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On the quantum problem with harmonic, Stark, Coulombian and centrifugal
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Puebla, Ḿexico.
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We show here that the one dimensional Schrödinger problem with a potential function with harmonic, Stark, Coulombian and centrifugal
barrier terms can be described in terms of biconfluent Heun functions, and review some possible solutions of the problem. Considering
the algebraic form of the quantum problem, we readily find two new relations between biconfluent Heun functions, which have not been
considered before in the literature.
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1. Introduction

It is well known that there exist only a few exact solutions for
the one dimensional time-independent Schrödinger equation,

−1
2

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x), (1)

(where we have used~=m=1), and hence the class of so-
lutions has been divided into two categories, exact and nu-
merical. In the previous decades, a third class of problems
appeared where only part of the spectrum could be found:
some hyperbolic potentials, for example, led to this type of
problems, where the appearance of the confluent Heun equa-
tion [1] is the relevant feature. This class of problems has
introduced the so called quasi-exactly solvable (QES) poten-
tials [2,3].

Due to the relevance of the appearance of Heun equa-
tions, it is tempting to find out which Schrödinger problems
may be solved using the different forms of Heun equations.
In this sense, it is known that any second order linear differ-
ential equation with at most four singular points can be trans-
formed into a Heun equation. The other Heun equations are
its confluent, doubly confluent, biconfluent and triconfluent
forms.

In particular, let us consider the biconfluent Heun (BCH)
equation:

d2y

dz2
+

(
γ̃

z
+ δ̃ + ε̃z

)
dy

dz
+

α̃z − q̃

z
y = 0, (2)

which possess a regular singularity atz = 0 and a rank-
2 irregular singularity atz = ∞. Here, the parameters
(α̃, δ̃, γ̃, ε̃, q̃) ∈ C5. The BCH functions have not been stud-
ied as much as the Heun or confluent Heun functions. As
mentioned by Giscard and Tamar [4], there are no explicit in-
tegral series representation of Heun functions involving only

elementary integrands, but some particular cases have been
developed for each particular problem, as can be seen in the
article by Vieira and Bezerra [5]. Here, owing to the solutions
of our quantum problem, we shall present two new relations
between BCH functions.

It is known that Eq. (2) can be written in terms of four ir-
reducible parameters, its canonical form, the one mostly seen
in physics articles [6], being

z
d2y

dz2
+

(
1 + α− βz − 2z2

) dy

dz

+
[
(γ − α− 2)z − 1

2
(δ + (1 + α)β)

]
y = 0 . (3)

where(α, β, γ, δ) ∈ C4. The parameters in Eq. (3) are re-
lated to those in Eq. (2) by

q̃ =
1
2

[δ + (1 + α)β] , α̃ = γ − α− 2,

γ̃ = 1 + α, δ̃ = −β, ε̃ = −2. (4)

Now, if we use

y(z) = z0e
− 1

2 z(β+z)z
1
2 (1+α)ψ(z), (5)

wherez0 may later be used as a normalization constant, we
can get to the ordinary second order differential equation
given by
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ψ = Eψ, (6)
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wherer=k−1/4z. Here we can recognize a Schrödinger prob-
lem with the potential function

V (r) =
α2 − 1

8
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r2

+
δk1/4

4
1
r

+
βk3/4

2
r +

1
2
kr2, (7)

where the energy eigenvalue is

E = k1/2

(
γ

2
− β2

8

)
, (8)

and the constantk is used to resemble the harmonic oscil-
lator potential term in Eq. (7). Due to transformation in
Eq. (5), the problem is defined on the half-line, and, in or-
der to have squared integrable functions forz ∈ R, we must
have(α, β) ∈ R2, with α > −1.

It is interesting to note that the energy eigenvalue is not
proportional to the BCH equation eigenvalue in its canonical
form, unlike, for example, the case of the quantum harmonic
oscillator and Hermite’s equation. Moreover, it is important
to realize that the energy eigenvalues are essentially given by
the parameterγ of the BCH equation.

2. The quantum problem

Let us now make the following identities:

1
2
βk3/4 ≡ eD,

1
4
δk1/4 ≡ −e2Z, α ≡ ±(2` + 1),

then we can write the potential function as

V (r) =
1
2
kr2 + eDr − e2Z

r
+

`(` + 1)
2r2

, (9)

which is a combination of harmonic, Stark, Coulomb and
centrifugal-barrier potential terms. Notice that if` is the an-
gular momentum, the parameterα needs to be and odd inte-
ger.

This is a very interesting problem, from the point of view
of quantum mechanics alone, since it includes potential terms
from various exactly solvable problems, but that were not
solved altogether exactly. Moreover, this problem actually
appears in real chemical problems, as can be seen in the work
of Karwowski and Witek [7].

From the derivation used, this is now a problem with
known solutions, those of the BCH equation. The interest-
ing question now is whether we can find exact solutions to
this problem, or if only numerical solutions are possible.

2.1. The solutions

It has become a very important matter to study the BCH equa-
tion, and the BCH functions, due to its appearance in physical
problems. For example, Ishkhanyan and Ishkhanyan present
five cases where the BCH equation may be exactly solved
in terms of Hermite polynomials [8]. In Ref. [9], Levai and
Ishkhanyan present exact solutions of the sextic oscillator in
terms of BCH functions, and in Ref. [10], Ferreira and Sesma

find an algorithm to obtain solutions using a polynomial ex-
pansion, to cite a few examples. It is possible to find solutions
for the eigenvalue problem (3) even if the problem is not re-
lated to physics, as shown in the work by John and Boyd [11].
As mentioned above, the lack of an explicit form for the BCH
functions in terms of elementary series or elementary func-
tions seems to have delayed the development of the under-
standing of the problems, but there exist now enough litera-
ture to work out specific cases. For the moment, let us take
a closer look to a couple of solutions relevant to our current
problem with the potential function in Eq. (7).

2.2. Solutions in terms of Hermite polynomials

In Ref. [8], Ishkhanyan and Ishkhanyan propose the follow-
ing expansion of the solution of the BCH Eq. (2) in terms of
the Hermite functions of a shifted and scaled argument:

y(z) =
∑

n

cnun , un = Hα0+n (s0(z + z1)) , (10)

where(α0, s0, z1) ∈ C3, and the Hermite functions satisfy-
ing the equation

d2un

dz2
− 2s2

0(z + z1)
dun

dz
+ 2s2

0αnun = 0,

αn = α0 + n, (11)

and the identities

u′n = 2s0αnun−1, (12)

s0(z + z1)un = αnun−1 + un−1/2 . (13)

In general, the index parameterα0 is not an integer, so that
the expansion functions are not reduced to polynomials or
quasi-polynomials.

Upon substitution of Eqs. (10)-(11) into Eq. (2)], and us-
ing s0=±

√
−ε/2, z1 = δ̃/ε̃, they get the three-term recur-

rence relation for coefficientscn:

Rncn + Qn−1cn−1 + Pn−2cn−2 = 0, (14)

where

Rn =
√

2√−ε
(α0 + n) (α̃ + (α0 + n− γ̃)ε̃) , (15)

Qn = ∓ α̃δ̃ + (q̃ + (α0 + n)δ̃)ε̃
ε̃

, (16)

Pn =
α̃ + (α0 + n)ε̃√−2ε̃

. (17)

The ± signs give different independent solutions, and the
solution for physical applications is a linear combination of
them.

For ε̃ 6= 0, with the initial conditionsc−2=c−1=0,c0 6= 0,
it is found that the series terminates atn=0, with R0=0, if
α0=γ̃ − α̃/ε̃. For the series to terminate atn = N , two
successive coefficients have to vanish,cN+1=cN+2=0 while
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cN 6= 0. From equationcN+2=0, the series ends ifPN=0.
This condition is satisfied if̃γ=−N . The remaining equation,
cN+1=0, then renders a polynomial equation of degreeN +1
for the parameter̃q, which defines, in general,N+1 values of
q̃ for which the termination of the series occurs. TheseN +1
equations render then the corresponding physical solutions.

Ishkhanyan and Ishkhanyan then turn to give examples
of potential functions for which this procedure works: in
Ref. [8] they present five different cases where this work is
applied, with the potential function in Eq. (9) being one of
them.

Now, for the potential function in Eq. (9), we can see that
we have that̃ε = −2, which is in accordance to their work.
However, we see that̃γ=−N , while from the parameter rela-
tions in Eq. (4), γ̃ = 1+α, givingα = −(N +1), and, since
we have found thatα = ±(2` + 1), the only possible choice
is α = −2`− 1. But then, we would have1 + α < 0, except
for `=0. Hence,y(z) in Eq. (5) would become divergent at
z = 0 for the case with̃γ=−N . This only means that the
problem with the potential function in Eq. (9) does not pos-
sess solutions in terms of a series of Hermite polynomials if
we have to relate theα parameter to the angular momentum.
It seems that this divergence was not identified in Ref. [8].

Note, anyway, that the problem with a potential function
with α not related to the angular momentum is anyway of
great relevance. For example, one particular form has been
studied for the description of quantum anomalies [12]. In
that case, the potential function has an additionalλ/r2 term,
but the Stark and harmonic terms are discarded.

2.3. Frobenius solutions

One other method of series solution for Eq. (6) is given by
Ferreira and Sesma, [10] whenα is not an integer, by first
looking around the singularities atr = 0 andr = ∞. The
algorithm description begins as follows:

For smallr values, the series is given by

ui(r) =
∞∑

n=0

cn,ir
n+νi , i = 1, 2, (18)

where

ν1 =
1 + α

2
, ν2 =

1− α

2
, c0,i = 1,

and the coefficients satisfying the three term recursion rela-
tion (3TRR)

n(n + 2νi − 1)cn,i =
δ

2
cn−1,i −

(
γ − β2

4

)
cn−2,i

+ βcn−3,i + cn−4,i.

For larger, solutions are given in terms of Thomé solu-
tions:

uj(x) = eσj(x
2+βx)/2xµj

∞∑
m=0

am,jx
−m,

j = 3, 4, (19)

where

σ3 = −1, σ4 = 1, a0,j = 1,

µ3 − (1− γ)/2, µ4 = −(1 + γ)/2,

and the coefficients satisfying the 3TRR

2σjmam,j = −
[
σjβ(m− 1− µj) +

δ

2

]
am−1,j

+
[
(m− 2− µj)(m− 1− µj)

+
(1− α2)

4

]
am−2,j .

A global solution is found when there exist connection
factors that bringui(x) to uj(x), with i=1,2, j=3,4. This is
achieved, for example, by using Naundorf’s procedure [13].
In that case, the necessary combination forx →∞ is

ui(x) ∼ Ti,3u3(x) + Ti,4u4(x), (20)

whereTi,j are the connection factors

Ti,3 =
W [ui, u4]
W [u3, u4]

, Ti,4 =
W [ui, u3]
W [u4, u3]

, (21)

with W [ui, uj ] the Wronskian between functions. This is not
an easy task, and in Ref. [10] the authors introduce particular
forms of the connecting functions that work for non-integer
α.

Forα > 1, the solution regular at origin is

ureg(x → 0) = A1u1(x), (22)

while the solution regular atx → +∞ woud be

ureg(x →∞) ∼ A1T1,3u3(x), (23)

with the requierement thatT1,4=0, andA1 determined by the
usual normalization condition. The complete algorithm, to-
gether with a numerical example, is found in Sec. 3 of [10].

Now, the problem is that the regular solutions are found
only in the cases whenα is not an integer [10]. This makes
it difficult to apply the procedure for the case whenα is re-
lated to the angular momentum. However, we may still find
solutions for the problem with the potential function (7), with
the conditionα>−1, due to the transformation (5). We shall
come back to the case|α|<1 in the following section.

For the case of an eigenvalue problem, three of the four
parameters (α, β, γ, δ) are given, and the fourth is to be
found. As one can see in the energy eigenvalue Eq. (8), this
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FIGURE 1. Potential function (black) and eigenfunctions for the
problem (6) with α = 1.14, β = 1.5 andδ = 2.2.

FIGURE 2. First three eigenfunctions forα = 1.14, β = 1.5 and
δ = 2.2, for n = 0, in green,n = 1, in red, andn = 2, in blue.

parameter isγ, since the additionalβ2 term may be added
as a constant term in the potential function in Eq. (7), while
γ does not appear anywhere else. There is not much work
on this matter in the literature, to identifyγ with the zeroes
of the BCH function, but Arriolaet al. have worked on the
density of the zeros of BCH functions [14].

We may also solve the problem with the potential func-
tion in Eq. (7) numerically. For that matter, Mathematica [15]
includes the defined function HeunB (q̃1, α̃1, γ̃1, δ̃1, ε̃1; z).
We reproduce here the example given in Ref. [10] using
Mathematica to obtain the eigenvalues and eigenfunctions.
We used

α = 1.14, β = 1.5, δ = 2.2,

and left the parameterγ, the eigenvalue, free. The first three
values ofγ found are

γ1 = 6.6103, γ2 = 11.2199, γ3 = 15.6834.

Plots of the potential function, together with the eigenfunc-
tions, are found in Fig. 1, and the eigenfunctions alone are
shown in Fig. 2.

Being a useful academic tool, we give the Mathematica
code used to obtain the eigenvalues and eigenfunctions in the
Appendix.

FIGURE 3. Mathematica’s HeunB(̃q1, α̃1, γ̃1, δ̃1, ε̃1; r) with q̃1 =

5, α̃1=3.2, γ̃1=0.8, δ̃1 = 2, and ε̃1 = 4.1 in red, and
1.8∗HeunB(̃q2, α̃2, γ̃2, δ̃2, ε̃2; r), in blue. Due to the way Math-
ematica calculates fractional exponents, and the factorr−α, with
α = −0.2, Mathematica does not plot the blue curve for nega-
tive r.

3. New relations between BCH functions

Leaving aside the quantum problem, Eq. (6) may be useful to
find some relations between BCH functions.

Firstly, we can see that Eq. (6) does not change when we
replaceα by−α. Considering then the eigenfunction (5), we
can see that the BCH functions of parameters±α are related
by

H(−α, β, γ, δ; z) = zαH(α, β, γ, δ; z). (24)

Since for the quatum problem we need thatα > −1, it may
seem that this relation only holds for|α| < 1. However, it
is easily seen by direct substitution that it always holds for
Eq. (3), and it is a general relation for BCH functions. A plot
of the functions in both sides of Eq. (24) is found in Fig. 3,
where a constant factor is used to superimpose the curves.

Secondly, we can see that Eq. (6) prevails after the fol-
lowing changes

x → −x, β → −β, andδ → −δ .

Therefore, we get a second relation between BCH functions,
given by

H(α,−β, γ,−δ;−z) = (−1)
1+α

2 H(α, β, γ, δ; z). (25)

Plotting in terms ofz ∈ R, this means that there is a reflec-
tion along thex−axis if α is an odd-integer (4n+1, actually),
as can be seen in Fig. 4, and solutions withα being an even-
integer are not real. This is a feature that has been seen in
physical problems, but was not completely understood. See,
for example, the discussion in Sec. 6 of [10].

There seems to be no references for relations in
Eqs. (24,25) in the literature. For example, Mathematica may
find a general solution in terms of both of the functions in
Eq. (24), not realizing they are the same.i
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FIGURE 4. Mathematica’s HeunB (5,3.2,6,2,4.1;r) in red, and He-
unB (-5,3.2,6,-2,4.1;−r), in blue, where the change in the param-
eters is due to the change inβ andδ as described in Eq. (25). A
reflection along thex-axis is due to the factor(−1)(1+α)/2, in this
caseα = 5.

4. Conclusion

Here we have made a review of solutions to the quantum
problem with a potential function with harmonic, Stark,
Coulombian and centrifugal barrier terms, which is essen-
tially solved in terms of BCH functions. We have shown that
this problem cannot be solved in terms of Hermite series, and
provided the Mathematica code to obtain numerical solutions
for this and other quantum problems.

Through this quantum problem we realized the existance
of a new relation between BCH functions, where one param-
eter changed sign, and thereafter a second relation where the
argument of the BCH functions changed sign, which may

shed some light into the reality of the functions. We believe
these relations have not been found anywhere else.

Finally, it would be interesting if, as one can see from
Eq. (8), where the quantum energy eigenvalue is given in
terms of the parameterγ of the BCH Eq. (2), there is a math-
ematical proof that when the BCH functions are determined
as polynomials, the parameterγ is found to determine the ze-
roes of the BCH functions, a statement not settled yet in the
literature.

Appendix A: Mathematica code

For the sake of academic purposes, we present here the Math-
ematica code used in Sec. 2.3 to solve the BCH Eq. (2) nu-
merically:

This code uses the parameter values for the example given
by Ferreira and Sesma [10].
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