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Charged particle reflection in a magnetic mirror
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We study the reflection of electrons in a magnetic field mirror. It is a field with a gradient from the lowest valueB0 to the largest one
Bm. With this purpose, Montecarlo simulations are made. We use a number of 5,000 particles with random pitch angles. The frequency
distribution of these random values follows a Gaussian distribution centered atθ = 0 and with standard deviationσ. Various values ofσ
and also different values of theB0/Bm ratio are used in the simulations. The simulations show thatσ has an important influence on the
confinement of charged particles, for the differentB0/Bm ratios here studied. However, the percent of reflected particles differs from a
B0/Bm ratio to another in the whole range ofσ, although forσ = 10 the differences between different ratios are small(< 5%). The number
of reflected particles increases very rapidly withσ, in the range of10◦ to 40◦. For theσ range from20◦ to 40◦, the percent of reflected
particles is≥ 20% larger forB0/Bm = 0.10 than for the 0.55 ratio.
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1. Introduction

Natural scenarios where particles are trapped by magnetic
fieldsB are seen in several objects, the atmospheres of plan-
ets, including the Earth, the Sun, pulsars, and in several As-
tronomical objects [1], where the interaction of charged par-
ticles withB is important. In the atmospheres of planets and
at the Sun, magnetic loops are seen to be good scenarios to
retain charged particles. In the Earth, the Van Allen Belts are
one of such cases where high densities of charged particles
are maintained at magnetic loops. However, in all these sce-
narios also a part of the particles precipitates and leaves the
loops. The interaction of magnetic field and charged particles
in the loops is important to understand why a part of the par-
ticles is retained while other left the loops. For instance, the
performance of cyclotrons and other particle accelerators de-
pends on the trapping of particles by magnetic fields while in
some other cases, the confinement and further release of par-
ticles is of importance as in thrusters in space technology and
also in the industry [2], as in the cases of welding machines
and plasma cutting instruments.

The path of a charged particle in a homogeneous mag-
netic fieldB is the well-known helix, with its axis aligned to
the B lines and where the particle traces circles in the per-
pendicular direction to the helix axis. Here we deal with the
case of a magnetic fieldB whose strength is a function ofz,
with growing B asz grows. As below seen, we assume an
ideal case of an ensemble of electrons that is released at the
point with the lowestB and travels towards the direction of
higherB.

2. A charged particle in a magnetic mirror

We consider ideal conditions of a magnetic field in free space,
which has a gradient in the axial coordinate, with the lowest
valueB0 and the highest one equal toBm. To represent this
situation, a cylindrical geometry can be used. The region with
a large magnetic field can act as a mirror for charged parti-
cles. In our case,B0 is in the middle and the magnetic field
increases towards both sides. This scenario is referred to as a
magnetic bottle [1]. In Fig. 1 a part of such a bottle is shown.
We assume that a charged particle departs from the region
with B0 and goes towards the region ofBm. The total force
experienced by a moving charge is the Lorentz force, given
by

F = q(E + v× B), (1)

FIGURE 1. Representation of the magnetic field lines, in the
case where the field has a gradient in the direction of the lines
(∇B ‖ B), whereB0 andBm represent, respectively, the mini-
mum and maximum magnetic fields.
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whereq is the charge of the particle,v is its velocity,E and
B are the electric and magnetic fields, respectively. If we as-
sume that there is no applied electric field, we only include
the contribution of the magnetic field. In cylindrical coor-
dinates, and taking into account that the component in theta
is zero because we assume an axisymmetric geometry, the
Eq. (1) results

F = r̂(qvθBz) + ẑ(qvθBr). (2)

From Maxwell’s equations, we know that the divergence
of the magnetic field is zero. In cylindrical coordinates, the
expression for the divergence ofB is

∇ ·B =
1
r

∂r∂Br

∂z
+

∂Bz

∂z
= 0, (3)

then

∂rBr

∂r
= −r

∂Bz

∂z
, (4)

and

drBr = −r
∂Bz

∂z
dr. (5)

Further, we can see that integrating Eq. (5), the radial
component of the magnetic field can be expressed as a func-
tion of the axial componentBz, i.e., in the direction of the
axis of the cylinder, with a variable radius.

rBr = −
∫ r

0

r
∂Bz

∂z
dr = −r2

2
∂Bz

∂z
, (6)

which leads to

Br = −r

2
∂Bz

∂z
. (7)

Then, we can also calculate the force that the particle ex-
periences in the axial direction [z component of Eq. (2)], us-
ing Eq. (7)

Fz = qvθ
r

2
∂Bz

∂z
. (8)

The radial component of the magnetic force, given by
Eq. (2), is

Fr = qvθBz. (9)

The radial component of the force Eq. (9) is equal to the
centripetal force that undergoes the particle [3], leading to the
Eq. (10), as follows

qvθBz = −mv2
θ

r
. (10)

In its movement inside the magnetic bottle, the charged
particle describes a helical trajectory [4]. On this trajectory,
the gyro-radius (or Larmor radius) for an initial velocity and
a component of the magnetic fieldBz is given by

rL = −mvθ

qBz
. (11)

SubstitutingrL from Eq. (11) into Eq. (8), we obtain

Fz =
mv2

θ

2Bz

∂Bz

∂z
. (12)

In Eq. (12), the termmv2
θ/2Bz represents the kinetic en-

ergy of the particle due to its rotation around theB lines,
divided by the axial magnetic field. This ratio is equal to the
force in the axis of the magnetic bottle. The potential energy
of the particle is

U = −µ · B, (13)

whereµ is the magnetic dipole moment. Equation (13) im-
plies that the energy is the lowest when the magnetic moment
is aligned with the magnetic field. Due to the conservation of
momentum [5], we have that

dµ

dt
= 0. (14)

On the other hand, the angle of the particle path, respect
to the z axis (the magnetic bottle axis), also referred to as
pitch angle, can be expressed as

sin θ =
v⊥
v

. (15)

The gyroradius of the particle is determined by the per-
pendicular component of the velocity to the axis of the bottle
[3], then the magnetic moment is

µ =
1
2

mv2
⊥

B
, (16)

where the perpendicular component of the velocity can be
obtained from Eq. (15)

v⊥ = v sin θ. (17)

Substituting Eq. (17) into (16) we obtain

µ =
1
2

mv2
⊥

B
=

1
2

mv2 sin2 θ

B
. (18)

We can divide Eq. (18) by the kinetic energy of the par-
ticle, which in this case is also conserved [3]. Therefore, the
sin2 θ/B ratio is the same at the location of the minimum
magnetic fieldB0, where the particle’s pitch angle isθ0, and
in any other location (where the magnetic field isB and the
pitch angle isθ). Then, when the particle is at the magnetic
field maximumBm, the next equality is fulfilled.

sin2 θ

Bm
=

sin2 θ0

B0
. (19)

The critical condition for the particle to be reflected at the
position ofBm is

θ > 90◦. (20)
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On the other hand, if the angle at that position is

θ < 90◦, (21)

then, the particle will not be reflected,i.e. it would go through
the neck of the magnetic bottle. That is, the 90◦ angle deter-
mines whether the particle is reflected or it goes through the
bottleneck. Therefore, in the left-hand-side of Eq. (19), we
can substitute the pitch angle by 90◦. We can consider that,
in this case, the corresponding angle atB0, further referred
to asθC0, is the critical angle that makes the particle to be re-
flected and (and it will not pass through the region withBm).
Then, it results the next equality

sin2 90◦

Bm
=

sin2 θC

B0
. (22)

We remember that if a particle has an initial pitch angle
θC0 (in the zone of minimumB) it will have a larger pitch an-
gle as it moves to zones with larger magnetic fields. We then
remark that the critical angleθC0 refers to the pitch angle of
the particle in the region of the minimum magnetic fieldB0,
since for smaller angles at that region ofB0, a particle will
go through the bottleneck at the region withBm. It is worth
to also remark that forθC0, and larger pitch angles (at the re-
gion ofB0), a particle will be reflected (at the region ofBm).
This is the reason because it is called a magnetic mirror [1].

Substituting the value of 90◦ (the condition to be re-
flected), we have that the critical angle condition requires that
the pitch angle at the minimum magnetic field will be ex-
pressed based on a relation between the minimum and maxi-
mum magnetic field

B0

Bm
= sin2 θC0. (23)

Further, to analyze the situation of particle reflection as
a function of theB0/Bm ratio, in Fig. 2 we show two cases
of the angleθC0 for two different ratios whereBm1 > Bm2.
We assume that the minimum magnetic field is the same in
both cases.

In the other case, the maximum magnetic field on the left-
hand-side is larger than that on the right-hand-side. Then, the
initial angle that the particles should have, to pass through
the neck of the magnetic bottle, is smaller in the case of
the greaterBm value (left-hand-side) than the angle they re-
quire (to pass) in the case of the smallerBm (represented on
the right-hand-side). In other words, some particles passing
through the neck of the bottle with weakerBm (represented
on the right-hand-side) would not pass (with the same angle
of inclination) through the neck of the bottle with stronger
Bm (left-hand-side).

The grey triangle of Fig. 2 represents the range of angles
(at B0), where a particle should be directed to be lost (con-
sidering arrows whose back extreme is at the triangle apex
on the left). It means, the triangles represent the initial pitch
angle range atB0, for which a particle will be able of passing
through the magnetic neck. On the left-hand-side, the arrows

FIGURE 2. Representation of the range of angle of loss for two
differentB0/Bm ratios, whereB0 is the same for both cases and
Bm1 > Bm2. The arrows represent the pitch angles that differ-
ent particles have in the zone of the minimum magnetic fieldB0.
The triangles represent the regions where the initial pitch angle of a
particle should be directed to pass through the magnetic bottleneck
(i.e. when it reaches the zone of the maximum magnetic fieldBm).

that are superimposed to the triangle will go through the mag-
netic neck. On the other hand, the arrow also on the left-
hand-side plot, that is not superimposed to the triangle will
be reflected, as indicated with a label in Fig. 2. The third
arrow, from bottom to top, on the right-hand-side plot is at
the same angleθ than the third arrow at the left-hand-side. It
means, they represent the same pitch angle.

We recall that the maximum magnetic fields are assumed
such thatBm1 > Bm2 (and consequently[1/Bm1] <
[1/Bm2]). Then, from the triangles that represent particle
loss in Fig. 2, one can clearly see that the smaller theB0/Bm

ratio, the smaller the pitch angleθC0 that a particle should
have, in order to pass through the magnetic neck. As can be
seen from the previous analysis, the relationship in Eq. (23) is
clue to understand the reflection and loss in a magnetic bottle.

3. Montecarlo simulations

We made Montecarlo simulations to see how are the amounts
of particles reflected as a function of the initial pitch angles.
A number of 5,000 random pitch angles are used for the
charged particles with values that follow a Gaussian distri-
bution with a given central value (which is selected as zero)
and a given Standard Deviationσ.

Simulations are made for different values ofσ, in order to
see how the amount of particles reflected varies with growing
σ. Also, variousB0/Bm ratios are used (0.55, 0.40, 0.20,
0.13, and 0.10). A total velocity that corresponds to a given
mean temperatureT is used for all the particles.

As described in Sec. 2, the loss or reflection of a parti-
cle in a magnetic bottle depends only on the pitch angle that
the particle has in the region of the weakest magnetic field.
Let us remember that, if the value of the initial pitch angle
θC0, for a charged particle, is greater thansin−1(B0/Bm)1/2

[Eq. (23)], then the particle is reflected. In order to study the
influence of the standard deviation of the pitch angle distri-
bution, which we callσ, on the reflection of the particles in
the magnetic mirror.
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FIGURE 3. Histograms of the initial (dashed line) and final (continuous line) pitch angle distributions of electrons moving inside a magnetic
bottle forB0/Bm = 0.40. Each panel corresponds to a different value ofσ, as indicated with a label. Also, for each case, the percent of
reflected particles is given inside the given panel.

FIGURE 4. Histograms of the initial (dashed line) and final (continuous line) pitch angle distributions. In this case, forB0/Bm = 0.10,
which is a smaller ration than that used to make the plots of Fig. 3. Provided thatB0 is the same in both cases, the maximum magnetic field
(Bm) for the plots of the present figure has to be larger than the maximum magnetic field for Fig. 3. For this reason, the percent of reflected
particles is larger in this case than in Fig. 3.
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4. Results and discussion

We performed a number of simulations of initial pitch angle
distributions with different values ofσ.

As examples, the initial pitch angle distribution and the
distributions of reflected electrons forσ = 10◦, 30◦, 60◦ and
90◦ are shown forB0/Bm ratios: 0.40 and 0.10 in Figs. 3
and 4, respectively. In each of them, two distributions are
shown, one of them corresponds to the initial pitch angles in
the sample (dashed line), and of the reflected particles (con-
tinuous line).

The plots correspond to two different cases of the mag-
netic field ratio [Eq. (23)]. In each case, the minimum mag-
netic fieldB0 can be considered the same, being the maxi-
mum magnetic field,Bm, different from one case to the other.

From Figs. 3 and 4, it can be seen that the percent of re-
flected particles depends on both, theB0/Bm ratio and the
standard deviation of the pitch angle distributionσ.

The percent of reflected particles grows withBm, it
means, it grows as theB0/Bm ratio decreases. Also, par-
ticles at some angles that would pass, through the neck bot-
tle, in the case of the largerB0/Bm ratio, will be reflected
for the case of the smaller ratio (see Fig. 2). For this rea-
son, in the distributions ofB0/Bm = 0.10 the gap in the
middle of the reflected particles distributions is thinner than
for theB0/Bm = 0.40 distributions. It means, some parti-
cles that for given angles can pass through the bottle for the
B0/Bm = 0.40 ratio, are reflected for theB0/Bm = 0.40
one.

As expected from the theoretical analysis made in Sec. 2,
the distributions made with the smallestσ lead to the largest

FIGURE 5. Percents of reflected particles againstσ. Each curve
corresponds to a given magnetic field ratio, which is given in the
inserted panel.

percent of passing particles (and a small percent of reflected
ones).

For the plottedB0/Bm ratios, the lowest percent of re-
flected particles (< 7%) takes place forσ = 10◦. For thisσ,
the percents go from0 (for 0.40) to 6% (for 0.10). The per-
cent of reflected particles reaches the highest values, between
83% and 84%, for σ = 90.

In Fig. 5, we plot the percents of reflected particles
againstσ (including some otherσ to that shown at Figs. 3
and 4) for different values of the magnetic field ratios (also
includingB0/Bm = 0.55, which is a higher value than those
of Figs. 3 and 4).

As we have seen in the description of theB0/Bm ratio,
and its relation to the critical angle for reflection, the smaller
this ratio, the larger will be the percent of reflected particles.
It means, to have more particles reflected, the value ofBm

should be as larger as possible in comparison toB0.
As may be seen in Fig. 5, the number of reflected parti-

cles increases very rapidly, with increasingσ, in the range of
10◦ to 40◦. For example, for a magnetic field ratio of 0.1,
the percent of trapped particles increases by approximately
500% asσ increases from 10◦ to 30◦.

For the other ratios, the increase is also large in this
range ofσ, but the amount of reflected particles is smaller
asB0/Bm increases (i.e. as theBm value is weaker). If the
purpose of the bottle would be to retain a large number of
electrons, the option to avoid large magnetic fields is to in-
crease the standard deviation of the pitch angle distribution,
since this allows increasing the percentage of particles whose
angle is greater than the critical angle.

5. Conclusions

The value ofσ plays an important role to make the particles
being reflected, for the differentB0/Bm ratios here studied.
It is found that the number of reflected particles increases
very rapidly withσ, in the range of 10◦ to 40◦.

From 10◦ to largerσ, the difference in the percent of re-
flected particles is clear (> 5%) for all the B0/Bm ratios.
For example, for theσ range from 20◦ to 40◦, the percent of
reflected particles is' 20% larger forB0/Bm = 0.10 (i.e.
for the largestBm) than for the 0.55 ratio (which corresponds
to the lowestBm).
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