can
be determined using the concept known as Superficial degree
of divergence [5]. This is quantified by counting the power
of momentum in the numerator subtracted by the power of
momentum in the denominator of the amplitude for a given
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2 A. DESAI

FIGURE 1. Representative Feynman diagram for the decay process
H → γγ at NLO.

process and denoted asD. Accordingly, if D is positive
or zero, the integral is certainly divergent, otherwise if the
value ofD is negative for the given Feynman diagram and so
its sub-diagrams also, then the integral is convergent as re-
quired by the Weinberg’s theorem; the reason for using ‘su-
perficial’ is that not only the complete diagram but also the
sub-diagrams must haveD < 0. The parameter D is useful in
identifying whether the theory has a finite number of diver-
gent diagrams, then one can ‘regularise’ (i.e., isolate the ul-
traviolet divergences) and ‘renormalise’ the theory to obtain
finite amplitudes; if the number of divergent diagrams is not
finite then one knows that that the theory is renormalisable.
Techniques have been developed to overcome this situation
and they require one to invoke the ideas related to dimen-
sional regularization, renormalization, among others [6]. In
addition, one often also uses mathematical techniques such
as the Feynman parametric integrals, that separates the finite
part of the integral from the divergent part.

In this article, we have used the ABC model [4] that
consists of three scalar particles to illustrate methods that
help in semi-automation of calculation with a CAS such as
sympy package [7]. We have evaluated the expressions for
the amplitudes of decay and the scattering processes at the
LO and NLO. The organization of this paper is as follows:
In Sec. 2, we introduced the ABC model and some theoret-
ical background. In Sec. 3, we have calculated the matrix
element for the decay and scattering processes at the tree-
level using the CAS inPython . We have also shown how
one can obtain the decay-width/cross-section for a given de-
cay/scattering process. In Sec. 4, we have demonstrated how
one could obtain the matrix element expression at NLO for
decay process, and NLO for scattering processes such as the
triangle, bubble, and box diagrams, all of which were imple-
mented withPython . In Sec. 5, we have presented some
useful mathematical techniques and their computational im-
plementation are useful in isolating the infinities that occur in
the computation of NLO diagrams.

2. Toy ABC Model

The ABC toy model is primarily used in particle physics
when introducing new concepts viz. Feynman diagrams,
renormalization, dimensional regularisation [4, 8, 9]. More-
over, recently the model was used to introduce the techniques
of Monte Carlo Event Generator at the Leading Order [10].
The model name, “ABC”, refers to the three scalar particles
(called A, B, C) that comprise it and any interaction be-
tween these particles is only allowed when all three particles
share a common vertex (interaction point). The Lagrangian
for the ABC model is given by the following equation [4]:

L =
1
2
∂µφA∂µφA +

1
2
∂µφB∂µφB +

1
2
∂µφC∂µφC

− 1
2
m2

Aφ2
A −

1
2
m2

Bφ2
B −

1
2
m2

Cφ2
C − igφAφBφC . (2)

Each term in the Lagrangian has a dimension of mass 4
(assuming~ = c = 1) owing to the fact that the action given
by S =

∫ Ld4x is dimensionless in the natural units. Look-
ing at the termigφAφBφC , we see that for dimensional con-
sistency the coupling constant of the theory (g) must also
have a dimension of mass. This has direct consequences
when computing the matrix elements at NLO [9].

In the ABC theory, the free Lagrangian is given as fol-
lows:

Lfree =
∑

i=A,B,C

(
1
2
∂µφi∂

µφi − 1
2
m2

i φ
2
i

)
, (3)

and the interaction term is given by:

Lint = igφAφBφC . (4)

In order to obtain the equation of motion of free particles
in the ABC model, one uses the Euler-Lagrange equation,
which for a LagrangianL(φi, ∂µφi) is given by:

∂

∂xµ

∂L
∂(∂µφi)

=
∂L
∂φi

. (5)

The Feynman rules of a theory as obtained from Quan-
tum field theory are a mnemonic for calculating the matrix
element (dynamics) of a physics process. A summarized pro-
cedure to obtaining these rules from the Lagrangian is:

• Remove the fields (particle wave-functions) from the
interacting part of the Lagrangian. The quantities
which remain form the vertex contributions.

• Apply Euler-Lagrange’s equation on the Free La-
grangian. This gives the inverse of the propagator (ad-
ditional factor of complex numberi needs to be multi-
plied).

The interaction Lagrangian Eq. (4) contains the constant
−ig, which is effectively the vertex contribution to a Feyn-
man diagram. Applying the Euler-Lagrange Equation (5)
to the free Lagrangian Eq. (3), we obtain the Klein-Gordon
equation:

∂µ∂µφ−m2φ2 = 0. (6)
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AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 3

Thus, we see that each free particle in the ABC model
follows the Klein-Gordon equation. In the momentum space
(pµ = −i∂µ) this reduces to:

p2 −m2 = 0. (7)

The propagator of the theory is then given by taking in-
verse of the above equation and multiplying it by a factor ofi:

i

p2 −m2
. (8)

The procedure to obtain the Klein-Gordon equation from
the free Lagrangian can also be performed using (sympy ).
We illustrate this procedure by considering the free part of
the Lagrangian for particle A. The computing environment
may be setup as follows:

where we imported the necessary submodules ofsympy . We
then define the symbols and the wavefunctionφ.

The Lagrangian for the free particle A can be imple-
mented insympy as follows:

Euler-Lagrange equation is provided as a submodule in
sympy and this package may be called as follows:

The output of this program is then given as:

−m2
AφA(x, y, z, t)− ∂2

∂t2
φA(x, y, z, t)+

∂2

∂x2
φA(x, y, z, t)

+
∂2

∂y2
φA(x, y, z, t) +

∂2

∂z2
φA(x, y, z, t) = 0, (9)

TABLE I. Feynman rules of the ABC model.

Diagram Component Feynman Rule

External Lines 1.0

Vertex −ig

Propagator i
q2−m2

Momentum Conservation δ4(k1 + k2 + k3) where

ki is momenta of lines at vertex

where the above equation is the expanded version of the
Klein-Gordon Equation(∂µ∂µ −m2)φ = 0.

The Feynman rules of the ABC model are summarized in
Table I. In addition, one also needs to include the Feynman
rules that are required to conserve four-momentum at each
vertex. This is ensured by introducing a four-dimensional
Dirac delta function for each vertex.

In order to automate matrix element calculations at LO
and NLO for decay and scattering processes in the ABC
model, we adapt the Feynman rules insympy syntax. As in
the previously implemented syntax, we import the necessary
sympy modules and define the symbols:

The module defining the Feynman rules is then developed
as a class with each Feynman rule implemented as a function.

We have now introduced and also developed the neces-
sary minimum tools/modules that allows us to carry out ma-
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4 A. DESAI

trix element computation at the Leading order as well as at
the NLO in the ABC model.

Note that one may also use the superficial degree of di-
vergence introduced in the previous section to determine if a
diagram is divergent or convergent. For the ABC model, one
may use the following expression forD which is derived in
polar coordinates (which is simpler to interpret) in Ref. [8]:

D = 3− 3V

2
− E

2

whereV is number of vertices,E is the number of exter-
nal lines. A given Feynman diagram is said to be diver-
gent ifD ≥ −1 (note the condition is slightly different from
Weinberg’s theorem owing to different coordinate system, the
physics interpretation remains unchanged).

3. Semi-automating tree-level computation

With the implementation of Feynman rules in thesympy
package, we now evaluate the matrix element for decay pro-
cess and for a scattering process at the tree-level. This allows
us to test the software and compare the results with books [4].

3.1. Decay width process at leading order

A decay process of a particle refers to its transformation into
two or more daughter particles. Owing to the type of interac-
tion in the ABC model, a given particle for instanceA, can
only decay to particle’sB and C at the tree-level. Let us
assume that the massmA > mB + mC in which case the
decay is kinematically feasible. The Feynman diagram for
the decay processA → B C is given in Fig. 2. As given
in Grifiths [4], we expect the matrix element for the decay
process to beM = g. To evaluate the matrix element for
decay process usingsympy , one can use the following script
in conjunction with theFeynmanRules module prepared
in the previous section:

where we have substitutedp1 = p2 + p3 to enforce the
energy-momentum conservation. The output of this program

FIGURE 2. Representative Feynman diagram for the decay process
in the ABC model.

is M = g, which is the expected result. The decay width
is given as a product of available phase space and square of
absolute matrix element [4]:

Γ =
|pA|

8πm2
A

∗ |M2|, (10)

wherepA is absolute three-momentum of the decaying parti-
cle andmA is mass of the particle. Substituting the value of
matrix element obtained, the decay widthΓ is given by:

Γ =
g2|pA|
8πm2

A

. (11)

The above equation can also be implemented using the
following sympy code:

3.2. Scattering processes at the leading order

We now evaluate the scattering amplitude for ans-channel
process in the ABC model, wheres-channel is defined such
that the four-momenta of internal particle is sum of four-
momenta of incoming particles. In particular, we consider
the following processA B → C → A B. The Feyn-
man diagram of this process is given in Fig. 3. One can use
theFeynmanRules module prepared earlier to evaluate the
matrix element for this process using the following snippet:

where we have integrated over the internal momentum. This
integration in principle is carried over a four-dimensional
Dirac delta function using ad4q as the variable for integra-

FIGURE 3. Representative Feynman diagram for the scattering pro-
cess in thes-channel.
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AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 5

FIGURE 4. Representative Feynman diagram for the scattering pro-
cess in thet-channel

FIGURE 5. Representative Feynman diagram for the scattering pro-
cess in theu-channel.

tion. However, in CAS, we have evaluated the integral over
1D Dirac delta function anddq being the integration variable.
Finally, we substitutep3 = p1 + p2 − p4, which ensures the
energy-momentum conservation.

The program finally gives as output:

g2

−m2
C + (p1 + p2)

2 , (12)

which is the matrix element as one would obtain [4].
As exercises one may repeat the above procedure for cal-

culating t-channel andu-channel matrix elements. Thet-
andu-channel diagrams are presented in Figs. 4 and 5. The
t−channel refers to the channel where the internal momenta
is given asq = p1−p3, whereas for theu−channel the inter-
nal momenta is given asq = p1−p4. Moreover, au−channel
process is viable only when there are identical particles in the
final state.

The differential cross-section for a scattering process is
given as a product of phase-space (kinematics) and square of
absolute amplitude (dynamics) by [4]:

dσ

dΩ
=

|pf |
128π2E2

cm|pi|
|M|2, (13)

where Ecm is the center of mass energy of a given pro-
cess anddΩ is the angular area. HereM refers to the sum
of Ms, Mt if the process occurs in thes − t channel or
Mt, Mu if the process happens in thet − u channel. The
t-channel matrix element is given by:

Mt =
g2

−m2
C + (−p2 + p4)

2 . (14)

Therefore one obtains the following expression for the
differential cross section for the processA B → A B:

dσ

dΩ
=

∣∣pf

∣∣
∣∣∣ g2

m2
C−(p2−p4)

2 + g2

m2
C−(p1+p2)

2

∣∣∣
2

128π2Ecm |pi|
. (15)

The method can be implemented insympy as follows
(assuming process occurs in thes andt channels):

4. Introduction to semi-automated NLO com-
putations

The techniques discussed in the previous sections may also
be adapted to work for semi-automated determination of ma-
trix element at NLO. For the tree-level decay process and for
the tree-level scattering process discussed in Sec. 3, the num-
ber of possible processes rises at NLO. Each diagram at NLO
introduces new internal lines and additional vertices. For in-
stance, in the decay process at NLO, there are two additional
vertices and three internal lines. On the other hand, an NLO
scattering diagram includes four internal lines or two addi-
tional vertices. This implies that the possible number of di-
agrams increases to eight for a given scattering process in a
channel.

In this section we will show usingsympy how one can
obtain matrix element expressions for the decay process at
NLO as well as the matrix element for the vertex correction,
propagator correction and box diagram, which are the possi-
ble contributions at the NLO for a given channel in the ABC
model.

4.1. Decay Width Amplitude at NLO

In Sec. 3, we evaluated the decay width amplitude at the tree-
level and the Feynman diagram for the tree-level process is
given in Fig. 2. A possible NLO contribution to this process
is given in Fig. 6. As a first step, we evaluate the decay width
amplitude for the Feynman diagram given in Fig. 6 assuming,
as previously thatmA > mB + mC .

This diagram involves a triangular loop which consists of
three internal lines. There are three vertices in this diagram,
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6 A. DESAI

FIGURE 6. Representative Feynman diagram for the decay process
at NLO.

which is, two more compared to the Decay width at the Lead-
ing Order. Each vertex brings in a factor of−ig, and, there-
fore, we are evaluating the matrix element at an order ofg3.

The following scripts are used to construct the matrix el-
ement for this diagram withsympy package:

The matrix element obtained (before carrying out any inte-
gration) is of the form:

M =
∫

d4k1

∫
d4k2

∫
d4k3

ig3δ (−k1+k2+p1) δ (k1−k3 − p2) δ (−k2 + k3−p3)
(k2

1−m2
C) (k2

2−m2
B) (k2

3−m2
A)

. (16)

The result before integrating the variablek3 is of the following formi:

M∝ −
∫

d4k3
16iπ4g3

F (k3)
, (17)

where the denominator (the functionF (k3)) is given by:

F (k3) = (k3 −mA) (k3 + mA) (−k3 + mB + p3) (k3 + mB − p3) (k3 −mC + p2) (k3 + mC + p2) . (18)

For carrying out the last integral, we have to take into ac-
count that we are integrating over a 4D space whereq2 =
−q2

0 + q2
1 + q2

2 + q2
3 .

In Sec. 5, we will discuss some ways in which one can
evaluate integrals as above. But before going through that
we would like to explore the various scattering processes that
can occur at one loop in the ABC model.

4.2. Scattering at NLO: Vertex Corrections or Triangle
diagrams

In scattering processes, there are possible types of contribu-
tions viz. triangular, bubble and box diagrams. To begin with,
we consider triangular NLO diagram contribution (Fig. 7) to
thes−channel process (A B → A B) as in Fig. 3, which is
similar to the triangle as seen in the previous section. While
we consider the triangular region on the right vertex in the
Feynman diagram, there is also another possibility to have the
triangular diagram at the left vertex. However, the scattering
process discussed here is different from the decay process at
NLO. For instance, it has an additional vertex which leads to
an additional internal line (propagator).

The triangle diagram that we are considering here is also
known as the vertex correction diagram, because the vertex
in a tree-level diagram is now replaced by a triangle, which
is effectively a correction to the vertex.

The following program is used to obtain expression for
matrix element by applying the Feynman rules to the Feyn-
man diagram in Fig. 7:
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FIGURE 7. Representative Feynman triangle diagram for the scattering process at NLO in thes-channel.

M =
∫

d4k1

∫
d4k2

∫
d4k3

g4δ (−k1 − k2 + q) δ (k1 − k3 − p3) δ (k2 + k3 − p4) δ (p1 + p2 − q)
(k2

1 −m2
C) (k2

2 −m2
B) (k2

3 −m2
A) (−m2

C + q2)
, (19)

which after integrating over all internal momenta exceptk3 gives:

−M ∝
∫

d4k3
g4δ (p1 + p2 − p3 − p4)

F (k3)
, (20)

where the functionF (k3) is given by:

F (k3) = (k3 −mA) (k3 + mA) (k3 −mB − p4) (k3 + mB − p4)

× (mC − p1 − p2) (mC + p1 + p2) (k3 −mC + p1 + p2 − p4) (k3 + mC + p1 + p2 − p4) . (21)

As noted earlier in the case of decay width matrix element, we see that the last integral will lead to infinities.

4.3. Scattering at NLO: Propagator correction or Bubble diagrams

In this section, we study the corrections to the propagator by evaluating the matrix element of the process given in Fig. 8.
We apply the procedure to evaluating Feynman diagrams and make use of the following python snippet to evaluate the

matrix element for the bubble diagram in Fig. 8.

where the matrix element before integrating is given as:

M =
∫

d4k1

∫
d4k2

∫
d4k3

∫
d4k4

× g4δ (−k1 + p1 + p2) δ (k1 − k2 + k3) δ (k2 − k3 − k4) δ (k4 − p3 − p4)
(k2

1 −m2
C) (k2

2 −m2
A) (k2

3 −m2
B) (k2

4 −m2
C)

, (22)

and after performing the integral over the three internal momenta, namely,k1, k2, andk4, we obtain the following expression:

−M ∝
∫

d4k3
g4δ (p1 + p2 − p3 − p4)

F (k3)
, (23)
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FIGURE 8. Representative Feynman Bubble diagram for the scat-
tering process at NLO in thes-channel.

where the functionF (k3) is given by:

F (k3) = (k3 −mB) (k3 + mB) (mC − p1 − p2)
2

× (mC + p1 + p2)
2 (k3 −mA + p1 + p2)

× (k3 + mA + p1 + p2) . (24)

It may be noted that this correction is also possible in any
of the external lines. Therefore, the total number of bubble
diagrams in any givens−, t− or u− channels is 5.

4.4. Scattering at NLO: Box diagrams

Box diagrams are important in particle physics. In QED
for instance, Delbruck scattering or scattering of photon-by-
photon (γγ → γγ) proceeds via the box diagram and hence
evaluating such diagrams is important, since photon-photon
scattering is not known to occur at the tree-level processes.

In the ABC model, there exists only one box diagram for
eachs-, t- andu-channel process at the NLO. The following
python snippet is used to evaluate the matrix element for the
box diagram as given in Fig. 9.

FIGURE 9. Representative Feynman Box diagram for the scattering
process at NLO.

where the matrix element before integrating is given as:

M =
∫

d4k1

∫
d4k2

∫
d4k3

∫
d4k4

g4δ (−k1 − k2 + p1) δ (k1 − k3 + p2) δ (k2 − k4 − p3) δ (k3 + k4 − p4)
(k2

1 −m2
C) (k2

2 −m2
B) (k2

3 −m2
A) (k2

4 −m2
C)

, (25)

and after performing the integral over the three internal momenta, namely,k1, k2, andk4, we obtain the following expression:

M∝ −
∫

d4k3
g4δ (p1 + p2 − p3 − p4)

F (k3)
, (26)

where the functionF (k3) is given by:

F (k3) = (k3 −mA) (k3 + mA) (k3 −mC − p4) (k3 + mC − p4) (k3 −mB − p3 − p4)

× (k3 + mB − p3 − p4) (k3 −mC + p1 − p3 − p4) (k3 + mC + p1 − p3 − p4) . (27)

We will explore methods to integrate the above expression.

5. Some Mathematical techniques to overcome infinities at NLO

In this section we present some techniques that aid in separating the infinite part of the integral from the finite part, thereby
reducing the answer as a sum of finite and infinite parts. To illustrate the techniques involved, we use the matrix element for
the bubble diagram which was obtained in Eq. (23) and factors given in Eq. (24). The reader is encouraged to apply all the
techniques discussed in this section to other NLO processes.

5.1. Wick’s Rotation

The numerator in Eq. (23) has a term of the type:d4q whereq is the four momentum of the propagator. From special relativity
we know thatq2 =−q2

0 + q2
1 + q2

2 + q2
3 ,
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AN INTRODUCTION TO SEMI-AUTOMATED MATRIX ELEMENT COMPUTATION IN PARTICLE PHYSICS 9

where the subscripts 0 stands for the time coordinate and
1, 2, 3 represent the spatial coordinate. By Wick’s rotation
we mean to perform a rotation which allow us the rein-
terpret Minkowski coordinate to the Euclidean coordinate.
Accordingly, let q0 → iq0. We therefore see thatq2 =
q2
0 + q2

1 + q2
2 + q2

3 , which is the 4 dimension equivalent to
the 3 dimension radiusR2 = x2 + y2 + z2 in the Euclidean
space. One can then writed4q asq3dqdΩ.

This leads to Eq. (23) to the following form, where for
simplicity we replace the variablek3 with q:

M∝ −
∫

dΩ
∫

q3dq
g4δ (p1 + p2 − p3 − p4)

F (q)
, (28)

with F (q) given as:

F (k3) = (q −mB) (q + mB) (mC − p1 − p2)
2

× (mC + p1 + p2)
2 (q −mA + p1 + p2)

× (q + mA + p1 + p2) . (29)

Owing to Wick’s rotation, the integration limits have
changed to0 to∞ instead of−∞ to∞. The Wick’s rotation
as yet does not allow us to integrate the quantities, but makes
the expression more convenient to deal with than before.

5.2. Feynman Integrals

The concept of Feynman integrals (parameters) is introduced
here. It is a useful step towards integrating the quantities ob-
tained in the last section. The Feynman parameters are given
in the following form [9]:

1
ab
≡

∫ 1

0

dx
1

[ax + b (1− x)]2
. (30)

This identity can be verified by integrating the right hand
side. Alternatively, one may also use CAS system (sympy )
to test the identify as illustrated in the program below:

As we see the expression (23), parameters like a, b are
useful in bubble diagrams. However, for triangle or box di-
agrams, we need parameters such a, b, c, and d. We focus
on applying the case for two parameters. We now apply the
Feynman identity to the bubble diagram under consideration.
For simplicity we only write the terms containing a factor of
q. Therefore the function to be integrated is:

M∝ −
∫

q3dq
1

F (q)
, (31)

with F (q) given as:

F (k3) = (q −mB) (q + mB) (q + p−mA) (q + p + mA)

=
(
q2 −m2

B

) (
(q + p)2 −m2

A

)
., (32)

wherep = p1 + p2.
We now identify a ≡ (q2 − m2

B) and b ≡(
(q + p)2 −m2

A

)
, which implies that:

∫ 1

0

dx

∫
dΩ

∫ ∞

0

q3dq

× 1(
x

(
−m2

B+(p+q)2
)

+(1−x) (−m2
B+q2)

)2 . (33)

One then needs to collect the terms as per the order of
q and expand the equation, and then finally, factorize again.
The above steps can be carried out insympy with the fol-
lowing program:

The output of this program is:
∫ 1

0

dx

∫
dΩ

∫ ∞

0

q3dq

× 1

(−m2
B + p2x + 2pqx + q2)2

. (34)

Now we substitute the following variable:l = q+xp and
find the following:

1

(−l2 + m2
B + p2x2 − p2x)2

. (35)

In the above equation, let us name all terms not contain-
ing l as some constant∆.

1
(l2 −∆)2

, (36)

with

∆ = mB2 + p2x2 − p2x. (37)

5.3. Cut-off Method

One of the methods to carry out the momentum integral is
the cut-off method. The motivation of the cut-off procedure
is to integrate the internal momentum from0 to Λ instead of
infinity and take the limit:limΛ→∞ at the end of the calcu-
lation. The main idea is that we do not know a priori if we
are fully aware of the dynamics of physics beyond certain en-
ergies. Carrying out the integration over thisq with the new
limit, we find (using the definition of∆ as above):
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M∝ Λ
−2∆2 + 2∆Λ2

+

√
1

∆3 log
(
−∆2

√
1

∆3

)

4
−

√
1

∆3 log
(
∆2

√
1

∆3

)

4

−

√
1

∆3 log
(
−∆2

√
1

∆3 + Λ
)

4
+

√
1

∆3 log
(
∆2

√
1

∆3 + Λ
)

4
, (38)

and the integration:
∫

dΩ in 4-dimension is4π. We also need
to take into account the1/(2π)4 factor that arises due to the
dq integral. The final result will also take the factors from
Eq. (32) that did not contain the variableq.

One should then be able to isolate the infinities from finite
terms. Actually, what we present here is a simple technique
to isolate infinities from finite terms. The infinities them-
selves need to be addressed by renormalization where in the
Lagrangian is required to contain additional ‘counter-terms’
that keep the infinities ‘under the rug’.

Thesympy code to carry out the steps in this section is
as follows:

In the next section we provide a glimpse of implementing
dimensional regularization insympy .

5.4. Dimensional Regularization

One of the alternative procedures to isolate the infinities of
the integral in Eq. (34) involve the technique of dimensional
regularization. The motivation here is to write the integral in
the d-dimensional abstract space and introduce a parameter
ε such thatd = 4 − ε and then at the end of the calculation
take the limitd → 4. In this section, we highlight the im-
portant steps involved in dimensional regularization and its
implementation insympy . The expression that we want to
integrate is given as:

∫ 1

0

dx

∫ ∞

0

ddl
1

(l2 −∆)2m
, (39)

where∆ is given by Eq. (37). Our focus will be to integrate
over the variablel. For generalisation of the problem we have
introduced a factorm in the power of denominator. For this
case, one can substitutem = 1 at the end of the calculation.
The angular integral of

∫
dd−1Ω, which represents a sphere

in d dimension is given as(2πd/2)/(Γ(d/2)) and one check
this function of some known cases asd = 1, 2, 3... [8].

Apart from the angular factor which can be integrated in-
dependently, the part of the integral in Eq. (39) is evaluated
and found as:

2−dπ−d∆∆−2m∆
d
2−1Γ

(
d
2

)
Γ

(−d
2 + 2m

)

2Γ (2m)
, (40)

which in our casem = 1, reduces to the following form:

2−dππ−d∆
d
2−1 (d− 2)

4∆ sin
(

πd
2

) . (41)

The following program can be used to integrate:

Note that whenm = 1 (which is the case we are dealing
with), one gets a factor ofΓ(ε/2) which is defined as (see
e.g., [5]):

Γ
(

4− d

2

)
= Γ

( ε

2

)
=

2
ε
− γ +O(ε), (42)

where,γ is the Euler-Macheroni constant and the limitd → 4
is carried at the end of computation. The divergent terms are
therefore collected by the1/ε factor and other terms are fi-
nite. The idea then is to renormalize the ABC Lagrangian
and renormalization factors are defined such that the infini-
ties are absorbed by the counter diagrams. The last part is not
covered in this paper.

6. Exercises

• Evaluate the matrix element fort-channel andu-
channel processes at Leading Order.
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• Obtain an expression for matrix element for a bubble
diagram when the “bubble” is present on an external
line.

(See Appendix for Solutions to the Exercises)

7. Conclusions

We have presented a semi-automatedPython Computer Al-
gebra System (sympy ) framework, which can be used to
evaluate the LO matrix element as well as the expressions for
NLO matrix elements such as the triangle, bubble and box
diagrams in the ABC model. Moreover, we explored some of
the techniques such as implementing Feynman integrals, cut-
off method and dimensional regularization techniques in this
semi-automated framework. Given the open-source python-
based ecosystem, our computation will be useful in teach-
ing how theory computation in particle physics can be imple-
mented in python at an early stage.

In the future, we aim to present another paper which will
be based on carrying out semi-automatedsympy based com-
putation for Quantum Electrodynamics. Moreover, a further
automation can be introduced by building a framework that,
by using techniques of combinatorics and conservation of
quantum numbers, is able to predict the possible Feynman
diagram for a given process.

Appendix

A. Solutions to exercises

• For t-channel process (Fig. 4) the matrix element can
be computed as follows:

which results in

Mt =
g2

−m2
C + (−p2 + p4)

2 . (A.1)

• For u-channel process (Fig. 5) the matrix element can
be computed as follows:

which results in

Mu =
g2

−m2
C + (p1 − p4)

2 . (A.2)

• For the bubble diagram with a bubble in an external
arm (Fig. 10):

FIGURE 10. Representative Feynman triangle diagram for the scat-
tering process at NLO in thes-channel with bubble in an external
arm.

The following program can be used:

which gives

M=
g4δ (p1+p2+p3−p4)

(k3−mC) (k3+mC) (mA−p3) (mA+p3) (k3 −mB+p3) (k3+mB+p3) (mC−p3+p4) (mC+p3−p4)
. (A.3)
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i. The Matrix element presented in this section, has not consid-
ered a factor of1/(2π)4 which is multiplied after carrying
out all integrations. We have therefore used the proportional-
ity symbol.
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