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We study the motion of a particle in a 3-dimensional lattice in the presence of a potential−V1/r, but we demonstrate semiclassically that
the trajectories will always remain in a plane, which can be taken as a rectangular lattice. The Hamiltonian model for this problem is the
conservative tight-binding one with lattice constantsa, b and hopping elementsA, B in theXY axes, respectively. We use the semiclassical
and quantum formalisms; for the latter, we apply the pseudo-spectral algorithm to integrate the Schrödinger equation. Since the lattice discrete
subspace is not isotropic, the angular momentum is not conserved, which has interesting consequences as chaotic trajectories and precession
trajectories, similar to the astronomical precession trajectories due to non-central gravitational forces, notably, the non-relativistic Mercury’s
perihelion precession. Although the elements of the mass tensor are naturally different in a rectangular lattice, these can be chosen to be still
different in the continuum, which permits to study the motion with kinetic energiesp2

i /2mi (i = x, y). We also calculate the contour plots of
an initial Gaussian wavepacket as it moves in the lattice and we propose an “intrinsic angular momentum”S associated to its asymmetrical
deformation, such that the quantum and semiclassical angular momenta,Lq, Lc, respectively, could be related asLq = Lc + αS.
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1. Introduction

The Kepler problem on the lattice can be traced back to the
anisotropic Kepler problem about the description of an elec-
tron dynamics in the presence of the Coulomb field of a
donor impurity in a Silicon or Germanium semiconductors
[1]. Some authors have revived this issue either in the the-
oretical or the experimental contexts, for example, because
of more efficient numerical algorithms and simulation appli-
cations, or new and more precise experimental techniques.
We may mention a few authors in the theoretical context: (i)
Boris et al. [2] use quantum analytical and numerical meth-
ods to describe the wavepaket evolution within elliptical and
hyperbolic orbits. (ii) Bai and Zheng [3] invoke classical and
quantum mechanics methods for studying the Kepler prob-
lem with a kind of weak anisotropy of the mass tensor. (iii)
Petrova [4] set about solving exactly the full energy spectrum
(via Green’s function methods) of a particle hopping on a
Bethe lattice under a Coulomb potential. (iv) Cortés [5] has
particularly caught our attention because he obtains a chaotic
particle’s trajectory by defining an anisotropic mass tensor, a
result that we could also obtain by defining the Kepler prob-
lem on a rectangular lattice, such that in the continuum limit
the lattice disappears but an anisotropic mass tensor remains.

The main motivation for our work presented in this arti-
cle has an educational purpose: the Kepler problem is a com-
mon topic taught at the undergraduate level (a usual reference

text is Symon [6]) where the conic-section trajectories are de-
duced from the conservation of energy and angular momen-
tum. As pointed out above [5], the definition of an anisotropic
mass tensor, and consequently the non-conservation of angu-
lar momentum, leads to a simple system where chaos was rig-
orously proved, becoming therefore a common educational
model to teach this subject. Within this same purpose, we
realize that the introduction of a “fake lattice” in the space
can be used as a model to justify the mass asymmetry, not as
a consequence of some particle’s property, but as a property
of space itself lacking rotational symmetry. Moreover, two
important and rather different subjects in the undergraduate
physics education, namely, the astronomical Kepler problem
(studied in classical mechanics [6]) and the tight-binding dy-
namics (studied in solid state by quantum and semiclassical
methods [7]) converge in the “Kepler problem on the lattice”.
This, in turn, is the occasion to draw other subjects in physics
education, as for example: higher order statistical moments
associated to random distributions [8] and their relation to
physical properties of the quantum probability density (as
suggested in this article); analytical and numerical methods
to solve the Schr̈odinger equation [9,10].

Our work in this article is organized as follows: In Secs. 2
and 3 we set about developing the semiclassical and quantum
formalisms, respectively, at the common level of the usual
textbooks for the undergraduate education in physics, for ex-
ample, Symon [6] and Liboff [9]. In Sec. 4 we present the
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central quantum results of our work and compare them to
previous semiclassical results. In Sec. 5 we give a list of the
most relevant results of our work.

2. Semiclassical model for the rectangular
lattice

The tight-binding Hamiltonian function for an electron mov-
ing by the hopping mechanism in a 3-dimensional or-
thorhombic lattice with constantsa, b, c along theX,Y, Z
axes and hopping elementsA,B,C, respectively, and in the
presence of a donor impurity potential located at the origin,
is:

H(r , k) = 2A(1− cos akx) + 2B(1− cos bky)

+ 2C(1− cos ckz)− V1/
√

x2 + y2 + z2. (1)

This function has been constructed, in accordance with the
semiclassical method [7], from the spectrum of the tight-
binding Hamiltonian operator for a particle hopping in a pe-
riodic potentialV (r + R) = V (r) with R = (na,mb, qc)
(n,m, q integers) and~k = ~(kx, ky, kz) the position and
quasimomentum vectors, respectively, in 3D orthorhombic
Bravais lattices. In the limit of the effective mass approxi-
mation whereinmx = limA→∞,a→0 ~2/(2Aa2), the terms
~kx and~2k2

x/(2mx) are the usual momentum and energy,
respectively, of a free particle along theX direction. The
termV1 in Eq. (1) is the coefficient (in units ofjoule-meter) of
the Coulomb potential energy due to anexternalpoint source
(not intrinsic to the lattice) which is fixed somewhereupon
the lattice and referred to in this article asthe impurity. Fig-
ure 1 illustrates a case of the Kepler problem on the lattice
described above.

The corresponding Hamilton equations of motion (with
p = ~k) are

ẋ =
∂H

∂px
= (2Aa/~) sin akx, (2)

ẏ =
∂H

∂py
= (2Bb/~) sin bky, (3)

ż =
∂H

∂pz
= (2Cc/~) sin ckz, (4)

~k̇x = −∂H

∂x
= V1x(x2 + y2 + z2)−3/2, (5)

~k̇y = −∂H

∂y
= V1y(x2 + y2 + z2)−3/2, (6)

~k̇z = −∂H

∂z
= V1z(x2 + y2 + z2)−3/2. (7)

These equations along with their corresponding initial condi-
tions att = 0 for the positionr(0) and velocityv(0) = ṙ(0),
constitute the semiclassical model for the tight-binding dy-
namics of a hopping particle in a lattice. By choosing the ini-
tial conditions such that the particle moves in theXY plane

FIGURE 1. Case of the Kepler problem on the lattice where the
impurity is located at the origin of the orthorhombic lattice; the
electron is initially located at the positionr0 = (0, 2b, 0) subject to
the impurity Coulomb interaction and to the 1st-neighbor interac-
tions with energies (hopping elements)A, B, C along theX, Y, Z
axes, respectively. If the initial velocity lies on theXY plane, the
particles’s trajectory will also remain in the plane (dotted line).

and is not located at the origin:z(0) = ż(0) = 0, x2(0) +
y2(0) 6= 0, we deduce from (7) that k̇z(0) = 0 and from (4)
thatkz(0) = 0; thereforëz(0) = 2Cc2k̇z(0) cos(ck(0)) = 0,
i.e., the particle will continue moving in theXY plane in the
absence of any perpendicular acceleration that could drag the
particle out of the plane. Henceforth, we will consider the
dynamics of the electron in a rectangular lattice described by
Eqs. (2), (3), (5) and (6) above (withz = 0). Besides, and
for simplicity of notation, we will take a unitary value for
the angular Planck constant,~ = 1. This would imply, of
course, that the momentum and energy should be expressed
in units of 1/meterand 1/second, respectively, but the elec-
tion of ~ = 1 in this article does not bear any specific phys-
ical meaning, since the true numerical value of~ would be
restored before interpreting physical measurements.

From the definition of angular momentum,L = r × p,
we have the component ofL in the rectangular lattice as
Lz = xky − ykx. Its corresponding time-variation is
L̇z = 2 (aAky sin akx − bBkx sin bky), which is different
from zero for an arbitrary instant. This means that in the rect-
angular lattice the angular momentumLz is not conserved in
the presence of the point impurity located at the origin with a
corresponding Coulomb singular potential−V1/

√
x2 + y2,

equivalent to the gravitational potential of a point mass in
the two-body Kepler problem. However, for these problems
we know from our background in classical mechanics that the
angular momentum is conserved (along with the total energy)
because the Coulomb and gravitational forces are central and
therefore the torque is zero. What is assumed in these cases is
that the space is rotationally symmetric (isotropic); that is not
valid for the rectangular lattice. The procedure to achieve an
isotropic space from the rectangular lattice is, first, to make a
square lattice out of a rectangular one by makinga = b and
A = B in the Hamiltonian functionH in (1), and second, to
take the continuum limit asa → 0 while A → ∞, such that
1/m = 2Aa2 is defined as the “effective mass”. In fact, since
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the cosine approximates ascos(akx) ∼= 1−a2k2
x/2 for small

arguments, we have that

H (x, y; kx, ky) → (k2
x + k2

y)/2m− V1/
√

x2 + y2, (8)

giving thus the usual Hamiltonian function for the 2-
dimensional Kepler problem. We can see that in this case
L̇z → 0, i.e., the angular momentum is conserved, as ex-
pected. Interestingly, if the continuum limit is obtained from
the rectangular lattice by maintaininga 6= b andA 6= B, we
obtain

H (x, y; kx, ky) → k2
x/2mx

+ k2
y/2my − V1/

√
x2 + y2, (9)

along withL̇z 6= 0, which describes the classical anisotropic
Kepler problem reported by Cortés [5] where the angular mo-
mentum is not conserved due to the difference of effective
massesmx,my in the XY axes, respectively. As we can
see, in this case it is suggested that the “anisotropy param-
eter” defined asξ ≡ mx/my [5] has its origin in the quo-
tientmx/my = Bb2/(Aa2) of asubjacentrectangular lattice
in the continuum limit. In order to reduce the free parame-
ters in that quotient we can invoke an expression reported by
Wolf [11] wherein the hopping element is related to the sep-
aration by a lattice constant between 1st neighbor sites:

FIGURE 2. Trajectory of the particle in theXY plane of a rectan-
gular lattice with a ratioa/b ∼= 20 of the lattice constants (solid
line). The initial conditions arex(0) = 0.23a, y(0) = 0, kx(0) =
0 and ky(0) = 5.33/b. The resulting motion yields an oscil-
latory trajectory parallel to theY axis. In the continuum limit
a, b → 0 (maintaininga/b ∼= 20) andA, B → ∞ correspond-
ing to the Hamiltonian (9), andky(0) = 400.68/b, the trajectory
becomes the dashed one. This result reproduces the one reported
by Cort́es [5] in the continuum, who introduces different masses
mx, my in theXY axes. Our result show that the rectangular lat-
tice approach to the continuum renders a satisfactory explanation
for the origin of the particle’s mass anisotropy.

A = 2(1 + a/a0) exp(−a/a0) and B = 2(1 +
b/a0) exp(−b/a0), wherea0 is the Bohr radius.

In fact, following Cort́es [5], we takeξ = 2.94 as
the anisotropy parameter and solveξ = Bb2/(Aa2) with
a/a0 = 9.5 which yields the solutionb/b0 = 0.477. The
corresponding trajectory in theXY plane is shown in Fig. 2
(dashed line); it agrees quite well with the one reported by
Cort́es. Moreover, we can preserve the ratioa/b ∼= 20 for a
finite lattice without taking the continuum limita, b → 0; the
result for the same initial conditions is also shown in Fig. 2
(solid line). We can see a radical different trajectory charac-
terized by an almost 1-dimensional oscillation along theY
axis andx = x(0) = 0.23 constant. The explanation of this
phenomenon is the following: in the finite lattice, the ratio
a/b ∼= 20 means that the probability of the particle’s hopping
to neighbor sites along theX axis is negligible as compared
to the sites along theY axis, resulting thus in an effective
motion due to theY component force of the Coulombian at-
traction; this component is a restoring force with a magni-
tudeV1(x(0)2 + y2)−3/2y. For the values of the simulation
in Fig. 2: x(0) = 0.23 and−1 < y < 1, the resulting mo-
tion is oscillatory; as the conditionx(0) À y is approached,
the restoringY force is approximated as a linear one, result-
ing thus in a simple harmonic motion. In the continuum limit,
the hopping along theX axis sites is no longer negligible and
the particle follows a 2-dimensional trajectory.

Interestingly, if the rectangular lattice is transformed into
a square one (a = b, A = B) and we take the continuum
limit, the resulting trajectory is an ellipse (Fig. 3, dashed
line), as expected in an isotropic continuum space with a
central force field, while in the lattice the trajectory is a
succession of quasi-elliptical orbits (Fig. 3, solid line) giv-
ing rise to the familiar trajectory showing the precession of
the perihelion due to non-central forces in Newtonian celes-
tial mechanics [6]. The behaviour of the angular momen-
tum Lz = xky − ykx corresponding to the cases in Fig. 3
is shown in Fig. 4. The solid line shows the abrupt change
of Lz in the perihelion, as expected, while in the rest of
the quasi-elliptical trajectory passing through the aphelion
Lz

∼= Laph
z remains almost constant and equal to their val-

ues for other orbits. In the continuum limit,Lz tends to a
constant valueLcont

z (dashed line), again, as expected. The
evident difference betweenLaph

z andLcont
z is due to the fact

that in order to maintain constant the value of the energy
E = 2A(1 − cos akx(0)) − V1/y0, the initial condition for
kx(0) at (0, y0) should change according to

kx(0) =
1
a

cos−1

[
1− a2

2
(kcont

x (0))2
]

, (10)

wherekx(0) → kcont
x (0) asa → 0.

The results reported in this section concern the applica-
tion of the semiclassical model to the Kepler problem on the
lattice, taking as the starting point the Hamiltonian function
(1) which was constructed from the tight-binding energy of
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FIGURE 3. “Precession of the perihelion” trajectory of a particle in
the XY plane of a square lattice with dimensionaless parameters
a = 1, A = 125, V1 = 20000 in the 2-dimensional Hamiltonian
(1) and conditions att0 ∼= 0.17 T in the “perihelion” position:
(x0, y0) = (0, 20), (kx0, ky0) = (−1, 0). The impurity is located
at (0,−140). In the continuum limit, the precession effect disap-
pears and the quasi-elliptical orbits collapse into a unique elliptical
orbit (dashed line) with periodT .

the lattice and the Coulomb potential energy due to the im-
purity. Since such a tight-binding energy is deduced within
the quantum formalism (see, for example, ch.10 in Ref. [7]),
the semiclassical results can only be considered as approx-
imate, being the quantum formalism the exact theoretical
framework to study the Kepler problem on the lattice. It
is known that the semiclassical positionr and momentum
~k defined in Eqs. (2)–(7) correspond to their quantum ana-
logues as the mean values of the position〈Ψ|r |Ψ〉 and mo-
mentum〈Ψ| − i∇|Ψ〉 operators for a normalized quantum
stateΨ(r , t). For such an approximation to hold, the semi-
classical model is restricted by the conditions that the quan-
tum wavepacket width should be much larger than the lattice
constantsa, b, c in Eq. (1) and much smaller than the length
of an appreciable variation of the external Coulomb field. Be-
sides, it is required that the energyV1/r of the external field
in Eq. (1) should not be too large so that the wavepacket’s
energy remains within a single band (see, for example, ch.12
in Ref. [7]). It is also known that the wavepacket spreads
as it propagates in the lattice, being in general such spread-
ing non-symmetrical with respect to the wavepacket’s center
of mass. Therefore, if a such a non-symmetrical spreading
could be related to a kind of “internal degree of freedom” of

the wavepacket, then it would be possible to establish a sig-
nificant relation between other dynamical variables than the
position and momentum. Those dynamical variables are the
semiclassical angular momentum and its quantum equivalent.
This is done in the next two sections.

3. Quantum formalism in the lattice

The formal solution of the time-dependent Schrödinger equa-
tion i∂Ψ/∂t = ĤΨ (recall that~ = 1) for a general time-
independent one-particle Hamiltonian operatorĤ, is given
as [9]

Ψ(r , t) = e−iĤtΨ(r , 0), (11)

Ψ(r , t + ∆t) = e−iĤ∆tΨ(r , t) (12)

= e−iV̂ ∆t/2e−iT̂∆te−iV̂ ∆t/2Ψ(r , t)

+ O(∆t3), (13)

where the Hamiltonian was separated, within the single-band
approximation [12], into a kinetic energy operatorT̂ (p) (with
p = −i∇ in the position representation) and an external po-
tential energy operator̂V (r); the periodicity of the lattice is
incorporated withinT̂ (p) while the potential energy corre-
sponds to externally applied forces not intrinsic to the lattice
(such as the electric field). The further splitting of the Hamil-
tonian asĤ = V̂ /2 + T̂ + V̂ /2 follows from the applica-
tion of Baker-Campbell-Hausdorff formula [13] for the non-
commuting operatorŝT and V̂ , giving thus an approximate
time-iterative formula whose integration yields the result in
(11) within a quite good approximation for a finite∆t.

The next step is to transform the algorithm (13) into a
practical useful tool for integrating the Schrödinger equation
by expressing (13) in terms of FourierF and inverse Fourier
F−1 transforms as

FIGURE 4. Angular momentumLz(t) = xky−ykx corresponding
to the cases in Fig. 3.Lz changes abruptly at the perihelion posi-
tions of the precession orbits (solid line) while in the continuum
limit Lz tends to a constant valueLcont

z (dashed line). The differ-
ence ofLcont

z and the plateau value ofLz
∼= Laph

z near the aphelion
position is due to the difference of values forkx(0) at the position
(0, y0) that guarantee the conservation of energy.
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Ψ(r , t + ∆t) = e−iV (r)∆t/2F−1
(
e−iT (k)∆t

×F
[
e−iV (r)∆t/2Ψ(r , t)

] ]
+ O(∆t3). (14)

In this expression, the operator̂T (p) is transformed into the
functionT (p) (with p = k) in the reciprocal space where the
inverse Fourier transform (F−1) acts upon [10]. The operator
V̂ (r) is just the functionV (r) in the direct space where the
Fourier transform (F) acts upon. Specifically, for the Kepler
problem on the lattice defined by the Hamiltonian function
H in (1), T (k) = 2A(1 − cos akx) + 2B(1 − cos bky) and
V (r) = −V1(x2 + y2)−1/2, already applied within theXY
plane, as explained below (7).

To complete the description of the quantum formal-
ism in the lattice, we use the representation of the state
Ψ(r , t) in the basis of the complete set of orthonormal Wan-
nier functionsΦ(r − R) (the Wannier basis) asΨ(r , t) =∑

n,m Cnm(t)Φ(r − R), where these functions are localized
about the lattice siteR = (na,mb) (n,m integers) with an
extent of the order of the lattice constantsa andb in the rect-
angular lattice [19]. Therefore, the algorithm (14) is to be
applied to the coefficientsCnm(t) (which represent the state
Ψ(r , t)) to calculate thep-th order statistical moments.

The case ofp = 0 corresponds to the normalization con-
dition of the quantum wavepacket,

∑
n |Cnm|2 = 1. Forp =

1 we have the mean values of the position along theX and
Y axes:zx =

∑
n,m an|Cnm|2 andzy =

∑
n,m bm|Cnm|2,

respectively. The 2nd moment about the mean (along theX
axis) is the variance:σ2

x =
∑

n,m(an − zx)2|Cnm|2, whose
square root is the standard deviationσx. Interestingly, the
mean values of the positionzx, zy correspond to their classi-
cal analoguesx, y in the semiclassical model under the spe-
cific physical conditions referred to at the end of Section 2.

The variancesσ2
x, σ2

y represent the dispersion of the quantum
wavepackets relative to their mean positions but these vari-
ances do not have a dynamical variable counterpart. The 3th
moments will be considered in this work as dynamical signif-
icant in the sense we will explore below. They will be defined
here ass3

x ≡
∑

n,m(an− zx)3|Cnm|2 and the corresponding
expression fors3

y, instead of the so-called “skewness” which
is defined ass3

x/σ3
x ands3

y/σ3
y [8]. The skewness is a mea-

sure of the asymmetry of the wavepacket distribution about
the mean. Notice that while the skewness has no physical di-
mensions,sx, sy have dimensions of length, and this will suit
our purposes hereafter.

Finally, we calculate the mean value〈L〉 of the angular
momentum operatorL = r × p (p = −i∇) in the quan-
tum state approximated asφ(r) = D exp

(
i
∫ r k(r ′) · dr ′

)
according to the zeroth-order term of the WKB expansion [9].
The result is〈L〉 ≡ Lq = |z×k| = zxky−zykx, wherezx, zy

are the mean values of thex, y coordinates calculated in the
lattice as in Eqs. (15) and (16) below.

4. Quantum numerical simulations

In this section, we apply the algorithm (14) in terms of di-
rect and inverse Fourier transforms to the coefficientsCnm(t)
which represent the quantum stateΨ(r , t). The recursive ap-
plication of (14) over a time interval is thus equivalent to
solve numerically the Schrödinger equation. Then, with the
values ofCnm(t), we calculate specifically the first order and
third order statistical moments as defined in Sec. 3, which
correspond to the wavepaket’s center of mass and “skew-
ness”, respectively.

For 3-dimensional quantum simulations in a cubic lattice
(a = b = c) we use

FIGURE 5. Quasi-Bloch oscillations: values ofzy(t) for the initial Gaussian wavepacket with conditions(x0, y0) = (0, 32a) and(kx0, ky0) =
(0, 0); the donor impurity acting as center of the Coulomb attraction is located at(0,−120a) and the intensity of the Coulomb potential in
(1) is V1 = 307200 (dimensionaless units). Figure a) corresponds to the 3-dimensional simulation with negligible and equal values ofzx

andzz; figure b) corresponds to the 2-dimensional simulation in theXY plane wherezx (not shown) is the same as in case (a).

Rev. Mex. Fis. E22010210
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zx =
∑

n,m,p

an|Cnmp|2, (15)

zy =
∑

n,m,p

am|Cnmp|2, (16)

zz =
∑

n,m,p

ap|Cnmp|2, (17)

for the mean-value positions of the quantum wavepacket.
In Fig. 5a) we show the numerical simulations of the

mean-value positions corresponding to an initial Gaussian
wavepacket with conditions(x0, y0, z0) = (0, 32, 0) (in units
of the lattice constanta) and(kx0, ky0, kz0) = (0, 0, 0) (in
units of 1/a); the donnor impurity acting as center of the
Coulomb attraction is located at(x0, y0, z0) = (0,−120, 0)
and the intensity of the field isV1 = 307200 (dimensionaless
units) in Eq. (1). The motion of the particle is an approxi-
mate Bloch oscillation along theY axis with negligible val-
ues ofzx(t) andzz(t) as compared tozy(t). The correspond-
ing 2-dimensional simulation forzy(t) =

∑
n,m am|Cnm|2

is shown in Fig. 5b). Thus, we confirm that the symmetri-
cal dispersion of the wavepacketet al. long theZ axis does
not affect the quasi-Bloch oscillation effect in theXY plane
(with dominant motion along theY axis), consistently with
the semiclassical prediction about the 2-dimensional dynam-
ics for the Kepler problem, being the symmetric dispersion of
the wavepack along theZ axis an independent phenomenon
which does not affect the evolution ofzx andzy. Further nu-
merical confirmation that the quasi Bloch oscillation is well
represented in theXY plane is shown in Fig. 6 for the con-

FIGURE 6. Contour plots in theXY plane corresponding to the
case of the quasi-Bloch oscillations shown in Fig. 5.

FIGURE 7. Contour plots in theXY plane of the probability den-
sity |Cnm|2 of the initial (Gaussian) and final wavepackets. The
initial conditions are(x0, y0) = (0, 32) (in units of the lattice con-
stanta) and (kx0, ky0) = (−1, 0) (in units of 1/a); the donnor
impurity acting as center of the Coulomb attraction is located at
(0,−120) and the intensity of the field isV1 = 307200 (dimen-
sionaless units) in Eq. (1). The solid-line trajectory of the mean-
value positionz = (zx, zy) ends up at the position(40.42, 10.23).
The arrow indicates the skewness vectors = (−10.50, 9.39) of the
final wavepacket relative to its mean position. The dashed line cor-
responds to the semiclassical trajectory of the positionr = (x, y).

tour plot of the probability density|Cnm|2. In fact, the value
of zx(t) at 100 % of its time evolution is negative, as can be
seen in Fig. 5a).

By changing the initial momentum fromkx0 = 0 (quasi-
Bloch oscillation) tokx0 = −1, the resulting trajectory of the
mean-value positionz = (zx, zy) is shown in Fig. 7 (solid
line); the contour plots show the probability density|Cnm|2
of the initial Gaussian wavepacket and the final wavepaket
with a skewness vectors = (sx, sy), which indicates the
asymmetry due to its deformation over time. The dashed
line corresponds to the semiclassical trajectory of the posi-
tion r = (x, y) according to the Hamilton Eqs. (2), (3), (5),
(6).

Next, we calculate the time evolution of the quantum an-
gular momentum of the wavepacket approximated asLq =
|z× k| = zxky − zykx, where the mean value of the posi-
tion z corresponds to the solid line in Fig. 7, and we compare
it to the semiclassical angular momentumLc = |r × k| =
xky − ykx where the positionr corresponds to the dashed
line in Fig. 7. In both cases,z andr are measured relative to
the impurity position, which is in this caser = (0,−120).
The approximation referred to above for the quantumLq is
that we use the same semiclassical momentumk = (kx, ky)
as forLc. Such an approximation could be justified upon the
following basis: it is known that in the continuum limit and
under specific conditions [7], the quantum and semiclassical
positions approximate very well for any time,z(t) ∼= r(t).
In the lattice, however, a deviation should be introduced as
z = r + αs such thats→ 0 in the continuum limit andα be-
ing a dimensionless scale factor. It happens that we already
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FIGURE 8. Numerical evidence ofsx(t) → 0 in the contin-
uum limit for a particle moving under a Coulomb potential in a
1-dimensional lattice.

FIGURE 9. Time evolution of the angular momenta corresponding
to the case of Fig. 7: quantumLq(t) (solid line) and semiclassical
Lc(t) (dashed line).

know of such a quantity: the modified “skewness” defined in
this work ass = (sx, sy) with s3

x ≡
∑

n,m(an−zx)3|Cnm|2
and s3

y ≡ ∑
n,m(an − zy)3|Cnm|2. In Fig. 8 a simula-

tion of sx asa → 0 was carried out for a 0hopping elec-
tron in a 1-dimensional lattice under the Coulomb field of a
donor impurity located at the origin [15]; we can verify that
in fact sx → 0. We may reasonably suppose that in the 2-
dimensional generalization of this problem, the Kepler prob-
lem in the lattice, it also occurs thatsy → 0 [16]. Now, we
propose in this work thatLq = Lc + αS with Lq = |z× k|,
Lc = |r × k| andS = |s× k| (z, r , s andk are coplanar
vectors). The quantityS represents an intrinsic angular mo-
mentum of the wavepacket due to its deformation in the lat-
tice during its time evolution. In the limit of the continuum,
S → 0 and the quantum and semiclassical angular momenta
coincide,Lq = Lc, as expected.

In Fig. 9 we show the numerical values ofLq(t) (solid
line) andLc(t) (dashed line). We can see that there is a quite
good approximation, between them. In order to quantify such
an approximation we calculate their differenceLq − Lc and
compare it to the value of the intrinsic angular momentumS

FIGURE 10. Time evolution of the momenta differenceLq(t) −
Lc(t) corresponding to Fig. 9 and the intrinsic angular momentum
S(t). The qualitative features ofLq(t)− Lc(t) are roughly repre-
sented byS(t), specifically: their change of sign att ∼= 0.1 and in
the interval0.4 < t < 0.6.

(Fig. 10), where an arbitrary scale factorα has been cho-
sen for the purpose of a better visual comparison. It is to
be mentioned that other odd higher order statistical moments
beyond the 3th (skewness) and usually referred to as “hyper-
skewness” could also be used to refine our results. This task
is left as an interesting issue for future work.

5. Conclusions

We have studied the motion of a charged particle (electron)
in a rectangular lattice in the presence of the Coulomb elec-
tric field of another fixed charged particle (donor impurity).
Although the field is 3-dimensional, we demonstrated that
the motion will occur in a plane. The methods used in this
study were the semiclassical model (Hamilton equations) and
the quantum formalism; for the latter, we invoked the tight-
binding model for the Hamiltonian and the pseudo-spectral
algorithm for the time integration of the Schrödinger equa-
tion. The total energy is conserved but the angular momen-
tum is not since the lattice discrete subspace has not rotational
symmetry. We propose that these subjects are ideally suited
for their pedagogical adaptation in undergraduate courses as
classical mechanics, quantum mechanics and solid state.

Specifically, we report the following results:

i) We have reproduced a relevant result reported by
Cort́es [5] about the trajectory of a particle in an attrac-
tive central field. In Ref. [5] the author invokes differ-
ent masses in theX andY axes for the same particle.
We have shown that this can be understood in terms of
the continuum limit of a rectangular lattice.

ii) We have obtained the precession effect of a trajectory
in a square lattice as a result of the non-conservation of
the angular momentum. In the limit of the continuum,
we obtained a closed elliptical orbit (the precession dis-
appears) and the angular momentum is conserved.
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iii) We have applied the quantum formalism in 3 dimen-
sions and integrated numerically the Schrödinger equa-
tion. We have shown that the mean value of the parti-
cle’s position remains in the lattice plane while the dis-
persion of the wavepacket in the normal direction does
not affect the mean value of the position in the plane.

iv) We have used the quantum WKB approximation con-
sistent with the semiclassical method to obtain the

mean value of the angular momentumLq. We have
compared it with its equivalent semiclassical angular
momentumLc. We have proposed that their numeri-
cal difference can be attributed to an “intrinsic angular
momentum”S of the wavepacket due to its asymmet-
rical deformation in the lattice:Lq = Lc + αS, where
S is proportional to the skewness of a distribution (3rd
statistical moment). In the continuum limit (a → 0),
S → 0 andLq → Lc.
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