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We show here that the one dimensional $climger problem with a potential function with harmonic, Stark, Coulombian and centrifugal
barrier terms can be described in terms of biconfluent Heun functions, and review some possible solutions of the problem. Considering
the algebraic form of the quantum problem, we readily find two new relations between biconfluent Heun functions, which have not been
considered before in the literature.
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1. Introduction elementary integrands, but some particular cases have been
developed for each particular problem, as can be seen in the
Itis well known that there exist only a few exact solutions for yrticle by Vieira and Bezerra [5]. Here, owing to the solutions
the one dimensional time-independent Sctinger equation,  of our quantum problem, we shall present two new relations
1 d2y(x) between BCH functions.
T 9 dx2 +V(2)y(z) = Ed(z), @) Itis known that Eq.2) can be written in terms of four ir-

(where we have usei=m=1), and hence the class of so- reducible parameters, its canonical form, the one mostly seen
L in physics articles [6], being

lutions has been divided into two categories, exact and nu-

merical. In the previous decades, a third class of problems dy

appeared where only part of the spectrum could be found: z—; + (1 +a—pFz— 222) =

. . . dz? dz

some hyperbolic potentials, for example, led to this type of

p_roblem_s, where the appearance 01_‘ the confluent Heun equa- +ly—a—-2)z- 1 G+(1+a)f)|y=0. (3

tion [1] is the relevant feature. This class of problems has 2

introduced the so called quasi-exactly solvable (QES) poten- )

tials [2, 3]. where(a, 3,7,68) € C*. The parameters in Eg3) are re-
Due to the relevance of the appearance of Heun equdated to those in Eq2) by

tions, it is tempting to find out which Sabdinger problems

may be solved using the different forms of Heun equations. j= 1 b+(1+a)d],a=~v—a—2,
In this sense, it is known that any second order linear differ- 2 ~
ential equation with at most four singular points can be trans- y=14a,6d=—-0, €= -2 4)

formed into a Heun equation. The other Heun equations are
its confluent, doubly confluent, biconfluent and triconfluent  Now, if we use

forms.
In particular, let us consider the biconfluent Heun (BCH) y(2) = zge~ 22 (0+2) z3 () (1) (5)

equation:
a2y 5 . dy  Gz—q wherez, may later _be used as a normaliz_ation constant, we
T2 + (Z +46+ €z> . + V= 0, (2) can get to the ordinary second order differential equation

given by

which possess a regular singularity at= 0 and a rank-

2 irregular singularity atz = oo. Here, the parameters 1d?%y a?—-11  okY*1

(&, 0,7, ¢ q) € C5. The BCH functions have not been stud- 9 dr? [ 8 12 Tty

ied as much as the Heun or confluent Heun functions. As 3/4

mentioned by Giscard and Tamar [4], there are no explicit in- + pk r+ 1kr2] = Eq, (6)

tegral series representation of Heun functions involving only 2 2
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wherer=k~1/4z. Here we can recognize a Sokinger prob-  find an algorithm to obtain solutions using a polynomial ex-

lem with the potential function pansion, to cite a few examples. It is possible to find solutions
) 14 3/4 for the eigenyalue probleni}X even if the problem is not re-
Vi) = &= 11  ok/71 B }]W,Q’ (7) latedtophysics, as shown in the work by John and Boyd [11].
8 12 4 r 2 2 As mentioned above, the lack of an explicit form for the BCH

where the energy eigenvalue is f_unctions in terms of elementary series or elementary func-
tions seems to have delayed the development of the under-

5o /2 (7 B ,62) (®) standing of the problems, but there exist now enough litera-

- 2 ]/’ ture to work out specific cases. For the moment, let us take

_ _ _ acloser look to a couple of solutions relevant to our current
and the constant is used to resemble the harmonic oscil- problem with the potential function in Edz)

lator potential term in Eq.7). Due to transformation in

Eqg. ), the problem is defined on the half-line, and, in or-2.2.  Solutions in terms of Hermite polynomials

der to have squared integrable functionsfor R, we must

have(a, 8) € R?, with v > —1. In Ref. [8], Ishkhanyan and Ishkhanyan propose the follow-
It is interesting to note that the energy eigenvalue is notng expansion of the solution of the BCH E@) {n terms of

proportional to the BCH equation eigenvalue in its canonicathe Hermite functions of a shifted and scaled argument:

form, unlike, for example, the case of the quantum harmonic

oscillator and Hermite’s equation. Moreover, it is important y(z) = Z Cntin s Un = Hogin (s0(z +21)),  (10)
to realize that the energy eigenvalues are essentially given by "
the parametet of the BCH equation. where(ay, s, 21) € C3, and the Hermite functions satisfy-
ing the equation
2. The quantum problem d? d
a P du; —252(z+ 21) ;" + 252y, = 0,
Let us now make the following identities: z &
a, = ag +n, (12)
L a/a_ Loia_ 2 _
Pk =eD, Lokt =—€'Z, a= +(20+1), and the identities
then we can write the potential function as ul, = 2500 Un_1, (12)
1 27 e +1 n = QplUp_ n-1/2. 13
V(r):ikr2+eDr—e—+7(2+2 ) o 50(2+ 21)un = Antin—1 + tn-1/ (13)
T r

In general, the index parametey is not an integer, so that
which is a combination of harmonic, Stark, Coulomb andthe expansion functions are not reduced to polynomials or
centrifugal-barrier potential terms. Notice thatifs the an-  quasi-polynomials.
gular momentum, the parametemeeds to be and odd inte- Upon substitution of Eqs10)-(11) into Eq. 2)], and us-
ger. ing so=t+/—¢€/2, 21 = S/E, they get the three-term recur-

This is a very interesting problem, from the point of view rence relation for coefficients, :
of guantum mechanics alone, since it includes potential terms
from various exactly solvable problems, but that were not Rucn + Qun-1cn—1+ Pr2cn2=0, (14)
solved altogether exactly. Moreover, this problem actually
appears in real chemical problems, as can be seen in the onYJ“efe

of Karwowski and Witek [7]. V2 . .
From the derivation used, this is now a problem with Ry = ﬁ(o‘o +n)(@+ (a0 +n—75)8), (15)
known solutions, those of the BCH equation. The interest- —_— <
ing question now is whether we can find exact solutions to ) _ HFO“S + (7 + (0 +n)d)é (16)
this problem, or if only numerical solutions are possible. ’ € ’
a4+ (ag+n)e
2.1. The solutions Po = \(/_072%) : (17)

It has become a very important matter to study the BCH equathe + signs give different independent solutions, and the
tion, and the BCH functions, due to its appearance in physicadolution for physical applications is a linear combination of
problems. For example, Ishkhanyan and Ishkhanyan presetitem.

five cases where the BCH equation may be exactly solved Foré # 0, with the initial conditions:_s=c_1=0, ¢y # 0,

in terms of Hermite polynomials [8]. In Ref. [9], Levai and it is found that the series terminatessat0, with Ry=0, if
Ishkhanyan present exact solutions of the sextic oscillator imvy=% — G/é. For the series to terminate at = N, two
terms of BCH functions, and in Ref. [10], Ferreira and Sesmasuccessive coefficients have to vanisk,;.1=cxn+2=0 while
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cy # 0. From equatiorey12=0, the series ends #Py=0.  where
This condition is satisfied f=—N. The remaining equation,
cny+1=0, then renders a polynomial equation of degke¢ 1
for the parametef, which defines, in generaN +1 values of
g for which the termination of the series occurs. Thage 1 pz—(L=7)/2,  pa=—(1+7)/2,
equations render then the corresponding physical solutions.

Ishkhanyan and Ishkhanyan then turn to give exampleand the coefficients satisfying the 3TRR
of potential functions for which this procedure works: in

03 = _17 g4 = 17 aop,; = 1a

Ref. [8] they present five different cases where this work is )
applied, with the potential function in Ed9) being one of 20mam,; = — {Uyﬂ(m = 1= )+ 2} Um—1,j
them.

Now, for the potentia! fur?ct?on in Eq9], we can see that + [(m —2— ) (m —1— py)
we have that = —2, which is in accordance to their work.
However, we see that=— N, while from the parameter rela- (1-a?)
tionsin EqQ. @), ¥ = 1+ «, givinga = —(N + 1), and, since + 4] (m—2,5-

we have found that = +(2¢ + 1), the only possible choice

isa = —2¢ — 1. But then, we would havé + o < 0, except o ) )

for ¢=0. Hencey(z) in Eq. (5) would become divergent at A global splutlon is found wh.en there exist connection

2 = 0 for the case with§=—N. This only means that the factors that bringu;(z) to u;(z), with i=1,2, j=3,4. This is

problem with the potential function in EcQ) does not pos- achieved, for example, by using l_\lau_ndorf’s prqcedure [13].

sess solutions in terms of a series of Hermite polynomials if" that case, the necessary combinationifer oo is

we have to relate the parameter to the angular momentum.

It seems that this divergence was not identified in Ref. [8]. ui(z) ~ T; suz(x) + T; aua(x), (20)
Note, anyway, that the problem with a potential function

with o not related to the angular momentum is anyway OfwhereTm are the connection factors

great relevance. For example, one particular form has been

studied for the description of quantum anomalies [12]. In W [, ]

that case, the potential function has an additionaf term, Tis= :

but the Stark and harmonic terms are discarded.

W [ui, ug]
o D= (21
W [us, u4] 4T W g, us] @)
with W [u;, u,] the Wronskian between functions. This is not
an easy task, and in Ref. [10] the authors introduce particular
One other method of series solution for Ef) is given by  forms of the connecting functions that work for non-integer
Ferreira and Sesma, [10] whenis not an integer, by first «.

2.3. Frobenius solutions

looking around the singularities at= 0 andr = co. The Fora > 1, the solution regular at origin is
algorithm description begins as follows:
For smallr values, the series is given by Ureg(z — 0) = Ayuy (2), 22)
(o)
i(r) =) e i =1,2 18 _ _
wi(r) T;)C i ’ TS (18) while the solution regularat —  +o0o woud be
where
14+« 1—« urcg(x - OO) ~ A1T1,3u3(x); (23)
M= 2= o i =1,
and the coefficients satisfying the three term recursion relaV/th the requierement thdt, ,=0, andA, determined by the
tion (3TRR) usual normalization condition. The complete algorithm, to-
5 ) gether with a numerical example, is found in Sec. 3 of [10].
nn+2v;, —1)cp,; = —Cp1,i — (7 — ) Cn—2.i Now, the problem is that the regular solutions are found
2 4 only in the cases when is not an integer [10]. This makes
+ Ben_si+ Cna;. it difficult to apply the procedure for the case wheris re-

lated to the angular momentum. However, we may still find
solutions for the problem with the potential functicf),(with

the conditionn>—1, due to the transformatio®), We shall
come back to the case| < 1 in the following section.

For the case of an eigenvalue problem, three of the four
) parameters ¢, 3,v,d) are given, and the fourth is to be
J =34, (19)  found. As one can see in the energy eigenvalue 8g.this

For larger, solutions are given in terms of Th@solu-
tions:

o
i(z? 2 Z —
u](x) — eUJ(w +Bz)/ xHi Um ;T m’

m=0
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FIGURE 1. Potential function (black) and eigenfunctions for the FIGURE 3. Mathematica’s HeunB, &1, 91, 01, &; r) with . =
problem 6) with o = 1.14, 8 = 1.5 andé = 2.2. 5, @=3.2, .1=0.8, 6, = 2, andé; = 4.1 in red, and
1.8«HeunB@a, a2, 72, 02, €2; 7), in blue. Due to the way Math-
= T ] ematica calculates fractional exponents, and the factér, with
: 1 a = —0.2, Mathematica does not plot the blue curve for nega-
tive r.

3. New relations between BCH functions

Y (1)

Leaving aside the quantum problem, E&).ihay be useful to
find some relations between BCH functions.

Firstly, we can see that Ecg)(does not change when we
replacex by —a. Considering then the eigenfunctids),(we
; can see that the BCH functions of parametetsare related

r by

FIGURE 2. First three eigenfunctions far = 1.14, 5 = 1.5 and
0 =2.2,forn =0, ingreenn =1, inred, andr = 2, in blue.

H(_avﬁa’y’é;z) :ZQH(OL,/B,776;Z). (24)

. . . Since for the quatum problem we need that- —1, it may
2 L
parameter is;, since the additiona” term may be added seem that this relation only holds fog| < 1. However, it

as a constant term i the potential function in £4), while is easily seen by direct substitution that it always holds for

~ does not appear anywhere else. There is not much work . y seen by . Y

on this matter in the literature, to identify with the zeroes g. 3), and itis a general relation for BCH functions. A plot
. of the functions in both sides of EdR4) is found in Fig. 3,

of the BCH function, but Arrioleet al. have worked on the . .
where a constant factor is used to superimpose the curves.

density of the zeros of BCH functions [.14]' . Secondly, we can see that E6) prevails after the fol-
We may also solve the problem with the potential func-,
lowing changes

tionin Eqg. [7) numerically. For that matter, Mathematica [15]
includes the defined function HeunB, (1, 41,01, 1; 2). T — —z, B— —fB, ands — —4 .

We reproduce here the example given in Ref. [10] using

Mathematica to obtain the eigenvalues and eigenfunctions herefore, we get a second relation between BCH functions,
We used given by

a=114, =15 §=22, H(o, —B,7, —6;—2) = (=1) =" H(a, 8,7,6;2). (25)

and left the parametey, the eigenvalue, free. The first three pjotting in terms of: € R, this means that there is a reflec-
values ofy found are tion along thez—axis if « is an odd-integer (4+1, actually),
. . . as can be seen in Fig. 4, and solutions witheing an even-

7 =066103, 7y =112199, 75 = 15.6834. integer are not real. This is a feature that has been seen in
Plots of the potential function, together with the eigenfunc-physical problems, but was not completely understood. See,
tions, are found in Fig. 1, and the eigenfunctions alone aréor example, the discussion in Sec. 6 of [10].
shown in Fig. 2. There seems to be no references for relations in

Being a useful academic tool, we give the MathematicaEqs. 24,25) in the literature. For example, Mathematica may
code used to obtain the eigenvalues and eigenfunctions in tand a general solution in terms of both of the functions in
Appendix. Eq. (24), not realizing they are the sarhe.
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FIGURE 4. Mathematica’s HeunB (5,3.2,6,2,41);in red, and He-
unB (-5,3.2,6,-2,4.1+-r), in blue, where the change in the param-
eters is due to the change fhandd as described in Eq2E). A
reflection along the:-axis is due to the factar—1)**)/2, in this
casex = 5.

=10

4. Conclusion

Here we have made a review of solutions to the quantum
problem with a potential function with harmonic, Stark,
Coulombian and centrifugal barrier terms, which is essen-
tially solved in terms of BCH functions. We have shown that
this problem cannot be solved in terms of Hermite series, and
provided the Mathematica code to obtain numerical solutions
for this and other quantum problems.

Through this quantum problem we realized the existance
of a new relation between BCH functions, where one param-

5

shed some light into the reality of the functions. We believe
these relations have not been found anywhere else.

Finally, it would be interesting if, as one can see from
Eq. (8), where the quantum energy eigenvalue is given in
terms of the parameterof the BCH Eq. ), there is a math-
ematical proof that when the BCH functions are determined
as polynomials, the parameteis found to determine the ze-
roes of the BCH functions, a statement not settled yet in the

literature.

Appendix A: Mathematica code

For the sake of academic purposes, we present here the Math-
ematica code used in Sec. 2.3 to solve the BCH Eyng-

merically:
Inftes}= a=1.14; b = 1.5; d=2.2;
h=1;
m= 13
V[x_] :=(a"2-1) / (4%x"2) +d/ (2%x) + (b/2) "2+ b*x +x"2;
L=-(h"2/m) %u'"[x] +V[x] xu[x];

{vals, funs} = NDEigensystem[£, u[x], {x, @, 4}, 3,
Method —»

{"SpatialDiscretization” »
{"FiniteElement", {"MeshOptions" » {MaxCellMeasure -» ©.0001}}}}];

vals
Show[Plot [Evaluate[h % funs + vals], {x, ©, 4}], Plot[V[x], {x, ©, 4}],

PlotRange » {{@, 4}, {0, 17}}, AxesOrigin -» {0, 0}, ImageSize -» Medium]
Show[Plot[Evaluate[h« funs], {x, @, 4}], PlotRange » {{@, 4}, {-0.8, 0.9}},

AxesOrigin - {@, 0}, ImageSize —» Medium]

eter changed sign, and thereafter a second relation where the This code uses the parameter values for the example given
argument of the BCH functions changed sign, which mayby Ferreira and Sesma [10].
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