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We analyze properties of excited states of a special HamiltonianH, endowed with a displaced quadratic potentialV such that its ground
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1. Introduction

Coherent states in quantum mechanics exhibit properties that
resemble classical fields, making them a special and unique
class of quantum states with classical-like behavior. The ra-
diation field in a coherent state is a prominent example where
these classical-like properties are particularly evident. In the
context of quantum optics, a coherent state is a particular type
of quantum state that can describe the electromagnetic radia-
tion field of a light mode. The coherent state is often denoted
asα, whereα is a complex number representing the coherent
amplitude. Some properties of the radiation field in a coher-
ent state that resemble classical fields are:

• Classical-Like Mean Field: In a coherent state, the ex-
pectation value (mean) of the field’s electric field am-
plitude is proportional to the coherent amplitudeα.
This property resembles the classical concept of a well-
defined mean field amplitude.

• Minimum Uncertainty: Coherent states are eigenstates
of the annihilation operator (lowering operator), and
they exhibit the minimum possible uncertainty in the
field’s electric field amplitude and phase. This min-
imum uncertainty is reminiscent of classical fields,
where both amplitude and phase can be precisely de-
termined.

• Gaussian Probability Distribution: The probability dis-
tribution of measuring a particular field amplitude in
a coherent state follows a Gaussian distribution. This
distribution is characteristic of classical fields with
well-defined coherent amplitudes.

• Stable Over Time: Coherent states are temporally sta-
ble and do not exhibit significant quantum fluctuations
in the field’s amplitude over time. This stability is akin
to the classical behavior of classical waves.

• Classical Intensity Interference: The interference pat-
terns observed in coherent light beams are similar to

those produced by classical waves, as coherent states
maintain their coherence properties even after super-
position with other coherent states.

• Classical-Like Optical Interference: In classical optics,
coherent light sources are known to produce optical in-
terference patterns with bright and dark fringes. The
interference of coherent states exhibits similar bright
and dark fringes, akin to classical optical interference
patterns.

These classical-like properties of the radiation field in a
coherent state arise from the specific nature of the coherent
state itself. Coherent states are superpositions of Fock states
(number states) with a specific coherent amplitude, and this
superposition results in the quantum state exhibiting proper-
ties that closely resemble classical fields. The classical-like
behavior of coherent states has practical implications and ap-
plications in quantum optics and quantum information pro-
cessing, where coherent states are used in quantum commu-
nication, quantum cryptography, and quantum key distribu-
tion due to their robustness against certain types of noise and
their resemblance to classical fields.

As we see, coherent states are highly significant in sev-
eral areas of physics, particularly in quantum mechanics,
quantum optics, quantum information, quantum computing,
and quantum metrology. Their mathematical properties and
close connection to classical states make them valuable tools
for both theoretical and experimental investigations in these
fields.

1.1. Non conventionaal coherent states

Introducingnew types of coherent states, a done for exam-
ple in the excellent Ref. [1], can deepen our understanding
of quantum systems. By examining different mathematical
representations and properties, we can gain insights into the
fundamental nature of quantum mechanics and its connec-
tions to classical physics. It allows us to explore the bound-
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aries and possibilities of coherent states beyond the standard
formulations. We mention below some possibilities:

1) Enhanced Description of Physical Systems: Different
physical systems may have unique characteristics that
are not fully captured by standard coherent states. By
discovering new types of coherent states tailored to
specific systems, we can provide more accurate and
comprehensive descriptions of these systems. This can
lead to better models and predictions for a wide range
of phenomena, including molecular vibrations, quan-
tum gases, and complex quantum networks.

2) Applications in Quantum Technologies: Coherent
states are essential resources in various quantum tech-
nologies, including quantum communication, quan-
tum computing, and quantum metrology. Finding new
types of coherent states can potentially enhance the ca-
pabilities and performance of these technologies. For
example, new coherent states with improved proper-
ties, such as higher squeezing or reduced noise, could
enable more efficient quantum information processing
or more precise quantum measurements.

3) Quantum Control and Manipulation: Coherent states
are often used as starting points for quantum control
and manipulation techniques. Discovering new types
of coherent states with specific properties could pro-
vide alternative avenues for manipulating quantum sys-
tems. This could lead to advancements in quantum
control methods, such as state preparation, state engi-
neering, and quantum feedback control, enabling better
manipulation and utilization of quantum resources.

4) Fundamental Physics: Coherent states have connec-
tions to various fundamental principles and phenomena
in physics, such as symmetry, quantization, and entan-
glement. Exploring new types of coherent states may
uncover previously unknown connections and deepen
our understanding of these fundamental aspects. This
can contribute to the development of new theoretical
frameworks and concepts in physics.

In summary, the discovery of new types of coherent states
has the potential to enrich our understanding of quantum sys-
tems, improve our ability to describe and manipulate phys-
ical systems, enhance quantum technologies, and shed light
on fundamental principles of physics. It is an exciting avenue
of research with promising prospects for advancing both the-
oretical and applied physics [1].

1.2. Our goal

We will here analyze some hopefully interesting properties
of excited statesof a special HamiltonianH, endowedwith
a displaced quadratic potential V such that its ground
state is an HO-Glauber coherent state /CS). The ampli-
tude of this CS is calledα. Our main result is that, for large

enough realα, the pertinent first excited state of this special
Hamiltonian is also a coherent state of minimum uncertainty.

1.3. Basic considerations

For starters, let us recapitulate notions regarding Glauber co-
herent states of the harmonic oscillator (HO) of amplitude
|α〉 [2–4]. A Glauber state (CS)α is a very special sort of
quantum state, the one of minimum uncertainty, so that it
most resembles a classical state. Note thatα is a complex
variable.

These Glauber states are employed in manifold ways, for
instance with regard to the quantum harmonic oscillator, the
electromagnetic field, etc. They portray a maximal kind of
coherence and a classical type of behavior. Our states|α〉 are
normalized, that is,〈α|α〉 = 1. They provide a resolution of
the identity operator

∫
d2α

π
|α〉〈α| = 1, (1)

a completeness relation for the coherent states [4]. The
Glauber states|α〉 for the harmonic oscillator are, by defi-
nition, eigenstates of the annihilation operatorâ: The eigen-
values are complex. In other words,

α =
q + ip√

2
, (2)

which satisfyâ|α〉 = α|α〉 [4].
It is a text book recipe that then−th HO eigenfunction

reads

φn(x) =
(mω

~

) 1
4 Hn

(√
mω

~
x

)
. (3)

Hn is Hermite’sn−th order generalized function

Hn(x) =
(
π

1
2 2nn!

)− 1
2

e−
x2
2 Hn(x), (4)

and Hn is the associated Hermite polynomial. In the x-
representation one writes for the coherent state

ψα(x) = e−
|α|2

2

∞∑
n=0

αn

√
n!

φn(x), (5)

and also

ψα(x) =
(mω

~

) 1
4

e−
|α|2

2

∞∑
n=0

αn

√
n!
Hn

(√
mω

~
x

)
. (6)

For convenience, we set below
√

mω/~ = 1. We use the
fact that the quantum harmonic oscillator possesses natural
scales for length and energy, which can be used to simplify
the notation. These can be found by nondimensionalization.
The Hamiltonian simplifies to

H = (1/2)
(
− d2

dx2
+ x2

)
. (7)
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Thus, for the HO one thus has

φn(x) = Hn (x) , (8)

while for its coherent states (CS) one writes

ψα(x) = e−
|α|2

2

∞∑
n=0

αn

√
n!
Hn (x) . (9)

2. Compact analytic form for a Glauber coher-
ent state (CS)

The CS can be presented in a compact analytic form in quan-
tum mechanics’x representation, as reported in [6]. To
do so, one starts with the annihilation operator for the one-
dimensional harmonic oscillator

â =
x̂ + ip̂√

2
, (10)

that in thex-representation is expressed as

â(x) =
1√
2

(
x +

d

dx

)
. (11)

Precisely, Glauber stated that coherent states are the eigen-
functions ofâ(x) (α is a complex quantity)

â(x)ψα(x) =
1√
2

(
xψα(x) +

dψα(x)
dx

)
= αψα(x). (12)

Thus,
dψα(x)

dx
= (

√
2α− x)ψα(x), (13)

a quite simple enough equation of solution

ψα(x) = Ce−
x2
2 e

√
2αx. (14)

C is determined using the normalization process requirement

∞∫

−∞
|ψα(x)|2dx = |C|2

∞∫

−∞
e−x2

e
√

2(α+α∗)xdx = 1. (15)

From the precedent equation, we gather that

∞∫

−∞
|ψα(x)|2dx = |C|2e (α+α∗)2

2

×
∞∫

−∞
e
−

(
x−α+α∗√

2

)2

dx = 1. (16)

Using the Table [7] we get

∞∫

−∞
e
−

(
x−α+α∗√

2

)2

dx =
√

π. (17)

Thus,

C = π−
1
4 e−

(α+α∗)2
4 . (18)

Remind that, in obvious notation,α = αR+iαI andα+α∗ =
2αR. Also, expαx = exp (αRx) exp (iαIx). The second
factor is just a phase factor. Accordingly,ψ(α)(x) attains the
compact form

ψα(x) = π−
1
4 e−(αR)2e(− x2

2 )e(
√

2αRx), (19)

where, let us repeat, we omitted a phase factorexp i
√

2αIx.

Properties of the above castψ function are detailedly dis-
cussed in Ref. [8], where it is specified just howψ is identical
with the Glauber Fock expansion usually used to define co-
herent states. A peculiar detail fact can here be mentioned.
The form ofψ is identical to that of a wave packet of Har-
monic Oscillator eigenfunctions studied in Ref. [9]. See also
Ref. [10].

2.1. ψ-partner potential

Appropriate small changes lead to a Gaussianψ(y) with
(y2/2) = (x/

√
2 − αR)2, y = x − √

2αR andψα(y) =
(1/π4)e−y2/2.

It is clear that, from Schr̈odinger equation, forψ we have
a partner potentialV (x) and an energy eigenvalueE given
by

2(V (y)− E) =
ψ′′(y)
ψ(y)

, (20)

so that

(1/2)
ψ′′(y)
ψ(y)

= y2/2− 1/2 = V − E, (21)

implying

V (y) = y2/2; y = x−
√

2αR, (22)

and

E = 1/2. (23)

Accordingly, Glauber coherent states can be regarded as
eigenfunctions of anαR-displaced quadratic potentialV .

3. Excited states of the displaced potentialV

In an excellent wprk, Agarwal and Tara, in 1991 introduced
a new class of states defined as ‘m’ times application of cre-
ation operator to Coherent States known as Excited Coherent
States (ECS) or Photon Added Coherent States (PACS) [1].

We look here seek instead for purely quantum excited
states of the Hamiltonian whose potential isV of (22). These
states are to be compared to those of [1, 11]. We sety =
x − √2αR and then look for the overlapOm,n between the
m-th eigenstate of the displaced potential and then-th one of
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the ordinary Harmonic Oscillator.Hn are Hermite polyno-
mials. We are led to

Om,n =
1

2m
√

n!
√

π

∞∫

−∞
dx exp (−x2)

× Hm(x−
√

2αR)Hn(x +
√

2αR). (24)

Recourse to the Table in [7] yields for the overlap

Om,n =
1

2m
√

n!

[√
m!(

√
2αR)n−mLn−m

m (4αR)2)
]
. (25)

Ln
m are associated Laguerre polynomials and one requires

m ≤ n. Remind that

Ln
m(x) =

m∑

i=0

(−1)i(m + n)!xi/[(m− i)!(n + i)!i!]. (26)

Now, theψm associated to of the displaced quartic poten-
tial are expressed, in terms of the HO eigenstatesφn as

ψm =
∑

n

Om,nφn =
∑

n

cnφn. (27)

The m-th excited state can be regarded as a Glauber state
[1, 11]. Note however that Eq. (24) can be used only if
m ≤ n. If this is not so, one must interchange sub-indexes in
that equation. In particular, form = 1 we have

ξ = ψ1 =


∑

n≥1

1√
n!

(
√

2αR)n−1L1(4α2
R)n−1φn




+ (1/2)φ0. (28)

|Om,n|2 is of course the probability|cn|2 thatψm coincides
with the ordinary OH stateφn. Also, Ln−1

1 (x) = n − x.
Thus,

ξ = ψ1 =


∑

n≥1

(
√

2αR)n−1

√
n!

(n− 4α2
R)n−1φn




+ (1/2)φ0. (29)

4. ξ-Uncertainties

We assume now thatα is real. We pass here to our main
concern: the quantum uncertainties associated to our excites
stateξ. Remember that our coherent state and also ground
state of the displaced Hamiltonian is

ψα(x) = π−1/4e−α2
e−

x2
2 e

√
2αx, (30)

while the pertinent first excited state reads

ξα(x) = a†Ψα(x) =
1√
2

(
x− d

dx

)
ψα(x), (31)

i.e.,

ξα(x) =
π−1/4e−α2

√
2

(2x−
√

2α)e−
x2
2 e

√
2αx, (32)

whose normalization requires

+∞∫

−∞
|ξα(x)|2dx = 1 + α2, (33)

and then

ξα(x) =
π−1/4e−α2

√
2
√

1 + α2
(2x−

√
2α)e−

x2
2 e

√
2αx, (34)

Below, we repeatedly use Ref. [7].

4.1. Mean value ofx

We have

〈x〉 =

+∞∫

−∞
x|ξα(x)|dx, (35)

and

〈x〉 =
√

2α
2 + α2

1 + α2
. (36)

4.2. Mean value ofx2

We start with

〈x2〉 =

+∞∫

−∞
x2|ξα(x)|dx, (37)

and then

〈x2〉 =
3 + 13α2 + 4α4

2(1 + α2)
. (38)

4.3. x-Uncertainty

It is

∆x =
√
〈x2〉 − 〈x〉2, (39)

i.e.,

∆x =

√
3 + α4

2(1 + α2)2
. (40)

Note that there cannot be squeezing in∆x.
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4.4. Mean value ofp

Focus attention on

〈p〉 =

+∞∫

−∞
ξ∗α(x)p̂ξα(x)dx, (41)

p̂ ≡ −i~
d

dx
, (42)

and then

〈p〉 = −i~
+∞∫

−∞
ξ∗α(x)

d

dx
ξα(x)dx, (43)

i.e.,

〈p〉 = 0. (44)

4.5. Mean value ofp2

Begin with

〈p2〉 = −~2

+∞∫

−∞
ξ∗α(x)

d2

dx2
ξα(x)dx, (45)

leading to

〈p2〉 = ~2 3 + α2

2(1 + α2)
. (46)

4.6. p-Uncertainty

One has

∆p =
√
〈p2〉 − 〈p〉2, (47)

and

∆p = ~

√
3 + α2

2(1 + α2)
. (48)

Note that there cannot be squeezing in∆p.

4.7. ξ-Uncertainty

It becomes

∆x∆p =
1

2(1 + α2)

√
(3 + α2)(3 + α4)

1 + α2
, (49)

our main result.
We plot this uncertainty in Fig. 1. It is seen that for large

enoughα our ξ is a coherent state, our main result.
Figure 1 plots, for the excited statesξ, the associated

Heisenberg uncertainty versus value of real amplitudeα. If
this amplitude is large enough we reach minimum uncer-
tainty, which makesξ a coherent state.

FIGURE 1. Excited statesξ-associated Heisenberg uncertainty ver-
sus value of real amplitudeα. If this amplitude is large enough we
reach minimum uncertainty, which makesξ a coherent state.

5. Uncertainty ands second excited stateη

Let us construct the second excited state from the first oneξ:

ξα(x) =
π−1/4e−α2

√
2
√

1 + α2
(2x−

√
2α)e−

x2
2 e

√
2αx, (50)

that is

η∗α(x) = a†ξ =
1√
(2)

(
x− d

dx

)
ξα(x), (51)

i.e.,

η∗α(x) =
π−1/4e−α2

2
√

1 + α2

× (−2 + 2α2 − 4
√

2αx + 4x2)e−
x2
2 e

√
2αx. (52)

Normalization ofη entails:

+∞∫

−∞
|η∗α(x)|dx =

2
1 + α2

(2 + 4α2 + α4), (53)

and

ηα(x) =
π−1/4e−α2

2
√

2 + 4α2 + α4

× (−2 + 2α2 − 4
√

2αx + 4x2)e−
x2
2 e

√
2αx. (54)

A rather laborious and tedious manipulation gives the
Heisenberg uncertainty versusα that we plot in Fig. 2. We
see that for (real)α large enough we attain minimum uncer-
tainty and thus coherent states.

Figure 2 plots, for the excited statesη, the associated
Heisenberg uncertainty versus value of real amplitudeα. If
this amplitude is large enough we reach minimum uncer-
tainty, which makesη a coherent state.
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FIGURE 2. Second excited stateη-associated Heisenberg uncer-
tainty versus value of real amplitudeα. If this amplitude is large
enough we reach minimum uncertainty, which makesη a coherent
state.

6. Conclusions

• The ordinary Glauber coherent states of amplitudeα
are just ground states eigenfunctions of anαR dis-
placed harmonic oscillator of potentialV (x).

• The Hamiltonian whose displaced potential isV (x)
has, of course, excited states

• These excited states are non-conventional coherent
states of amplitudeα.

• We have here established their form in terms of the
eigenstates of the ordinary HO.

• The n-th excited state can be regarded as a Glauber
state to which one addsn photons.

Note that Excited Coherent states of [11] instead exhibit
mixtures of both coherent states (which are quantum mechan-
ical analogs of classical oscillator ) and Fock states (strictly
quantum with no classical analog). Thus, they represent
Quantum fluctuations in simple quantum coherent states [11].

Our excited coherent states instead are simply quantum
excited states of anα-displaced potentialV . For large enough
real α we reach minimum uncertainty, which, as we have
showed here, makes the first and second excited state a new
kind of coherent states. We speculate that the same happens
with higher excited states of our peculiar Hamiltonian.
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