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A toy model for determining the critical size condition in fission chain reaction
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The geometric Buckling in the analytical solutions of the steady-state one group neutron diffusion equation are used to compare with
numerical results of the Monte Carlo Method in the determination of the size condition yielding the minimum critical mass in three basic
geometries. The survival fraction valug, (which is also called as the multiplication factai),is calculated for the criticality condition in

these geometries and the results are tabulated for each one. Our numerical results by Monte Carlo Method show that the minimum critical
mass is obtained in the case of spherical shape of fuel element, and they are in agreement with those of analytical solutions.
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Introduction and Hiroshiet al. [10] for the determination of critical mass
for different types of mixtures without and with a reflector
The fuel material’s critical size and mass in a fission chain reby applying some advanced versions of MCM packaged pro-
action have extreme importance in nuclear power plants angrams using the data libraries such as JEF-2.2, JENDL-3.2
nuclear weapons [1-3]. There is a certain analogy betweeand ENDF/B-VI. All these valuable studies are focused on
the analytical solutions of the steady-state one-group diffuthe calculation of critical mass but in very advanced level
sion equation with size and type of material in the sustainablér undergraduate and also for graduate students in science
fission process. It is well known that the nuclear fission reacand engineering branches: They need advanced calculations
tion is a random process and its simulation can also be studnd/or ready-packaged programs and naturally require also
ied by the Monte Carlo Method (MCM) [4]. In random pro- some extra data-library. On the other hand, the method in
cesses of such a reaction, the critical size and the corresponidis study for undergraduate and also for graduate level stu-
ing mass of the fuel material can be determined by using aents in any branches of science and engineering is very easy,
simple computer program via MCM. One can simulate thesimple and directly applicable for the application of MCM to
one-group steady state neutron diffusion equation by MCMsteady-state one-group diffusion equation. It builds up con-
method in rectangular, cylindrical and spherical geometries.nection between the results of analytical solutions of neu-
The purpose of this paper is first to review briefly in threetron diffusion equation for the critical size condition and the
basic geometries the solution of steady-state one-group dif/CM method. Asfar as itis known, there is no such a simple
fusion equation for bare systems, and then to figure out thealculation of critical size condition of a reactor system by a
critical size condition of the hypothetical fuel material in MCM [11].
these geometries by a modified Monte Carlo Method (MCM)  In Sec. 2, we briefly present a review of the solution of the
which is well formulated and disseminated in PHYSNET [5]. continuity equation and obtain the Buckling parameters. In
As far as our knowledge, there is no such a simple pre—SeC'_s’ we give basics of pur_modmed MCM a_pproach andits
sentation for the application of the MCM for determining the appl|cat|on§ in three baS|_c _dlfferent geometries. \We present
critical size condition in three different basic geometries. ForPYr reSL_JIts in Tables and itis clearly seen th_at thg results are
example, in their paper Brandehal.[6] calculate the critical exactly in agret_ament with those of Neu_tron Diffusion Theory.
mass by MCM due to the purity, shape, mean-free path anH’l the last section, a short conclusion is presented.
energy ranges of neutrons and find out that the lowest criti-
cal mass is the spherical one. Ibratetral. [7,8] investigate  Diffusion equation
the best description of multiplication factor by MCM, and
show that there are direct connections among the critical madé V' is the volume of multiplicative medium, three options
and all other parameters such as the dimension of the systemxist as followings: First, neutrons are produced within the
energy range and generation of random points for neutronsolume. Second, neutrons are absorbed in the volume, and
There are many other studies in literature such as Gray [9he third one is neutrons escaping (leakage) from the volume.
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Itis clear that all these reactions take place in volume per unibn the geometry of the system under investigation, an ex-
time and they continue randomly. Thus, the rate of chang@ression is obtained that is proportional to the curvature of
of neutrons in such a volume is given by a simple equatiorthe neutron flux in the reactor, which gives a measure of the

called as the steady-state diffusion equation [1,12, 13]: way in which the flux “buckles” and that it depends on the
) geometry of the reactor. Thus the Buckling parameters for a
DV<® - %,0+ 5 =0, (1) critical reactor is now written as
where® is the neutron flux function:, is the total absorp- B2 — ko =1 B2 @8)
tion cross section for the homogeneous mixture of fuel and " L? 9’

model’atOI’D is the diffusion Coeﬁicient, anf is the neutron WhereBg is called as the geometric Buckling depending on
source in the given medium. It should also be noted here thahe solution of Eq.[7) and B,, is the material Buckling,
other materials such as coolant and various structural comp@espectively. Using Eq/7j one can find geometric Buck-
nents of the core can be mpluded in the determination pf th@ngs for sphere, rectangular parallelepiped and finite cylin-
total absorption cross section. However, we only consider ger shapes (without the extrapolation distance) as follow-
reactor with homogeneous mixture of fuel and moderator foings: B2 — (7/R)?2 for spherical shapeB2 = (r/a)? +
the simplicity of the solution. Therefore the source term can(z /b)2 + (7 /c)? for rectangular parallelegiped; amf =
be defined by Fhe following procedpr@ap is the fuel ele-  (7/H)2? + (2.405/R)? for cylinder shapes. Here b, c are
ment’s absorption cross section afits the fraction for total  side lengths of rectangular parallelepipeli;is radius of
number of neutrons absorbed by the fuel element to the totajphere and cylinder; an# is height of cylinder [1]. (We
number of neutrons absorbed by the mixture of fuel and mody|so need here to note that solutions of Et).dan be found
erator in the reactor volume, and given@s Yar/Za. If 7 in detail in many Reactor Physics texbooks such as [1-3].
is the average number of fission neutrons emitted per neutron | B, is known thenB,, can be calculated, or vice versa:
absorbed by the fuel, then the source term is given by A greater material Buckling -meaning of a larger fission cross
S Y B 5 section, a smaller absorption cross section, and/or smaller
=N %, @ means a more favorable condition for criticality. Conversely,
wheref is called as théuel utilization coefficientlf we write a s.mall geometrlc.Bucklln.g IS favorgq with respect t‘? criti-
cality (shape notwithstanding) as this infers a larger size and

the multiplication factork, for an infinite reactor where no H | H h ial - tth
neutrons are escaped (but fully absorbed) in the reactor vofUS & larger core. However, the material composition of the

ume, all neutrons are absorbed either in the fuel or by th&O'€ and its shape and size are obviously dependent factors;
moderator eventually. Thus, the absorption rat&ofb neu- the criticality is not possible without the combination of these
trons in one generation will lead to the absorption rate of WO parameters being satisfied. This condition is satisfied

. L 5 o )
nfs, ® neutrons. Since the multiplication factdk, is de- Whend_the Buckling eﬂualltyhls given Iaqu = By, corrle
fined as the division of total number of fissions in one gener-SPOn ing to a state where the survival fraction vaflie= 1.

2 2 it i
ation by that of in the preceding generation, one can give thd "US: One can concludB2m 2 239 for the supercriticality
multiplication factor for an infinite reactor as Is > 1, and converselys; > B;, stands for the subcritical

conditionf; < 1 [14].
_nfE.®

koo = 5 =0/ ®3) o
a Applications of the MCM

This result is applicable for only an infinite reactor volume.
The source term in Eq2) can now be written as

Critical size for a bare rectangular reactor

_ It assumed that the piece of fissile is a rectangular block of
S = koo X, P. 4 i . ; X
dimensions: x a x b and random points for the coordinates
Replacing Eq.4) into Eq. {I) one gets x0, Yo andzy are subject to the following conditions:
a a a a
2p _ - — )<z < (= —— ) <y < (=
DV~ 5,0+ b B — 0, ®  (Deas(®). ((D=we(2).
for a critical reactor. If one defines? which is called as b < g < b
. . 5] >3- ()]
diffusion areaby b
L= T (6) Itis fact that for all fissile nuclei the distributions of fission

rPrompt neutrons are well known and it would be more logical
(in the framework of the Monte-Carlo Method) to draw this
number (from2 to 3 or 4) from the frequency distribution
function for a sustainable fission chain reaction. However,
whereB2, = (ko — 1)/L? called as the material Buckling we assume in this study that only two neutrons are emitted
parameter. Since the Laplacian operator in IZ).depends during the fission process and may travel in any directions,

then Eq.b) is now called as the one-group reactor equatio
and written as
V20 + B2® =0, (7)
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in order to keep our approach as much as simple. In threside of the block. The survival fractiofy is then given by
dimensional space, a direction can be defined by two angleg, = N,,/N. In the usage of MCM [5] to find the survival

f the polar angle, andg, the azimuth angle. If the emitted fraction f,, one is actually integrating a functidn with nine
neutrons have an “isotropic” distribution (depending on thevariablesF’ (zo, yo, 20, 6, ¢, d, 8, ¢', d’) which represents the
assumptions of Fick's Law)i.e., all directions are equally number of fissions induced by two emitted neutrons for par-
likely probable, then the probability of a neutron emittedticular values of the variablesy, yo, . .., d’. In our case, we
from the point(xo, yo, 20) hitting any area on a surround- search the critical size of rectangular blocks ok a x b

ing unit sphere depends only on the size of the area. Weor its simplicity. For the shape in hand, we first define the
shall assume that a neutron emitted during a fission reactioparametelS, whereS = a/b, and keep it fixed, and then vary
can hit another nucleus after it moviesely any distance of the mass of the blockyl, until the survival fraction satisfies

d which is random, and whose distribution should dependhe conditionf; > 1. Then, we varyS to find out the criti-
significantly on the composition of the breeding medium be-cal mass for each shape. Assuming a direct relation between
tween (unrealistically) and1, with equal probability for the mass and density which is a hidden parameter here, one can
meaning of mean-free path of neutron in such systems. Sinogrite a relation among, b, S and M as followings:

any neutron emerges from the poinaty, yo, 20) and moves

along a directior(d, ¢), we can determine the coordir)ates of a= (M x 5)1/3) b— (M/SQ)I/B (11)

the point(z1,y1,21) where it would hit another fissile nu-

cleus using the geometrical relations: i i
The inputs in our program areN=number of randomly

1 = 29 + dsinf cos ¢, generated neutrondyi=mass of the rectangular block, and
S=ratio of length to thickness (shape of block). Since the ac-
curacy of the calculation is increased by using higher values

For the survival fraction, we only need to generate as mucRf N, we first search a relation, if existing, among parame-
as large number of random points (as fission reactions) an@'sSN, M, andSused as indicative parameters of the statisti-
to keep a count of the number of neutrof,,, which lie cal fluctuations presented in our Monte Carlo calculation, as
inside the block (as sustainable fission reaction). To genshown in Table I. We run all calculations f@0 number of
erate random fission points, we need nine random numbef®Xperiments throughout the text, afidis the average value
I1,72, . .., 79, which lie betweert and1. These nine quanti- Of 10 experimentsf, = (X:21 fs)/10.

ties are generated according to the following set: Three ran- In Table |, it is seen thall has no direct effect in the cal-
dom numbers for initial coordinates; four random numbersculation of f, value. Therefore, we search for effects of other
are for angular positions of two emitted neutrons; two ran-parameters. We try to get the relation among the parameters
dom numbers are for distance travelled by two emitted neua/, S and N as following: Sincef, is converging a certain
trons, respectively. This insures that each of the nine paramalue afterN = 10°, one can seN = 10° and.S = 1 for all
eters will lie in the proper range. For each neutron from aruns, and then search for the critical mass value for which the
random fission we need to determine the neutron endpoirgurvival fractions becomes/reache$. We present our re-
from Eqg. [10), and then test if the point is inside or out- sults in Table Il. Because a certain amount of fissile material

Y1 = Yo + dsinfsin ¢, z1 = 29 + dcosf. (10)

TABLE |. The relation betweeV and f,, for the rectangular block.

1% set (S = 1 andM = 1 are constants)

N 102 103 10* 10° 106 107
0.98 0.876 0.8887 0.89652 0.895712 0.895665
0.80 0.867 0.8835 0.89657 0.895789 0.895789
1.02 0.899 0.8933 0.89416 0.895131 0.895478
0.95 0.916 0.8894 0.89689 0.897115 0.895496
0.92 0.915 0.8941 0.89231 0.895246 0.895299

fs 0.78 0.907 0.9030 0.89351 0.896667 0.895235
0.93 0.897 0.8888 0.89557 0.894426 0.895358
0.75 0.880 0.8887 0.89472 0.895771 0.895251
0.98 0.921 0.8837 0.89323 0.896237 0.895426
0.86 0.929 0.9025 0.89337 0.894728 0.895507

I 0.89 0.901 0.89157 0.894685 0.895682 0.89545
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TABLE Il. The relation betweeN and f, for the rectangular block.

2" set (V = 10° andS = 1 are constants)

M 0.1 0.5 1.0 1.5 2 8 16
0.41712 0.70826 0.895712 0.98202 1.05220 1.34947 1.46378
0.41496 0.70816 0.895789 0.98380 1.05554 1.34802 1.47017
0.41499 0.71201 0.895131 0.98618 1.05647 1.34572 1.46916
0.41532 0.71282 0.897115 0.98274 1.05786 1.34940 1.46560
0.41329 0.70627 0.895246 0.98403 1.05748 1.34998 1.46658

fs 0.41268 0.70915 0.896667 0.98401 1.05866 1.34868 1.46628
0.41559 0.70811 0.894426 0.98344 1.06063 1.35077 1.46519
0.41393 0.70884 0.895771 0.98472 1.04900 1.34813 1.46278
0.41596 0.70762 0.896237 0.98418 1.05645 1.34764 1.46507
0.41559 0.70922 0.894728 0.98679 1.05656 1.34851 1.47142

fs 0.41494 0.70905 0.89568 0.98419 1.05608 1.34863 1.46661

TaBLE Ill. The relation betweeR and f, for the rectangular block.

374 set (V = 10° andM = 1 are constants)

S 0.1 0.5 1.0 1.5 2 8 16
0.59333 0.83839 0.895712 0.86717 0.84029 0.59258 0.45720
0.60203 0.83717 0.895789 0.86393 0.83499 0.59015 0.45949
0.59678 0.83897 0.895131 0.86696 0.83323 0.59511 0.45592
0.59575 0.83666 0.897115 0.86606 0.83097 0.59166 0.45710
0.59409 0.83948 0.895246 0.86712 0.83959 0.59240 0.45666

fs 0.59892 0.83483 0.896667 0.86542 0.83666 0.59062 0.45738
0.59544 0.83753 0.894426 0.86762 0.83707 0.58934 0.45629
0.59372 0.83747 0.895771 0.86465 0.83567 0.59073 0.45842
0.59349 0.84017 0.896237 0.86315 0.83951 0.58791 0.45771
0.59588 0.84036 0.894728 0.86577 0.83795 0.59321 0.45602

fs 0.59594 0.83810 0.89568 0.86578 0.83659 0.59137 0.45722

is required for reaching the criticality, a point at which the ~ We present our results in Table Ill. It is clearly seen that

number of neutrons generated through fission reaction bathe highest value of, = 0.89568 is aroundS = 1, and it

ances out the number of neutrons absorbed in the volume anhplies that one cannot reach to the criticality via changing

lost through the surface of shape by leakage. It is clear thahe shape of blocls for M = 1. Therefore one must search

the minimum mass required to reach at criticality dependdor the corresponding mass valié by changings, for ex-

on the geometry of system. Therefore, the optimal shape foample, from0.1 to 5.0 and ask if the survival fractiorf; is

the minimum amount of fissile material to make the reactorequal to or greater than one in this process.

system be critical should be determined. We present the corresponding minimum critical mass for
each value of = 0.1, 0.2, 0.3.... etc, folv = 10° random

i ) points as shown in the Table IV. Whefh= 1, the smallest
From Table II, one can say that the critical mass exists be:

\ =1 DSritical mass is obtained a&/ = 1.61 for f, > condition.
tweenM = 1.5 andM = 2.0 because the survival fraction is So, the minimum mass is in the cubic shape. As shown in

about1.0 there. Although we can estimate the critical massyyp|e IV, the mass value changes from higher to lower for
between) = 1.5 andM = 2.0, one also needs to calculate g _ 1 19 § = 1.0 and then it increases gradually. Theo-
that one for non-cubic rectangular blocks and needs to repegliica|ly, one needs to support our results: The volume of the

the procedure via using certain valuesSofor the certainty.  recangular parallelepiped (for the simplicity of sides lengths
We setS = 0.1, 0.5, 1.0, 1.5, 2.0., 8.0 and 16 and repeat the, , = b) shape iV = a2 b and the length to thickness

calculation. ratio
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TABLE IV. The relation among the parametérsh and fs, for the block ofa x a x b.

N =10°
S M fs S M fs

0.1 6.28 1.00253 2.6 2.38 1.00144
0.2 3.46 1.00211 2.7 2.47 1.00286
0.3 2.55 1.00147 2.8 2.52 1.00146
0.4 2.18 1.00600 2.9 2.6 1.00211
0.5 1.93 1.00301 3.0 2.70 1.00069
0.6 1.75 1.00137 3.1 2.73 1.00000
0.7 1.69 1.00300 3.2 2.84 1.00255
0.8 1.62 1.00026 3.3 2.95 1.00086
0.9 1.62 1.00055 3.4 3.07 1.00299
1.0 1.61 1.00069 35 3.13 1.00003

1.1 1.62 1.00338 3.6 3.23 1.00103
1.2 1.63 1.00058 3.7 3.28 1.00043
1.3 1.66 1.00605 3.8 3.39 1.00251
1.4 1.68 1.00099 3.9 3.48 1.00123
15 1.70 1.00083 4.0 3.58 1.00022
1.6 1.79 1.00601 4.1 3.66 1.00239
1.7 1.81 1.00049 4.2 3.77 1.00136
1.8 1.86 1.00177 4.3 3.90 1.00181
1.9 1.95 1.00404 4.4 4.02 1.00151
2.0 1.98 1.00075 45 4.08 1.00053
2.1 2.05 1.00067 4.6 4.22 1.00307
2.2 2.12 1.00125 47 431 1.00316
2.3 2.16 1.00163 4.8 4.43 1.00251
2.4 2.25 1.00332 4.9 4.56 1.00207
25 2.32 1.00144 5.0 4.61 1.00270

TABLE V. The relation betweeN and f, for the finite cylinder.

1°* set (S = 1 andM = 1 are constants)

N 102 103 10* 10° 108 107
1.00 0.926 0.9533 0.94424 0.945162 0.945761
1.01 0.895 0.9335 0.94829 0.944673 0.945918
0.99 0.969 0.9398 0.95008 0.94639 0.945648
0.82 0.968 0.9378 0.94717 0.945653 0.945252
0.95 0.953 0.9545 0.94569 0.945749 0.945371

fs 0.97 0.952 0.9384 0.94269 0.945933 0.945952
1.03 0.951 0.944 0.94507 0.945596 0.945776
0.83 0.919 0.9564 0.94571 0.946023 0.945521
0.95 0.924 0.9404 0.94889 0.94638 0.945372
0.89 0.935 0.9437 0.94774 0.947706 0.945649

fs 0.944 0.9392 0.94418 0.946557 0.9459265 0.945622
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TABLE VI. The relation betweeM and f;, for the finite cylinder.

2" set (V = 10° andS = 1 are constants)

M 0.1 0.5 1.0 1.5 2 8 16
0.44454 0.76004 0.94516 1.06297 1.14433 1.47582 1.59049
0.44302 0.75984 0.94467 1.06186 1.14513 1.47445 1.59219
0.44418 0.75939 0.94632 1.06259 1.14441 1.47454 1.5921
0.44379 0.75951 0.94565 1.06253 1.14512 1.47428 1.59215
0.44341 0.75861 0.94574 1.0623 1.14577 1.47464 1.59171

fs 0.44396 0.75881 0.94593 1.0616 1.1436 1.47465 1.59233
0.44384 0.75954 0.94559 1.06142 1.14482 1.47513 1.59187
0.44442 0.76083 0.94602 1.06188 1.1433 1.47452 1.59185
0.44425 0.75988 0.9463 1.06191 1.14538 1.47395 1.59272
0.44532 0.75862 0.94771 1.0613 1.14409 1.475689 1.59201

fs 0.44407 0.75951 0.94592 1.06204 1.14459 1.47477 1.59194

is assumed to b8 = a/b = a = S b. For the geometric “ f” parameter. Therefore, we sét= 1 and N = 10° (as in
Buckling; B2 = (r/a)*+(r/b)*+ (r/ a). Substituting ~ previous case) to observe the effectldt In Table VI it is

a = S b and for the minimum Buckling with constaht, one  clearly seen thaf, increases a8/ increases.

has to consider the caséB3?/dS = 0. After some algebra It is an expected result because most of neutrons in

one findsS = 1 that satisfies the condition for critically. It greater volume (higher mass value) are highly absorbed and
impliesa = b = ¢, so the minimum critical volume gives  they have less chance for leakage throughout the surface of
us a cubic shape for which we have found the same result §ge shape. The effect of in the calculation off is shown in
shown in Table IV by using the MCM. Table VII. It is obvious that the value of, increases in the
range betweers = 0.1 and S = 1.5, and then it decreases
from S =2to S = 16. So, there should be a value between
S = 1.5 andS = 2.0 approaching the critically condition for

Critical size for a bare cylindrical reactor

Running our modified program for a finite cylinder of radius
r with height 4, we first defineS = h/r. Following the
previous steps, we present our results from Table V to Ta- In Table VII, the mass\/ is equal tol and it is seen that
ble VIl for cylinder system. In Table V, we present the effect the mass must be increased to make the survival fracfipns
of “N” for constant values of andM. If M andS are kept  be equal or greater thanfor constant value o&. To find out
constant, the effect aV is not obvious in the calculation of what the minimum critical mass for each value of the height-

TABLE VII. The relation betwee8and f, for the finite cylinder.

374 set (V = 10° andM = 1 are constants)

S 0.1 0.5 1.0 1.5 2 8 16
0.473204 0.833021 0.945162 0.974038 0.973057 0.789682 0.667238
0.473037 0.833278 0.944673 0.973834 0.972689 0.791315 0.666464
0.473429 0.831187 0.94639 0.975304 0.972443 0.789842 0.666526
0.474000 0.834288 0.945653 0.974584 0.971732 0.790225 0.667443
0.474007 0.833894 0.945749 0.974453 0.971965 0.790856 0.66776

fs 0.471869 0.833012 0.945933 0.974003 0.973622 0.789742 0.668019
0.472911 0.833061 0.945596 0.973749 0.972911 0.790628 0.666612
0.473482 0.832978 0.946023 0.974984 0.972269 0.789082 0.667165
0.473736 0.833592 0.94638 0.973228 0.972172 0.791213 0.666558
0.473801 0.83354 0.947706 0.974169 0.970597 0.790452 0.667485

fs 0.473347 0.833185 0.945926 0.974234 0.972345 0.790304 0.667127
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TABLE VIII. The relation among the parameté&tsM and fs, for the finite cylinder.

N =10°
s M fs S M fs

0.1 27.991 1.001 2.6 1.200 1.001
0.2 8.200 1.000 2.7 1.220 1.003
0.3 4.260 1.000 2.8 1.240 1.001
0.4 2.790 1.001 2.9 1.260 1.001
0.5 2.100 1.000 3.0 1.270 1.001
0.6 1.750 1.001 3.1 1.290 1.001
0.7 1.550 1.001 3.2 1.310 1.002
0.8 1.400 1.001 3.3 1.320 1.001
0.9 1.310 1.001 3.4 1.340 1.001
1.0 1.250 1.002 35 1.360 1.001
1.1 1.210 1.002 3.6 1.380 1.002
1.2 1.180 1.001 3.7 1.400 1.002
1.3 1.160 1.003 3.8 1.410 1.000
1.4 1.140 1.001 3.9 1.430 1.000
1.5 1.140 1.002 4.0 1.460 1.002
1.6 1.130 1.002 4.1 1.480 1.002
1.7 1.130 1.002 4.2 1.490 1.001
1.8 1.120 1.000 43 1.510 1.001

1.9 1.130 1.003 4.4 1.530 1.001
2.0 1.140 1.002 45 1.550 1.002
2.1 1.150 1.002 4.6 1.570 1.000
2.2 1.150 1.001 4.7 1.590 1.001
2.3 1.160 1.001 4.8 1.610 1.000
2.4 1.170 1.002 4.9 1.630 1.001
25 1.180 1.001 5.0 1.640 1.000

TABLE IX. The relation betweeV and f,, for the spherical reactor whefd = 1 (R = 0.62035).

1°t set (M = 1 andR = 0.62035)

N 102 103 10* 10° 106 107
1.11 1.081 1.0765 1.08025 1.079055 1.0795062
1.05 1.094 1.0829 1.07873 1.078407 1.0795276
1.08 1.075 1.0975 1.08197 1.080221 1.0798335
0.98 1.072 1.0697 1.07738 1.079912 1.0796746
1.01 1.074 1.0773 1.07759 1.080022 1.0797197

fs 1.23 1.088 1.0906 1.07516 1.078738 1.0797584
1.02 1.098 1.0706 1.07756 1.079784 1.0798805
0.99 1.113 1.0888 1.08207 1.079915 1.0799033
1.12 1.097 1.0835 1.07789 1.079364 1.0797344
0.89 1.071 1.083 1.08052 1.079512 1.0799324

fs 1.048 1.0863 1.08204 1.078912 1.079493 1.07974706
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TaBLE X. The relation between/ and fs, for the spherical reactor.

2" set (V = 10° andr proportional to)M)

M 0.1 0.5 1.0 1.5 2 8 16
0.50245 0.85972 1.07906 1.22369 1.32693 1.71484 1.81662
0.50230 0.85856 1.07841 1.22491 1.32702 1.71549 1.81686
0.50137 0.85993 1.08022 1.22434 1.32843 1.7141 1.81761
0.50203 0.85905 1.07991 1.22486 1.32756 1.71526 1.81713
0.50247 0.85819 1.08002 1.22377 1.32732 1.71596 1.81684

fs 0.50295 0.85932 1.07874 1.22291 1.32857 1.71641 1.8178
0.50268 0.85888 1.07978 1.22511 1.32756 1.71544 1.81753
0.50112 0.85902 1.07992 1.22361 1.32772 1.71567 1.81654
0.50261 0.85883 1.07936 1.22317 1.32825 1.71583 1.81748
0.50232 0.86017 1.07953 1.22423 1.32706 1.71533 1.81679

£ 0.50223 0.85918 1.07949 1.22406 1.32764 1.71543 1.81712

TABLE XI. The relation among paramete§s M and fs, for the spherical reactor.

N =10°
S M I S M s
0.01 0.133650 0.232794 251 0.843066 1.40785
0.11 0.297235 0.518616 2.61 0.854117 1.42043
0.21 0.368731 0.641612 2.71 0.864888 1.43242
0.31 0.419846 0.731956 2.81 0.875399 1.44579
0.41 0.460855 0.802502 2.91 0.885662 1.4569
0.51 0.495633 0.865500 3.01 0.895693 1.46772
0.61 0.526114 0.917306 3.11 0.905504 1.47775
0.71 0.553422 0.963154 3.21 0.915107 1.48938
0.81 0.578272 1.00713 3.31 0.924513 1.49851
0.91 0.601152 1.046452 3.41 0.933731 1.50809
1.01 0.622411 1.082393 3.51 0.942771 1.5174
1.11 0.642310 1.115561 3.61 0.951640 1.52693
1.21 0.661047 1.146565 3.71 0.960347 1.53269
1.31 0.678777 1.176063 3.81 0.968899 1.54129
1.41 0.695627 1.200577 3.91 0.977303 1.54837
1.51 0.711698 1.226552 4.01 0.985564 1.55774
1.61 0.727074 1.249039 411 0.993692 1.56304
1.71 0.741826 1.27203 3 421 1.001685 1.57081
1.81 0.756014 1.292766 4.31 1.009554 1.57512
1.91 0.769688 1.309722 4.41 1.017302 1.58301
2.01 0.782893 1.330617 451 1.024934 1.58908

to-radius ratio is and to know what the exact critical dimen-  As we show for parallelepiped, the volume of the cylin-
sions of cylinder are, we modify our code for cylinder systemder shape i$” = 7 72 x h and the height to radius ratio is
and present our results in Table VIl for arangeS5dfom 0.1 S = h/r. Substitutingh = S x r in B§ of cylinder shape,
to 5.0 with corresponding critical madg satisfying the con-  and then defining = /V/7H and considering the case
dition f > 1.0. It is seen in Table VIII that the minimum ¢B2%/dS = 0 one findsS = 1.82 that satisfies the mini-
critical mass is obtained whet\= h/r = 1.8.
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mum critical mass. The modified MCM program developedthe core to become critical. Finally, there is also possibility
in Mathematicd“for the case of the bare cylinder is pre- to modify our approach to determine the critical mass in other
sented in Appendix as an example of the work carried ouparticular geometries and to compare results among them.

for the interested readers.

Critical size for a bare spherical reactor

Appendix

In the determination of the critical size of a spherical reactorA. Example program for bare-cylinder reactor
there is a direct connection between the mass and the radius

(*PROGRAM BARECYLINDER

Of Sphere Thereforev the Change In the mass Changes the 'This program determines the critical mass of a bare cylinder.

dius (or vice versa) until it satisfils> 1.0. Following the
same procedures in the previous sections, we present our r
sults in Tables IX and X. As seen in Table IX, has no direct
effect on values of . Since we sef\/ = 1, the results show
that the system is almost critic. Therefore we can search fo
which mass (or radius) value is the most appropriate one. Th
system will become critical via changing the mags(or ra-
dius). We setV = 10° and show our results in Table X. The
effect of increase in the mass can be observed clearly on tr
value of f,: It is seen that the minimum critical mass is be-
tweenM = 0.5 andM = 1. In summary, the increase in the
volume of core will subsequently leads to the increase in the
value of survival fraction because of decrease in number o
leakage neutrons. To find out the minimum critical mass for

The check point is to control if f_s=>1.0 for criticality.x)

Unprotect[" «"];
ClearAll[" +"];
ClearAll["Global x"];
(*»number of incident neutrons input herex)
numn = 10000;
(*if required, the number of repetation input here(it is 1@ in paper)x)
numexp = 1;
(xThe range for S from "ilk" to "son"x)
ilk = 13;
son = 23;
Do[
(xS value changes here: from 1.3 to 2.3x)
S=KM%0.1;
Svalue[KM] =S;
(*M changes from initial value to final value by step number of dM=0.01x)
M=0.1;
dM =0.01;
Label [mbegin] ;
M =M+dM;
Mass[KM] = M;
( » Determine the Radius and Height of cylinder in terms of Mand S «)

the spherical system, we run our code for different values o
S from 0.01 to 4.51 through the survival fractions whefito

R= (M/ (S%Pi))Y3;
H= (MxS*S/Pi)%3;

Do[(*Numbet‘ of experiments from 1-to-numexp starts herex)

be equal or greater than one. We present results in Table XI

Conclusion

In this paper, we show a simple application of MCM to cal-
culate the minimum critical size condition satisfied for a hy-
pothetical fissile material in three different geometries: For
the bare rectangular-parallelepiped shape, we find that th
minimum critical size condition exists whefi = a/b =

1.0 which is in the shape of a cube. For the bare finite-
cylinder, the minimum critical mass requires the condition
S = H/R ~ 1.8. For the bare spherical system, the mini-
mum critical size is obtained when the radius of the sphere
is equal to0.57. These results are in agreement with those
of neutron diffusion equation for Zero Boundary Flux in the
determination of the minimum critical mass calculations for

nin =0.; (xinitial number of generated neutrons as result of fission in volumesx)
Do[ (»incident neutrons makes target fission heres)
(*initial fission coordinates generation in volumex)
theta = RandomReal[{@, 360}];
D1 = RandomReal[];
X0 = R Cos [thetaDegree] »D1;
y0 = R+ Sin[thetaDegree] xD1;
20 = Hx (RandomReal[] - 0.5) ;
Do|[
(xtwo random neutrons coordinates generated here: from fissions n=1,2x)
thetal = RandomReal[ {0, 360}];
cosphil = 2 (RandomReal[] - ©.5) ;
sinphil = Sqrt[1. —cosphilz];
d = RandomReal[ {0, 1}];
Xnew = X0 +d » Cos [thetal Degree] * sinphil;
ynew = y@ + d » Sin[thetal Degree] » sinphil;
znew = z0 + d x cosphil;
cnew = Sqrt [xnew2 + ynewz] H
(xcheck if generated neutrons' coordinates are "in" the volume or "not"x)
If[cnew < R& & Abs[znew] sH/2., nin=nin+1., zz=99],
n, 1, 23],
{nn, 1, numn)];
SF[IJ] =nin/numn,
{13, 1, numexp}];

dB?/dS = 0.

One can also conclude throughout these results that th
most optimum shape for the minimum critical size condition
is the spherical one.

As a future study, one can repeat these calculations fo
the Extrapolated Boundary Flux in other geometries. Our ap
proach can also be modified by considering the energy o
neutrons, corresponding cross-section values of target ele
ment and other parameters such as mean-free path etc. T
calculation of the critical mass in such simple reactor geome
tries with reflectors can also be studied for future studies
ThUS, it would be very gOOd Opportunity to compare the re- sws = Table[{kn, SetAc?ur‘acy[Svalue[KM], 4], SetAccuracy [Mass [KM] ,

. . . 4], SetAccuracy [FFraction[KM],
sults of systems without/with reflectors, which are good ma- 4, setaccuracyieor iy, 413, (i, 11k, son}1s
terials at reducing the amount of fuel element required for Exortl">:\\cylinder. dat®, sus)

AvgF = 0.;

( » Calculate the Average value of survival factor for all experiments =)

Do[AvgF = AvgF + SF[IJ], {IJ, 1, numexp}];

AvgF = AvgF / numexp;

SS =H/R;

HtoR[KM] = SS;

FFraction[KM] = AvgF;

(= compareif f_s > 1.0, thenPrint results x)

If[AvgF 2 1.0,
Print["Loop= ", KM, " ", "S= ", SetAccuracy[S, 4], " "

"Mass= ", SetAccuracy[M, 4], " v/

"AvgF= ", SetAccuracy[AvgF, 4], " ",

>

"Height/Radius= ", SetAccuracy[SS, 4]1,
Goto[mbegin]],
{Kkm, ilk, son} |

(xIf necessary, save the Results in a "dat" filex)
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