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A variational approach to ground state energy
estimation in relativistic quantum systems
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The variational method in quantum mechanics plays a crucial role in estimating upper bound values of eigenenergies, particularly in the
efficient determination of ground state energies.This study applies the variational method to analyze ground state energies in quantum
systems featuring certain relativistic elements within their Hamiltonians allowing to assess its efficacy. Furthermore, we compare the results
obtained through this method with existing literature, shedding light on its accuracy and applicability in the context of relativistic quantum
systems.
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1. Introduction

In quantum mechanics, exact solutions of the Schrödinger
equation exist only for a few idealized systems. To address
general problems, researchers must rely on approximation
methods [1]. Various approximation techniques have been
developed, each with its own domain of applicability. To
study stationary states in quantum mechanics, researchers of-
ten turn to approximation methods, including the perturba-
tion method, the WKB approximation, and the variational
principle.

Among these methods, the variational method stands out
for its effectiveness in estimating ground state energies and
providing qualitative insights into the behavior of wave func-
tions [5]. This method proves particularly valuable when
dealing with systems for which the Hamiltonian is known,
but the eigenvalues and eigenstates remain elusive. Accord-
ing to the variational principle, for any given trial function
|ψ〉 parameterized by a variational parameter, the energyE
always exceeds the exact energyE0:

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0. (1)

Equality in the above condition is achieved only when the
trial function|ψ〉 is proportional to the true ground state|ψ0〉.
While the variational method can also approximate the ener-
gies of the first few excited states, its application becomes in-
creasingly intricate with higher excited states. Consequently,
the method primarily finds utility in determining ground state
energies.

This paper leverages the variational method to com-
pute the ground state energy of various relativistic systems.
Specifically, we focus on three distinct systems: the hydrogen
atom, the quantum harmonic oscillator, and quantum anhar-

monic oscillators. Our aim is to determine the ground state
energies for these systems while considering the influence of
relativistic effects. By doing so, we seek to understand the in-
terplay between relativistic and non-relativistic effects and to
provide valuable insights into the behavior of these systems
within the framework of relativistic quantum mechanics.

2. Formalism

Guided by physical intuition and informed guesswork, we be-
gin by selecting a trial wavefunction that is designed to en-
capsulate all the relevant physical properties associated with
the ground state of the quantum system under investigation.
However, in cases where certain properties remain unknown
or uncertain, we introduce adjustable parameters represented
asα1, α2, . . . into the trial wavefunction. These parameters
allow us to account for the variability or imprecision in our
knowledge of the system. With the trial wavefunction in
place, we proceed to compute the ground state energy. This
calculation involves employing the variational principle, as
expressed in Eq. (1), and utilizing the relativistic Hamilto-
nian, which represents the total energy of the system.

The outcome of this calculation is an expression for the
ground state energy, denoted asE0(α1, α2, . . .), and it ex-
plicitly depends on the adjustable parametersα1, α2, . . .:

E0(α1, α2, . . .)=
〈ψ0(α1, α2, . . .)|H|ψ0(α1, α2, . . .)〉
〈ψ0(α1, α2, . . .)|ψ0(α1, α2, . . .)〉 . (2)

To identify the values of these adjustable parameters that
minimize the expectation value of the energy, we differen-
tiate E0(α1, α2, . . .) with respect to each parameter, setting
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the resulting derivatives equal to zero:

∂E0(α1, α2, . . .)
∂αi

=
∂

∂αi

〈ψ0(α1, α2, . . .)|H|ψ0(α1, α2, . . .)〉
〈ψ0(α1, α2, . . .)|ψ0(α1, α2, . . .)〉 = 0. (3)

Here, i ranges over the parameters, such asi = 1, 2, . . ..
Once we’ve determined these parameter values, we can sub-
stitute them back into Eq. (2), yielding an approximate value
for the ground state energy, denoted asE0(α1, α2, . . .). Im-
portantly, this approximate energy value serves as an upper
bound for the true ground state energy, denoted asEmin.

Moreover, by employing the trial wavefunction
|ψ0(α1, α2, . . .)〉, we are able to approximate the exact
ground state eigenstate, offering valuable insights into the
characteristics of the ground state of the relativistic quantum
system under investigation.

3. Hydrogen-like systems

The hydrogen atom, as the simplest atomic system, provides
an ideal setting for a rigorous quantum mechanical analysis.
In our approach, we adopt a trial wavefunction described by
Eq. (4), which takes the form:

ψ(x) = Ae−αr. (4)

Here,α represents a variational parameter, andA is the nor-
malization constant, calculated asA =

√
α3/π. This choice

of wavefunction is made with the aim of encompassing all the
essential physical properties of the ground state. The total rel-
ativistic Hamiltonian for a hydrogen-like atom is defined by
Eq. (5), wherek is a parameter associated with the atomic
nucleus andz represents the atomic number.

H = mc2 +
1
2

p2

m
− k

r
. (5)

With this expression we proceed to evaluate its expectation
value, denoted as〈H〉 which is nothing butE0:

〈H〉 = E0 =
〈

mc2 +
1
2

p2

m
− k

r

〉
. (6)

Breaking down each component:〈mc2〉 represents the aver-
age rest energy of the particle, which remains constant and is
equal tomc2.〈

(1/2)(p2/m)
〉

quantifies the expectation value of the ki-
netic energy of the particle. To evaluate this term, we inte-
grate the kinetic energy operator over the trial wavefunction,
resulting in(~2/2m)α2.

〈(k/r)〉 signifies the potential energy due to the interac-
tion with the atomic nucleus. Similarly, integrating this term
over the wavefunction results inkα.
As a result, the value of energy can be expressed as:

E0 = mc2 +
~2

2m
α2 − kα. (7)

To determine the optimal value ofα that minimizes the ex-
pectation value〈E〉, we take its derivative with respect toα:

dE0

dα
=
~2

m
α− k = 0. (8)

Solving this equation forα yields:

α =
km

~2
. (9)

Substituting this optimal value ofα back into the expectation
value of energy:

Emin = mc2 +
~2

2m

(
km

~2

)2

− k

(
km

~2

)
. (10)

Simplifying further:

Emin = mc2 − k2m

2~2
. (11)

In this expression, the first term corresponds to the rest energy
of the particle, while the second term represents a Rydberg-
like expression for the energy levels of the hydrogen atom.
It’s essential to note that this equation accurately describes
the exact relativistic ground state energy of the system, as
confirmed by prior studies [6,7].

4. The quantum harmonic oscillator

In this section, we explore the ground state energy of a rel-
ativistic quantum harmonic oscillator using the variational
method. We begin by selecting a trial wavefunction of the
form:

Ψ(x) = Ae−αx2
. (12)

Here,α is a variational parameter, andA serves as the nor-
malization constant, defined as:

A =
(

2α

π

) 1
4

. (13)

To account for relativistic effects, we modify the Hamiltonian
expression, originally given as:

H2 = p2
xc2 + m2c4. (14)

We introduce an interaction term coupling momentum with
the position, as defined in [8]:

px −→ px − imωx, p†x −→ px + imωx. (15)

Under this coupling, the square of momentum becomes:

p2
x =

1
2

[
pxp†x + p†xpx

]
. (16)
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As a result, the expression takes the form:

H =
√

p2
xc2 + m2ω2x2c2 + m2c4. (17)

Utilizing the variational method, we proceed to evaluate the
expectation value ofE:

〈H2〉 =
〈
−~2c2 d2

dx2
+ m2x2ω2c2 + m2c4

〉
. (18)

Solving for this expectation value, we find:

〈H2〉 = ~2c2|A|2
√

πα

2

+ |A|2 m2ω2c2

2

√
π

(2α)
3
2

+ m2c4. (19)

Applying the uncertainty principle,

∆H =
√
〈H2〉 − 〈H〉2. (20)

In the case of a sharply defined energy, we have∆H = 0,
implying 〈H2〉 = 〈H〉2. Consequently, we obtain:

〈H〉

=

√
~2c2|A|2

√
πα

2
+|A|2 m2ω2c2

2

√
π

(2α)
3
2
+m2c4. (21)

Upon substituting the expression forA, we derive:

E0 =

√
~2c2α +

m2ω2c2

4α
+ m2c4. (22)

To minimize〈E〉 with respect toα, we differentiate with re-
spect toα, leading to:

α =
mω

2~
. (23)

Substituting this optimalα value back into (22), we arrive at
the minimum expectation value ofE:

Emin =
√
~mωc2 + m2c4. (24)

Expanding (24) binomially, we can express the total relativis-
tic energy as:

Emin = mc2 +
1
2
ω~+

1
8

ω2~2

mc2
+ . . . (25)

Remarkably, this decomposition reveals the various compo-
nents of the total relativistic energy, including the rest en-
ergy, non-relativistic energy, and relativistic corrections. Im-
portantly, our result aligns with the findings presented in
Refs. [9,10].

5. Anharmonic oscillator

Quantum mechanical anharmonic oscillators (AHO) have
garnered significant attention over the years due to their rel-
evance in various branches of physics, including field theo-
ries, molecular physics, and solid-state physics, among oth-
ers [11]. These systems have been thoroughly investigated
using both analytical and numerical approaches. To estimate
the relativistic energy of such a system, we select the follow-
ing trial wavefunction:

ψ(x) = Ae−
λ2x2

2 . (26)

Here,λ represents a variational parameter, andA serves as
the normalization constant:

A2 =
λ√
π

. (27)

The relativistic Hamiltonian expression for this system is
given as:

H =
√

p2c2 + m2c4 + Bx4. (28)

Expanding the relativistic kinetic term(p2c2 + m2c4)1/2 bi-
nomially and retaining significant terms, we find:

H = mc2 +
1
2

p2c2

mc2
+ Bx4. (29)

To calculate〈H〉, we break it down into its constituent parts
and get:

E0 = mc2 +
1
4
~2λ2

m
+

3B

4
1
λ4

. (30)

To find the minimum expectation valueE0 with respect to
the variational parameterλ, we differentiate with respect to
λ, yielding:

λ =
(

6Bm

~2

) 1
6

. (31)

Substituting this optimalλ value back into the expression for
〈E〉, we obtain:

Emin = mc2 +
1
4
~2

m

(
6Bm

~2

)2/6

+
3B

4

(
~2

6mB

)4/6

= mc2 + 1.082
(
~2

2m

)2/3

B1/3. (32)

Clearly, for any general anharmonic system, the relativistic
ground state energy comprises the rest energy and the kinetic
energy of the system. This result provides valuable insights
into the behavior of anharmonic oscillators within the frame-
work of relativistic quantum mechanics.
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6. Conclusions

In this study, we applied the variational principle to estimate
ground state energies within various relativistic quantum sys-
tems. Our investigation encompassed systems ranging from
the hydrogen atom to quantum harmonic and anharmonic
oscillators. While our method efficiently captures and rep-
resents both non-relativistic and relativistic features, affirm-
ing its adaptability in handling systems exhibiting a blend of
these behaviours, the comprehensive understanding and pre-
cise dissection of these components warrant further theoreti-
cal exploration and analysis.

The potential implications encompass advancements in
understanding quantum systems with mixed relativistic at-

tributes, facilitating future theoretical and experimental in-
vestigations. It demonstrates the robustness of the variational
principle in estimating ground state energies, even in the pres-
ence of relativistic effects. Furthermore, our method’s versa-
tility allows for the determination of ground state energies
in any relativistic system for which the potential is known.
These findings contribute to the advancement of relativistic
quantum mechanics and its applications in various areas of
physics.
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