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Boulevard Juriquilla 3001, Juriquilla 76230 Querétaro, Ḿexico, Ḿexico.
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Received 18 October 2023; accepted 22 February 2024

The principle of non-locality, or the existence of systems of particles with properties that relate them even at great distances, is called
entangled systems and defies the intuition that requires all relationships to be described by means of energy exchange or by material links.
Quantum physics presents non-locality as a consequence of objects being described by a single wave function, and as such, unless they
decohere (lose their nonphysical link), the relationship remains, and each cannot be understood separately. Recently, there have been many
technological models that can produce entangled systems. In addition to the examples that submicroscopic physics can illustrate, the simplest
is spontaneous parametric fluorescence, which requires a laser and a parametric crystal, which has allowed very elaborate experiments to be
carried out and shows the relevance of quantum physics and the limitations of our perception. The examples described here have emerged
over the years as attempts to make this concept more acceptable and try to guide the imagination to situations where these types of phenomena
can be plausible, pointing to human perception with the duality of bringing us closer to nature appreciation, but at the same time, it is the
main limitation to understand nature. The relevance of this concept was recognized with the Nobel Prize 2022 in physics, and it can be
summarized as the Proof of the Bell inequality using anecdotes from a Nobel non-recipient.
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1. Introduction

In considering communication challenges, let’s simplify this
with two terms: “teaching” and “explaining.” When teach-
ing, both the teacher and the learner invest considerable ef-
fort, dedication, and time to reach shared conclusions. In
contrast, explaining relies more on the recipient’s existing
knowledge and experience, requiring less effort but with sim-
ilar comprehension expectations. Disappointment is more
probable with explanations since the burden of clarity falls
on the speaker, while teaching places responsibility on the
learner.

This dynamic becomes particularly pronounced with
complex subjects like quantum physics. Even among those
well-versed in the field, there can be difficulties in interpret-
ing certain details, especially when they clash with our ev-
eryday experiences. This is evident in concepts like locality,
which are inherently challenging to grasp outside specialized
training.

In the concept of reality, several words should be under-
stood in the context of the dynamics of the processes so that
we can identify and explain how a system changes to some-
thing else. The ideas that define reality from a classical point
of view are rigid and obtained from human experience, which
is very limited since humans did not evolve to understand na-
ture but to survive, and these two properties are not always
aligned. Since the last century, the question of what physical
reality is has given rise to numerous discussions since the be-
haviour of the submicroscopic world, where one understands
the interactions between particles that cannot be seen with an

optical microscope, does not fully correspond to the classical
sense of the systems, and the difference between the two has
been attempted to reconcile by invoking that the physics of
the submicroscopic world is incomplete, that it includes not
linear phenomena described in the equations, which requires
to emphasizing the random aspects, in addition to consider-
ing that if the system is closed, the energy is a constant and
only change in an open system that communicates with the
outside and the unknown details may help to explain the dif-
ference with perception. Points of disagreement may include
any number of the above arguments.

In a classical sense, reality is local, which involves the
concept of space (the force and the response are spatially lim-
ited and related); it is causal, which involves the concept of
time (the response is posterior to the cause), in addition to as-
suming that the processes are continuous and that wave and
corpuscular phenomena are independent and different.

In the sense of physical reality, quantum physics is the
theory that produces predictions that even exceed the limits
of one’s experimental capacity, but with three inherent draw-
backs: First, the interpretation of its meaning is different for
different groups of scholars, or the interpretation is even con-
sidered irrelevant when the results of the calculations are so
precise. Second, every system is associated with a wave func-
tion that generally can be complex, which is why the distinc-
tion between waves and particles disappears. Everything is
represented by a wave function. Third is that it seems that it
is only relevant in phenomena that have objects much smaller
than those that a human can perceive.
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The main concept that makes it difficult to understand the
results of quantum physics and somehow converges in one
interpretation is the concept of whether two events commute
or not. In everyday life, we accept that some events do not
commute since experience tells us so. Something like dress-
ing up and taking a shower and hoping that the result is the
same as first taking a shower and after dressing up, not all
preparations impose this restriction, but clearly, some require
an imposed order, and the result is different according to the
sequence.

Accepting that the same procedure can produce different
results is a good starting point for understanding many phe-
nomena in the submicroscopic world, where atoms and el-
ementary particles like electrons and photons are described,
as well as stop thinking that the correlation between systems
must be given by something physical that connects them in
space or through an interaction of energy (signals at a dis-
tance) that connects them with information as well as realiz-
ing that it is not obvious what features of the system require
attention to understand that relationship and what degree of
connection this is. Understanding the measurement process
is crucial, especially in contexts where it’s typically consid-
ered independent of the measured phenomenon. However,
when dealing with variables in the submicroscopic realm
(like atoms) or requiring high precision (as in interferom-
eters for measuring gravitational waves), the measurement
process itself can significantly influence the result. It’s im-
portant to note that what may seem strange or unusual often
occurs when working with very small systems. For instance,
quantum behaviour has been observed in objects as large as
the 40 kg mirrors used in the LIGO interferometer for mea-
suring gravitational waves [1-3].

Complementary, non-commutation, uncertainty princi-
ple, entanglement, and contextual properties are intricate
concepts that lead to surprising results, exemplified by phe-
nomena like Young’s double slit experiment with particles
[4]. These ideas highlight the human difficulty in compre-
hending complex or non-linear processes, as illustrated by
the anecdote about the game of chess and grains of rice [5].
This text will explore the concept of non-locality, using vari-
ous examples to convey its complexity. It will delve into the
importance of context using simple probability and relate it
to understanding clinical diagnoses. The discussion will then
transition to non-locality demonstrated through simple oper-
ations with surprising outcomes, followed by an analogy in-
volving an example of quantum-baking reminiscent of Sterns
and Gerlach’s proposed experiments. Lastly, a straightfor-
ward experiment conducted by Professor Fry from TAMU
will be described, showcasing the didactic nature of under-
standing non-local properties in nature, ultimately convinc-
ing the reader about the non-local properties of nature.

2. Diagnosis through clinical analysis

Before discussing some examples of non-locality and con-
text in the realm of physics, let’s first discuss an example

of a medical diagnosis. This example can be used to un-
derstand the role of context and probability in determining
the state of a system. In the medical diagnosis scenario, the
probability of an individual being sick or not sick is deter-
mined based on the entire population’s context and the test’s
properties. Similarly, in quantum physics, the properties of
entangled particles are determined not only by their individ-
ual states but also by their contextual relationship, regardless
of the distance between them. This analogy underscores the
idea that understanding a system’s state relies on contextual
information and probabilities in both scenarios, reflecting the
non-local nature of quantum phenomena.

In the context of understanding the results of a medi-
cal diagnosis [6,7], consider the following hypothetical sit-
uation: the universe of the population is divided into sick
and not sick peopleU = {S, NS}, and let us assume it has
been determined that for every 10,000 people in this universe
one is sick, indicating that the probability that an individ-
ual is sick isP (S|U) = 0.0001, with the probability that
an individual is not sick is given by the complementary part
P (NS|U) = 1− P (S|U) = 0.9999.

Additionally, a clinical study detects the disease when the
patient is sick 90% of the timeP (+|S) = 0.9 (analogous to
the case when the culprit is convicted). In addition to in-
dicating that the patient is not sick 99.9% of the occasions
P (−|NS) = 0.999 (the innocent is released). Moreover,
due to the partition of the patients, it must be fulfilled that:
P (+|NS) = 1 − P (−|NS) = 0.001 (false positive, the in-
nocent is convicted) andP (−|S) = 1−P (+|S) = 0.1 (false
negative, the culprit is released).

The relevant information for the patient is not the preva-
lence of the disease in the population nor any other conclu-
sion about the clinical assay performance. What matters to
the subject is to know the probability of being really sick in
case the result of the clinical test was positiveP (S|+) or
any practical conclusion derived from such test; not sick de-
spite a positive resultP (NS|+), sick despite negative result
P (S|−) or non-sick with negative resultP (NS|−). Let us
see this invoking again total probability:

P (+|U) = P (+|S)P (S|U) + P (+|NS)P (NS|U)

= (0.9)(0.0001) + (0.001)(0.9999)

= 0.001089,

P (−|U) = P (−|S)P (S|U) + P (−|NS)P (NS|U)

= (0.1)(0.0001) + (0.999)(0.9999)

= 0.9989101.

Figure 1 summarizes the results of the contextual probability
that we have talked about and concludes that 8.2% probability
of being sick if the test result is positive is not very reassur-
ing, but it is information to be obtained, and it is not obvious
at first glance, results are dependent on the context.

Applying Bayes’ rule: P (a|b)/P (a|U) =
P (b|a)/P (b|U) to determine the information that is sought
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FIGURE 1. Contextual probabilities: a) relative to sick and healthy people, b) relative to positive and negative results in the clinical test.

and that it is not evident from the information available at first
hand.

P (S|+) =
P (+|S)P (S|U)

P (+|U)
=

(0.9)(0.0001)
0.0010899

≈ 8.2%,

P (NS|+) =
P (+|NS)P (NS|U)

P (+|U)

=
(0.001)(0.9999)

0.0010899
≈ 91.8%,

P (S|−) =
P (−|S)P (S|U)

P (−|U)

=
(0.1)(0.0001)

0.9989101
≈ 0.001%,

P (NS|−) =
P (−|NS)P (NS|U)

P (−|U)

=
(0.999)(0.9999)

0.9989101
≈ 99.999%.

3. Game of surprises

Let’s define a game that can be deceivingly simple and still
guide us to confusion. It is a game of chance of finding ob-
jects in adjacent boxes [8], and to write a simple formal way
to express the results and to leave with the impression we un-
derstand very little or again, if one ignores the context, the
results are deceiving. The game consists of 5 boxes, one next
to another, at the vertices of a pentagon. It turns out that an
observer can open two adjacent boxes and observe their con-
tents, which can be full or empty, and the rules that we are
going to follow, the definition of reality is:

1. It is true that when box B is full, box A is empty,
and it is also true that when box B is empty, box
C is full; mathematically, this can be expressed as

P (0, 1|A,B) + P (0, 1|B,C) = 1. Also, this rule can
be expressed as: the boxes A and B cannot be full si-
multaneously, nor can boxes B and C be empty at the
same time,P (1, 1|A,B) = P (0, 0|B,C) = 0.

2. It is also true that when box D is full, box C is empty,
and it is also true that when box D is empty, box E is
full, P (0, 1|C,D) + P (0, 1|D,E) = 1, which can also
be said that boxes C and D cannot be full simultane-
ously nor can boxes D and E be empty at the same time
P (1, 1|C,D) = P (0, 0|D,E).

The first two rows in Table I correspond to rule 1, and the
last two rows correspond to rule 2. From this table, we con-
struct the summary in Table II with the information that does
not contradict each other; the first row is formed from rows 1
and 3 of Table I, the second row is formed from rows 1 and 4
of Table I, and the third row is formed from rows 2 and 4 of
Table I, and It is not possible to group the rules to construct
any row different from those indicated in Table II. The boxes

TABLE I. The rules of the game of boxes.
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TABLE II. All the possible scenarios in the game.

with the 0 and 1 symbols in Table II indicate any of the two
possible cases: the box is full or empty. For all the boxes,
there are only six possible scenarios, two scenarios for each
row in Table II.

If we ask about the probability of finding box E empty
and box A full, the answer is zeroP (0, 1|E,A) = 0, since the
first row of Table II produces E empty, but A is also empty,
and the third produces A full, but E full too.

The idea is to propose a systematic strategy to describe
the imposed reality, which faithfully reproduces it and allows
the last question to be posed and answered so that the condi-
tions imposed by the game are met.

One can image probability as represented by the dot prod-
uct, using a 3-element basis|η〉 = (1/

√
3)(1, 1, 1)T , the

properties described can be represented by projections of vec-
tors representing the boxes. The first goal is to invent the
vectors that represent the boxes and fulfill the description of
reality by the dot product. The projection of the vectors rep-
resents the probability that the box is full or empty as follows:

|vA〉 =
1√
3
(1,−1, 1)T , |vB〉 =

1√
2
(1, 1, 0)T ,

|vC〉 = (0, 0, 1)T , |vD〉 = (1, 0, 0)T ,

|vE〉 =
1√
2
(0, 1, 1)T .

As can be seen, the vectors are orthogonal with their
neighbours; in the case of boxes B to E, the definitions are
obvious, and box A is obtained from the cross product of box
B and box E. The definition is arbitrary and developed to ful-
fil the definitions of reality.

TABLE III. Limit values for the reactor design variables.

|η〉 |vA〉 |vB〉 |vC〉 |vD〉 |vE〉
〈η| 1 1

3

√
2
3

1√
3

1√
3

√
2
3

〈vA | 1
3

1 0 1√
3

1√
2

0

〈vB|
√

2
3

0 1 0 1√
2

1
2

〈vC| 1√
3

1√
3

0 1 0 1√
2

〈vD| 1√
3

1√
2

1√
2

0 1 0

〈vE|
√

2
3

0 1
2

1√
2

0 1

In such a way that the projections can be obtained by the
dot product, as listed in Table III.

Using this mathematical frame, it is possible to reproduce
the results defined by the rules of the game:

P|η〉(0, 1|A,B) = 0〈η|vA〉2 + 1〈η|vB〉2 =
2
3
,

P|η〉(0, 1|B,C) = 0〈η|vB〉2 + 1〈η|vC〉2 =
1
3
,

P|η〉(0, 1|C,D) = 0〈η|vC〉2 + 1〈η|vD〉2 =
1
3
,

P|η〉(0, 1|D,E) = 0〈η|vD〉2 + 1〈η|vE〉2 =
2
3
.

The problem comes when we calculate the probability of
finding the E box empty and the A box full, which is zero
according to the scenarios in Table II.

P|η〉(0, 1|E,A) = 0〈η|vE〉2 + 1〈η|vA〉2 =
1
9
.

Confronting the opposing result, one observes the ab-
sence of an observer for boxes A and E in the first prepa-
ration. The second preparation is more systematic and de-
scribes in more detail the interaction and the context that pro-
duces the difference. The previous examples introduce the
concept of context as a possibility for confusion. The goal
is to understand non-locality in a broader sense because it is
essential in quantum physics; John Bell [9] is credited for
expressing the importance of context in a mathematical way,
and the Nobel Prize in 2022 to Aspect, Clauser, and Zeilinger
[10]. Although Edward Fry should have been included in the
time between Clauser’s experiment and Aspect, it was the
most forceful experiment (Clauser invited Fry to the Nobel
Prize ceremony).

4. Baking of quantum cakes

Let’s start this section with a distraction to the Stern and Ger-
lach experiment [11]. In essence, it can be used to discuss
the main principles of quantum physics, quantization, non-
commutation, and entanglement. We will accept the first and
third and concentrate on the second. We will conclude with
the quantum cakes that focus on the third, accepting the sec-
ond as a fact.

Observations by Stern and Gerlach (S-G), indicate that
if a neutral particle is sent in a uniform magnetic flux den-
sity (~B = constant) its trajectory is not modified (Fz =
µz[dB/dz]), the force will be zero. If a charged particle is
sent, the trajectory is modified to produce spirals (q( ~E +~v×
~B) as the electron path in an electron microscope, if the par-
ticle is quantum and neutral in a non-uniform field~B (Fz =
g[e~/2m][s/~][dB/dz]) the force will deflect according to
the spin and for an electron the effect independent of the
Lorentz force will be (Fz = 2[e~/2m](±[1/2~])[dB/dz]),
that is similar to silver neutral atoms.

Rev. Mex. Fis. E21020210



PHYSICAL REALITY 5

FIGURE 2. Observation de Stern y Gerlach after a series of analyz-
ers, here one particle is analyzed after a sequence of S-G devices,
pay attention to the third sequence where the no commutation is
evident.

Sequential experiments of (S-G) type produce the exper-
imental results exhibited in Fig. 2, which are analogous to
using a sequence of polarizers for light. In the first experi-
ment, a beam for which we do not know the information of
the spin projection passes through a (S-G)z and the “mea-
surement” produces two spots that correspond to the infor-
mation of the beam, half are orientated in each direction, one
of them passes through a second (S-G)z and only confirms
the information we had, another deviation consistent with the
previous one. In the second experiment, the first (S-G)z is
identical to the previous observation, which measures only
the information in Z, then it goes through a (S-G)x that now
measures the information in X of the sample for which you
knew the information in Z, and measures equal proportion in
the resulting sports. The conclusion is that we cannot know
both information simultaneously. The projection in Z and in
X, only one of them, and the other is erased; the projections
do not commute.

As a preparation for the final experiment, the quantum
cake emphasizes entanglement, the property to share infor-
mation from the origin, which is a paraphrase from the S-
G observation but with two production lines that are related.
This example is another opportunity to appreciate the impor-
tance of context, again assuming that only one observable is
measured and it is random. In Measurable #1: a cake is ob-
served in the middle of the process (rise (R) or collapses (N)),
and in Measurable #2 the cake is tasted at the end of the pro-
cess (good (G) or bad (B)). A line of cakes is defined with
two exits, left and right, with the following measurements:

• The cake can come out good (|GL〉) or bad (|BL〉) on
the far left.

• The cake may be raised (spongy) (|SL〉) or collapsed
(|NL〉) when looking at it halfway through the process
on the left.

• The cake can come out good (|GR〉) or bad (|BR〉) on
the far right.

• The cake may be raised (|SR〉) or collapsed (|NR〉)
when looking at it halfway through the process on the
right.

This physical system that could describe this process [12]
produces the following results:

1. The probability of observing both cakes raised is 9%,
P (|SL〉&|SR〉) = 0.09.

2. If |SL〉 is observed then|GR〉 is produced.

3. If |SR〉 is observed then|GL〉 is produced.

4. The probability that both cakes are good is zero,
P (|GL〉&|GR〉) = 0.

The contradiction with reality is that even setting out to
achieve such observations, they cannot be achieved; at least
9% of the time, we would expect both cakes to be good.

A state that meets the imposed conditions is:

|ψ〉 =
1
2
|BL〉|BR〉 −

√
3
8
(|BL〉|GR〉+ |GL〉|BR〉)

+ 0|GL〉|GR〉.

A quarter of the time, it produces both bad cakes, the first
term at right, and three-quarters of the time, it produces only
one good one, but never both good ones.

1. When the furnaces are checked halfway, only 9% of
the times produces|SL〉 and|SR〉.
Replaced intermediate basis in all terms of|ψ〉 with
expressions in Fig. 3. This procedure gives 9% of the
time, both cakes are found to be rising.

|ψ〉 =
1
2

(√
0.4|NL〉+

√
0.6|SL〉

)

×
(√

0.4|NR〉+
√

0.6|SR〉
)

−
√

3
8

(√
0.4|NL〉+

√
0.6|SL〉

)

×
(
−
√

0.6|NR〉+
√

0.6|SR〉
)

× |ψ(|SL〉|SR〉)〉,

|ψ〉 =

(
1
2
0.6−

√
3
8

√
0.6
√

0.4−
√

3
8

√
0.4
√

0.6

)

× |SL〉|SR〉 = (−0.3)|SL〉|SR〉.

2. If |SL〉 (the cake on the left is observed to rise), then
|GR〉 (the cake on the right is good). Replaced inter-
mediate basis in all terms of|ψ〉 with expressions in
Fig. 3. The third term has the information from result
#2.
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FIGURE 3. Projection of the base Rise and Non-Rise over the base
Good and Bad used for the calculation in the example of the cakes.

|ψ〉 =
1
2

(√
0.4|NL〉|BR〉+

√
0.6|SL〉|BR〉

)

−
√

3
8
(√

0.4|NL〉|GR〉+
√

0.6|SL〉|GR〉

−
√

0.6|NL〉|BR〉+
√

0.4|SL〉|BR〉
)
,

|ψ〉 =

(
1
2

√
0.4 +

√
3
8

√
0.6

)
|NL〉|BR〉

−
√

3
8

(√
0.4|NL〉|GR〉

)
−

√
3
8

(√
0.6|SL〉|GR〉

)
.

3. If |SR〉 (the cake on the right is observed to rise), then
|GL〉 (the cake on the left is good). Replaced inter-
mediate basis in all terms of|ψ〉 with expressions in
Fig. 3. The third term has the information from result
#3.

|ψ〉 =
1
2
|BL〉

(√
0.4|NR〉+

√
0.6|SR〉

)

−
√

3
8

[
|BL〉

(
−
√

0.6|NR〉+
√

0.4|SR〉
)

+ |GL〉
(√

0.4|NR〉+
√

0.6|SR〉
)]

,

|ψ〉 =

(
1
2

√
0.4 +

√
3
8

√
0.6

)
|BL〉|NR〉

−
√

3
8
(√

0.4|GL〉|NR〉
)−

√
3
8
(√

0.6|GL〉|SR〉
)
.

4. Both cakes never turn out good. It is obtained from the
definition of|ψ〉, P (|GL〉|GR〉) = 0.

Once again, the definition of|ψ〉, for both cakes and the
context given by the projection, the intermediate measure-
ments, make the results less intuitive, the ultimate judgment
is predictions and experimental corroborations, and the last
section is going to illustrate just that.

5. Formal test by Professor Fry

The equation of conservation and the intuition given by the
previous section is enough to give a formal test to the idea
of non-locality. A system that is split in two must conserve

its properties accordingly. If a system with spin zero is split,
half will have spin1/2, and the other half will necessarily
have spin−1/2 no one knows which one.

A variation of the above is to carry out the experiment
with two particles that have a common origin, which forces
them to relate some of their properties by conservation rules.
The experiment is carried out with two particles that origi-
nate from a singlet (zero spin) and that do not commute their
projections.

|Ψ〉 =
1√
2

(| ↑〉L| ↓〉R − | ↓〉L| ↑〉R) .

This representation maintains zero spin since only com-
plementary orientations are observed,| ↑〉L| ↓〉R indicates
that the left has one orientation and the right has the other,
| ↓〉L| ↑〉R indicates the contrary.

The essence of nonlocality is appreciated by making mea-
surement #1, with (S-G)(Z,L) and (S-G)(Z,R), each time| ↑〉L
is measured then| ↓〉R is also measured and vice versa. But
if measurement #2 is made, with (S-G)(X,L) and (S-G)(Z,R),
every time L measures, R can only predict the result 50% of
the time. How can the measurement of L affect the measure-
ment of R?

In the local reality view [13], measurement #1 is com-
plete since everything is predictable, measurement #2 is in-
complete, and information was lost in some way.

If we can orient the (S-G) in three directions,a, b andc
and ask for the probabilityPab which indicates the probabil-
ity of having the spin up (+) in the particle that flies to the
left in the directiona, simultaneously with the spin up (+) in
the particle that flies to the right in the directionb, which can
be represented as follows with the sign indicating the infor-
mation that is known:

Pab = P (aLbLcL|aRbRcR)

= P

( ∣∣∣
)

.

If the information is completed with the condition of the
spin zero at the origin.

Pab = P

( ∣∣∣
)

.

If both possibilities are used for the unmeasured direction

Pab = P

( ∣∣∣
)

+ P

( ∣∣∣
)

,
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and doing the same for the other two probabilities:

Pbc = P

( ∣∣∣
)

+ P

( ∣∣∣
)

,

Pac = P

( ∣∣∣
)

+ P

( ∣∣∣
)

.

Combining the three equations and identifying the prob-
abilities of each term, we have:

Pab + Pbc = P

( ∣∣∣
)

+ P

( ∣∣∣
)

+ Pac.

This can be written without problem as follows, consid-
ering the probabilities are always positive and it is referred as
the condition for local reality:

δ = Pab + Pbc ≥ Pac.

In quantum mechanics,Pab = (1/4) [1− cos(θa − θb)],
and the fix angles used for the measurements areθa = 0◦,
θb = 45◦ andθc = 90◦.

The result is not compatible with the local real-
ity since the result opposes the Bell inequality:δ =
(2−√2/4) ≥ (1/4). The previousPab is for entan-
gle electron spin, for entangle orthogonal photonsPab =
(1/4) [1− cos(2(θa − θb))], again the two photons are en-
tangled, now by the polarization, and the optical measure-
ment is produced detecting or not the photon through a polar-
izer with the rule for polarization defined by the entanglement
process, spontaneous parametric down-conversion type I or
II produces parallel and orthogonal polarization respectively,
for atomic transitions the transition selection rules define the
polarization.

One of the simplest proofs of the impossibility of Bell’s
inequality, after Clauser, is that of Fry and Thompson [14].
In the abstract of the article, it says: “We have measured
the linear polarization correlation between the two photons
of the cascade73S1 → 63P1 → 61S0 of Hg-200. The results
were used to evaluate Freedman’s version of Bell’s inequal-
ity, δ ≤ 0. The result isδexp = +0.046± 0.014, in clear vi-
olation of the inequality and in excellent agreement with the
quantum mechanical prediction,δQM = +0.044±0.007. An
important feature of the experiment was the explicit measure-
ment of the initial density matrix of the cascading atoms.”

In the temporal sequence of events, first came Clauser’s
experiment (it contradicts Bell’s inequality), then went Holt’s
(it agrees with Bell’s inequality), subsequently Clauser im-
proved his results and confirmed the contradiction with Bell’s
inequality, in the fourth experiment Fry and Thompson [14]

FIGURE 4. a) Energy levels for mercury, the oven pumps elec-
trons from the double occupied6S to the empty6P level, then the
laser pumps electrons to the empty7S level to star fast cascade
73S1 → 63P1 → 61S0 and these two photons are analyzed at
specific polarizations to test the relation with the Bell inequality.
b) Fray’s experimental setup, a 546.1 nm laser acts on a Hg-200
layer, photons of 435.8 nm and 253.7 nm are emitted,Fa andFb

are light filters that allow light of 435.8 nm and 253.7 nm to pass
respectively, at each side polarizersθa andθb are placed before the
detectorsDa andDb.

used the two-photon cascade from Hg-202 shown in the
Fig. 4, and it contradicts Bell’s inequality. In this experi-
ment, a beam with a natural isotopic abundance of Hg was
passed through a solenoid-shaped electron gun where the Hg
atoms were excited to the metastable63P2 state because it
is a long lifetime state, and its probability to be occupied
increased. Following the path of the ions and using a nar-
row linewidth laser at 546.1 nm to pump those states only
for the Hg-200 atoms to be excited to the state73S1 to start
the cascade of emissions; only cascading photons from the
zero nuclear spin isotope of Hg-200 were observed. This was
the first experiment in which a laser was used to complete
the initial state of the cascade. Polarization correlations be-
tween cascade photons at 435.8 nm and 253.7 nm were ob-
served and measured using plate polarizers. The initial state
of the cascade had angular momentum J= 1 (previous exper-
iments had J= 0 in the initial state). Quantum mechanical
predictions required measurement of relative populations in
substatesmJ = 0,±1. They observedδ = 0.046 ± 0.04 in
violation of Bell’s inequality and in agreement with the quan-
tum mechanical predictionδ = 0.044±0.007. Data for these
outcomes were collected over 80 minutes.

This and all the first-generation experiments had two pos-
sible flaws: not all photons were measured, which could lead
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sceptics to propose that luckily only those that gave this re-
sult were measured, but lost in the experiments were the oth-
ers that would prove the contrary, and they did not control the
location either, it could be that they gave time for the parti-
cles to communicate some information due to the proximity
of the detectors. Over time, experiments have been improved
to a situation that today it is considered that submicroscopic
nature behaves as non-local, which indicates that the parti-
cles formed are a single system and, as such, do not require
communication or cheating, the properties are joint, they are
entangled in a quantum way.

6. Final words

The objective was to present one of the most problematic
concepts to understand in quantum physics, the principle of
nonlocality or the existence of systems with entangled par-
ticles. Recounting the analogies used to convey this idea
paved the way to a formal description of a real experiment
that proves the case. Recently, many technological models

have produced entangled particles, the simplest being spon-
taneous parametric production that requires only a laser and
a parametric crystal. This has allowed very elaborate exper-
iments to be carried out and showed the relevance of quan-
tum physics and the limitations of our perception. The ex-
amples described tried to guide the imagination to situations
where this type of phenomenon can be plausible and point
out human perception with the duality of bringing us closer
to appreciating nature, but at the same time, it is the main
limitation to understanding it.
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