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A toy model for determining the critical size condition in fission chain reaction
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The geometric Buckling in the analytical solutions of the steady-state one group neutron diffusion equation are used to compare with
numerical results of the Monte Carlo Method in the determination of the size condition yielding the minimum critical mass in three basic
geometries. The survival fraction value,fs (which is also called as the multiplication factor,k) is calculated for the criticality condition in
these geometries and the results are tabulated for each one. Our numerical results by Monte Carlo Method show that the minimum critical
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Introduction

The fuel material’s critical size and mass in a fission chain re-
action have extreme importance in nuclear power plants and
nuclear weapons [1–3]. There is a certain analogy between
the analytical solutions of the steady-state one-group diffu-
sion equation with size and type of material in the sustainable
fission process. It is well known that the nuclear fission reac-
tion is a random process and its simulation can also be stud-
ied by the Monte Carlo Method (MCM) [4]. In random pro-
cesses of such a reaction, the critical size and the correspond-
ing mass of the fuel material can be determined by using a
simple computer program via MCM. One can simulate the
one-group steady state neutron diffusion equation by MCM
method in rectangular, cylindrical and spherical geometries.

The purpose of this paper is first to review briefly in three
basic geometries the solution of steady-state one-group dif-
fusion equation for bare systems, and then to figure out the
critical size condition of the hypothetical fuel material in
these geometries by a modified Monte Carlo Method (MCM)
which is well formulated and disseminated in PHYSNET [5].

As far as our knowledge, there is no such a simple pre-
sentation for the application of the MCM for determining the
critical size condition in three different basic geometries. For
example, in their paper Brandonet al.[6] calculate the critical
mass by MCM due to the purity, shape, mean-free path and
energy ranges of neutrons and find out that the lowest criti-
cal mass is the spherical one. Ibrahimet al. [7, 8] investigate
the best description of multiplication factor by MCM, and
show that there are direct connections among the critical mass
and all other parameters such as the dimension of the system,
energy range and generation of random points for neutrons.
There are many other studies in literature such as Gray [9]

and Hiroshiet al. [10] for the determination of critical mass
for different types of mixtures without and with a reflector
by applying some advanced versions of MCM packaged pro-
grams using the data libraries such as JEF-2.2, JENDL-3.2
and ENDF/B-VI. All these valuable studies are focused on
the calculation of critical mass but in very advanced level
for undergraduate and also for graduate students in science
and engineering branches: They need advanced calculations
and/or ready-packaged programs and naturally require also
some extra data-library. On the other hand, the method in
this study for undergraduate and also for graduate level stu-
dents in any branches of science and engineering is very easy,
simple and directly applicable for the application of MCM to
steady-state one-group diffusion equation. It builds up con-
nection between the results of analytical solutions of neu-
tron diffusion equation for the critical size condition and the
MCM method. As far as it is known, there is no such a simple
calculation of critical size condition of a reactor system by a
MCM [11].

In Sec. 2, we briefly present a review of the solution of the
continuity equation and obtain the Buckling parameters. In
Sec. 3, we give basics of our modified MCM approach and its
applications in three basic different geometries. We present
our results in Tables and it is clearly seen that the results are
exactly in agreement with those of Neutron Diffusion Theory.
In the last section, a short conclusion is presented.

Diffusion equation

If V is the volume of multiplicative medium, three options
exist as followings: First, neutrons are produced within the
volume. Second, neutrons are absorbed in the volume, and
the third one is neutrons escaping (leakage) from the volume.
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It is clear that all these reactions take place in volume per unit
time and they continue randomly. Thus, the rate of change
of neutrons in such a volume is given by a simple equation
called as the steady-state diffusion equation [1,12,13]:

D ∇2Φ− ΣaΦ + S = 0, (1)

whereΦ is the neutron flux function,Σa is the total absorp-
tion cross section for the homogeneous mixture of fuel and
moderator,D is the diffusion coefficient, andS is the neutron
source in the given medium. It should also be noted here that
other materials such as coolant and various structural compo-
nents of the core can be included in the determination of the
total absorption cross section. However, we only consider a
reactor with homogeneous mixture of fuel and moderator for
the simplicity of the solution. Therefore the source term can
be defined by the following procedure:ΣaF is the fuel ele-
ment’s absorption cross section andf is the fraction for total
number of neutrons absorbed by the fuel element to the total
number of neutrons absorbed by the mixture of fuel and mod-
erator in the reactor volume, and given asf= ΣaF/Σa. If η
is the average number of fission neutrons emitted per neutron
absorbed by the fuel, then the source term is given by

S = ηfΣaΦ, (2)

wheref is called as thefuel utilization coefficient. If we write
the multiplication factor,k, for an infinite reactor where no
neutrons are escaped (but fully absorbed) in the reactor vol-
ume, all neutrons are absorbed either in the fuel or by the
moderator eventually. Thus, the absorption rate ofΣa Φ neu-
trons in one generation will lead to the absorption rate of
ηfΣa Φ neutrons. Since the multiplication factor,k, is de-
fined as the division of total number of fissions in one gener-
ation by that of in the preceding generation, one can give the
multiplication factor for an infinite reactor as

k∞ =
ηfΣaΦ
ΣaΦ

= ηf. (3)

This result is applicable for only an infinite reactor volume.
The source term in Eq. (2) can now be written as

S = k∞ΣaΦ. (4)

Replacing Eq. (4) into Eq. (1) one gets

D ∇2Φ− ΣaΦ + k∞ΣaΦ = 0, (5)

for a critical reactor. If one definesL2 which is called as
diffusion area, by

L2 =
D

Σa
, (6)

then Eq. (5) is now called as the one-group reactor equation
and written as

∇2Φ + B2
mΦ = 0, (7)

whereB2
m = (k∞ − 1)/L2 called as the material Buckling

parameter. Since the Laplacian operator in Eq. (7) depends

on the geometry of the system under investigation, an ex-
pression is obtained that is proportional to the curvature of
the neutron flux in the reactor, which gives a measure of the
way in which the flux “buckles” and that it depends on the
geometry of the reactor. Thus the Buckling parameters for a
critical reactor is now written as

B2
m =

k∞ − 1
L2

= B2
g , (8)

whereBg is called as the geometric Buckling depending on
the solution of Eq. (7) and Bm is the material Buckling,
respectively. Using Eq. (7) one can find geometric Buck-
lings for sphere, rectangular parallelepiped and finite cylin-
der shapes (without the extrapolation distance) as follow-
ings: B2

g = (π/R)2 for spherical shape;B2
g = (π/a)2 +

(π/b)2 + (π/c)2 for rectangular parallelepiped; andB2
g =

(π/H)2 + (2.405/R)2 for cylinder shapes. Herea, b, c are
side lengths of rectangular parallelepiped;R is radius of
sphere and cylinder; andH is height of cylinder [1]. (We
also need here to note that solutions of Eq. (7) can be found
in detail in many Reactor Physics texbooks such as [1–3].

If Bg is known thenBm can be calculated, or vice versa:
A greater material Buckling -meaning of a larger fission cross
section, a smaller absorption cross section, and/or smallerD-
means a more favorable condition for criticality. Conversely,
a small geometric Buckling is favored with respect to criti-
cality (shape notwithstanding) as this infers a larger size and
thus a larger core. However, the material composition of the
core and its shape and size are obviously dependent factors;
the criticality is not possible without the combination of these
two parameters being satisfied. This condition is satisfied
when the Buckling equality is given asB2

g = B2
m corre-

sponding to a state where the survival fraction valuefs = 1.
Thus, one can concludeB2

m ≥ B2
g for the supercriticality

fs ≥ 1, and converselyB2
g ≥ B2

m stands for the subcritical
conditionfs < 1 [14].

Applications of the MCM

Critical size for a bare rectangular reactor

It assumed that the piece of fissile is a rectangular block of
dimensionsa× a× b and random points for the coordinates
x0, y0 andz0 are subject to the following conditions:

(
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2

)
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2

)
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(
− b
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)
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2

)
. (9)

It is fact that for all fissile nuclei the distributions of fission
prompt neutrons are well known and it would be more logical
(in the framework of the Monte-Carlo Method) to draw this
number (from2 to 3 or 4) from the frequency distribution
function for a sustainable fission chain reaction. However,
we assume in this study that only two neutrons are emitted
during the fission process and may travel in any directions,
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in order to keep our approach as much as simple. In three
dimensional space, a direction can be defined by two angles:
θ the polar angle, andφ, the azimuth angle. If the emitted
neutrons have an “isotropic” distribution (depending on the
assumptions of Fick’s Law),i.e., all directions are equally
likely probable, then the probability of a neutron emitted
from the point(x0, y0, z0) hitting any area on a surround-
ing unit sphere depends only on the size of the area. We
shall assume that a neutron emitted during a fission reaction
can hit another nucleus after it movesfreelyany distance of
d which is random, and whose distribution should depend
significantly on the composition of the breeding medium be-
tween (unrealistically)0 and1, with equal probability for the
meaning of mean-free path of neutron in such systems. Since
any neutron emerges from the point(x0, y0, z0) and moves
along a direction(θ, φ), we can determine the coordinates of
the point(x1, y1, z1) where it would hit another fissile nu-
cleus using the geometrical relations:

x1 = x0 + d sin θ cos φ,

y1 = y0 + d sin θ sin φ, z1 = z0 + d cos θ. (10)

For the survival fraction, we only need to generate as much
as large number of random points (as fission reactions) and
to keep a count of the number of neutrons,Nin, which lie
inside the block (as sustainable fission reaction). To gen-
erate random fission points, we need nine random numbers
r1, r2, . . . , r9, which lie between0 and1. These nine quanti-
ties are generated according to the following set: Three ran-
dom numbers for initial coordinates; four random numbers
are for angular positions of two emitted neutrons; two ran-
dom numbers are for distance travelled by two emitted neu-
trons, respectively. This insures that each of the nine param-
eters will lie in the proper range. For each neutron from a
random fission we need to determine the neutron endpoint
from Eq. (10), and then test if the point is inside or out-

side of the block. The survival fractionfs is then given by
fs = Nin/N . In the usage of MCM [5] to find the survival
fractionfs, one is actually integrating a functionF with nine
variablesF (x0, y0, z0, θ, φ, d, θ′, φ′, d′) which represents the
number of fissions induced by two emitted neutrons for par-
ticular values of the variablesx0, y0, . . . , d

′. In our case, we
search the critical size of rectangular blocks fora × a × b
for its simplicity. For the shape in hand, we first define the
parameterS, whereS = a/b, and keep it fixed, and then vary
the mass of the block,M, until the survival fraction satisfies
the conditionfs ≥ 1. Then, we varyS to find out the criti-
cal mass for each shape. Assuming a direct relation between
mass and density which is a hidden parameter here, one can
write a relation amonga, b, S andM as followings:

a = (M × S)1/3, b =
(
M/S2

)1/3
(11)

The inputs in our program are:N=number of randomly
generated neutrons;M=mass of the rectangular block, and
S=ratio of length to thickness (shape of block). Since the ac-
curacy of the calculation is increased by using higher values
of N, we first search a relation, if existing, among parame-
tersN, M, andSused as indicative parameters of the statisti-
cal fluctuations presented in our Monte Carlo calculation, as
shown in Table I. We run all calculations for10 number of
experiments throughout the text, andfs is the average value
of 10 experiments:̄fs = (

∑10
i=1 fs,i)/10.

In Table I, it is seen thatN has no direct effect in the cal-
culation off̄s value. Therefore, we search for effects of other
parameters. We try to get the relation among the parameters
M, S andN as following: Sincef̄s is converging a certain
value afterN = 106, one can setN = 106 andS = 1 for all
runs, and then search for the critical mass value for which the
survival fractions becomes/reaches1.0. We present our re-
sults in Table II. Because a certain amount of fissile material

TABLE I. The relation betweenN andfs, for the rectangular block.

1st set (S = 1 andM = 1 are constants)

N 102 103 104 105 106 107

0.98 0.876 0.8887 0.89652 0.895712 0.895665

0.80 0.867 0.8835 0.89657 0.895789 0.895789

1.02 0.899 0.8933 0.89416 0.895131 0.895478

0.95 0.916 0.8894 0.89689 0.897115 0.895496

0.92 0.915 0.8941 0.89231 0.895246 0.895299

fs 0.78 0.907 0.9030 0.89351 0.896667 0.895235

0.93 0.897 0.8888 0.89557 0.894426 0.895358

0.75 0.880 0.8887 0.89472 0.895771 0.895251

0.98 0.921 0.8837 0.89323 0.896237 0.895426

0.86 0.929 0.9025 0.89337 0.894728 0.895507

f̄s 0.89 0.901 0.89157 0.894685 0.895682 0.89545
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TABLE II. The relation betweenM andfs, for the rectangular block.

2nd set (N = 106 andS = 1 are constants)

M 0.1 0.5 1.0 1.5 2 8 16

0.41712 0.70826 0.895712 0.98202 1.05220 1.34947 1.46378

0.41496 0.70816 0.895789 0.98380 1.05554 1.34802 1.47017

0.41499 0.71201 0.895131 0.98618 1.05647 1.34572 1.46916

0.41532 0.71282 0.897115 0.98274 1.05786 1.34940 1.46560

0.41329 0.70627 0.895246 0.98403 1.05748 1.34998 1.46658

fs 0.41268 0.70915 0.896667 0.98401 1.05866 1.34868 1.46628

0.41559 0.70811 0.894426 0.98344 1.06063 1.35077 1.46519

0.41393 0.70884 0.895771 0.98472 1.04900 1.34813 1.46278

0.41596 0.70762 0.896237 0.98418 1.05645 1.34764 1.46507

0.41559 0.70922 0.894728 0.98679 1.05656 1.34851 1.47142

f̄s 0.41494 0.70905 0.89568 0.98419 1.05608 1.34863 1.46661

TABLE III. The relation betweenS andfs, for the rectangular block.

3rd set (N = 106 andM = 1 are constants)

S 0.1 0.5 1.0 1.5 2 8 16

0.59333 0.83839 0.895712 0.86717 0.84029 0.59258 0.45720

0.60203 0.83717 0.895789 0.86393 0.83499 0.59015 0.45949

0.59678 0.83897 0.895131 0.86696 0.83323 0.59511 0.45592

0.59575 0.83666 0.897115 0.86606 0.83097 0.59166 0.45710

0.59409 0.83948 0.895246 0.86712 0.83959 0.59240 0.45666

fs 0.59892 0.83483 0.896667 0.86542 0.83666 0.59062 0.45738

0.59544 0.83753 0.894426 0.86762 0.83707 0.58934 0.45629

0.59372 0.83747 0.895771 0.86465 0.83567 0.59073 0.45842

0.59349 0.84017 0.896237 0.86315 0.83951 0.58791 0.45771

0.59588 0.84036 0.894728 0.86577 0.83795 0.59321 0.45602

f̄s 0.59594 0.83810 0.89568 0.86578 0.83659 0.59137 0.45722

is required for reaching the criticality, a point at which the
number of neutrons generated through fission reaction bal-
ances out the number of neutrons absorbed in the volume and
lost through the surface of shape by leakage. It is clear that
the minimum mass required to reach at criticality depends
on the geometry of system. Therefore, the optimal shape for
the minimum amount of fissile material to make the reactor
system be critical should be determined.

From Table II, one can say that the critical mass exists be-
tweenM = 1.5 andM = 2.0 because the survival fraction is
about1.0 there. Although we can estimate the critical mass
betweenM = 1.5 andM = 2.0, one also needs to calculate
that one for non-cubic rectangular blocks and needs to repeat
the procedure via using certain values ofS for the certainty.
We setS = 0.1, 0.5, 1.0, 1.5, 2.0., 8.0 and 16 and repeat the
calculation.

We present our results in Table III. It is clearly seen that
the highest value of̄fs = 0.89568 is aroundS = 1, and it
implies that one cannot reach to the criticality via changing
the shape of blockS for M = 1. Therefore one must search
for the corresponding mass valueM by changingS, for ex-
ample, from0.1 to 5.0 and ask if the survival fractionfs is
equal to or greater than one in this process.

We present the corresponding minimum critical mass for
each value ofS = 0.1, 0.2, 0.3. . . . etc, forN = 106 random
points as shown in the Table IV. WhenS = 1, the smallest
critical mass is obtained asM = 1.61 for f̄s ≥ condition.
So, the minimum mass is in the cubic shape. As shown in
Table IV, the mass value changes from higher to lower for
S = 0.1 to S = 1.0 and then it increases gradually. Theo-
retically, one needs to support our results: The volume of the
rectangular parallelepiped (for the simplicity of sides lengths
a × a × b) shape isV = a2 b and the length to thickness
ratio
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TABLE IV. The relation among the parametersS, M andf̄s, for the block ofa× a× b.

N = 106

S M f̄s S M f̄s

0.1 6.28 1.00253 2.6 2.38 1.00144

0.2 3.46 1.00211 2.7 2.47 1.00286

0.3 2.55 1.00147 2.8 2.52 1.00146

0.4 2.18 1.00600 2.9 2.6 1.00211

0.5 1.93 1.00301 3.0 2.70 1.00069

0.6 1.75 1.00137 3.1 2.73 1.00000

0.7 1.69 1.00300 3.2 2.84 1.00255

0.8 1.62 1.00026 3.3 2.95 1.00086

0.9 1.62 1.00055 3.4 3.07 1.00299

1.0 1.61 1.00069 3.5 3.13 1.00003

1.1 1.62 1.00338 3.6 3.23 1.00103

1.2 1.63 1.00058 3.7 3.28 1.00043

1.3 1.66 1.00605 3.8 3.39 1.00251

1.4 1.68 1.00099 3.9 3.48 1.00123

1.5 1.70 1.00083 4.0 3.58 1.00022

1.6 1.79 1.00601 4.1 3.66 1.00239

1.7 1.81 1.00049 4.2 3.77 1.00136

1.8 1.86 1.00177 4.3 3.90 1.00181

1.9 1.95 1.00404 4.4 4.02 1.00151

2.0 1.98 1.00075 4.5 4.08 1.00053

2.1 2.05 1.00067 4.6 4.22 1.00307

2.2 2.12 1.00125 4.7 4.31 1.00316

2.3 2.16 1.00163 4.8 4.43 1.00251

2.4 2.25 1.00332 4.9 4.56 1.00207

2.5 2.32 1.00144 5.0 4.61 1.00270

TABLE V. The relation betweenN andfs, for the finite cylinder.

1st set (S = 1 andM = 1 are constants)

N 102 103 104 105 106 107

1.00 0.926 0.9533 0.94424 0.945162 0.945761

1.01 0.895 0.9335 0.94829 0.944673 0.945918

0.99 0.969 0.9398 0.95008 0.94639 0.945648

0.82 0.968 0.9378 0.94717 0.945653 0.945252

0.95 0.953 0.9545 0.94569 0.945749 0.945371

fs 0.97 0.952 0.9384 0.94269 0.945933 0.945952

1.03 0.951 0.944 0.94507 0.945596 0.945776

0.83 0.919 0.9564 0.94571 0.946023 0.945521

0.95 0.924 0.9404 0.94889 0.94638 0.945372

0.89 0.935 0.9437 0.94774 0.947706 0.945649

f̄s 0.944 0.9392 0.94418 0.946557 0.9459265 0.945622
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TABLE VI. The relation betweenM andfs, for the finite cylinder.

2nd set (N = 106 andS = 1 are constants)

M 0.1 0.5 1.0 1.5 2 8 16

0.44454 0.76004 0.94516 1.06297 1.14433 1.47582 1.59049

0.44302 0.75984 0.94467 1.06186 1.14513 1.47445 1.59219

0.44418 0.75939 0.94632 1.06259 1.14441 1.47454 1.5921

0.44379 0.75951 0.94565 1.06253 1.14512 1.47428 1.59215

0.44341 0.75861 0.94574 1.0623 1.14577 1.47464 1.59171

fs 0.44396 0.75881 0.94593 1.0616 1.1436 1.47465 1.59233

0.44384 0.75954 0.94559 1.06142 1.14482 1.47513 1.59187

0.44442 0.76083 0.94602 1.06188 1.1433 1.47452 1.59185

0.44425 0.75988 0.9463 1.06191 1.14538 1.47395 1.59272

0.44532 0.75862 0.94771 1.0613 1.14409 1.475689 1.59201

f̄s 0.44407 0.75951 0.94592 1.06204 1.14459 1.47477 1.59194

is assumed to beS = a/b =⇒ a = S b. For the geometric
Buckling;B2 = (π/ a )2 +(π/ b )2 +(π/ a)2. Substituting
a = S b and for the minimum Buckling with constantV , one
has to consider the case:dB2/dS = 0. After some algebra
one findsS = 1 that satisfies the condition for critically. It
implies a = b = c, so the minimum critical volume gives
us a cubic shape for which we have found the same result as
shown in Table IV by using the MCM.

Critical size for a bare cylindrical reactor

Running our modified program for a finite cylinder of radius
r with height h, we first defineS = h/r. Following the
previous steps, we present our results from Table V to Ta-
ble VIII for cylinder system. In Table V, we present the effect
of “N ” for constant values ofS andM . If M andS are kept
constant, the effect ofN is not obvious in the calculation of

“f ” parameter. Therefore, we setS = 1 andN = 106 (as in
previous case) to observe the effect ofM . In Table VI it is
clearly seen that̄fs increases asM increases.

It is an expected result because most of neutrons in
greater volume (higher mass value) are highly absorbed and
they have less chance for leakage throughout the surface of
the shape. The effect ofS in the calculation off is shown in
Table VII. It is obvious that the value of̄fs increases in the
range betweenS = 0.1 andS = 1.5, and then it decreases
from S = 2 to S = 16. So, there should be a value between
S = 1.5 andS = 2.0 approaching the critically condition for
M = 1.

In Table VII, the massM is equal to1 and it is seen that
the mass must be increased to make the survival fractionsfs

be equal or greater than1 for constant value ofS. To find out
what the minimum critical mass for each value of the height-

TABLE VII. The relation betweenSandfs, for the finite cylinder.

3rd set (N = 106 andM = 1 are constants)

S 0.1 0.5 1.0 1.5 2 8 16

0.473204 0.833021 0.945162 0.974038 0.973057 0.789682 0.667238

0.473037 0.833278 0.944673 0.973834 0.972689 0.791315 0.666464

0.473429 0.831187 0.94639 0.975304 0.972443 0.789842 0.666526

0.474000 0.834288 0.945653 0.974584 0.971732 0.790225 0.667443

0.474007 0.833894 0.945749 0.974453 0.971965 0.790856 0.66776

fs 0.471869 0.833012 0.945933 0.974003 0.973622 0.789742 0.668019

0.472911 0.833061 0.945596 0.973749 0.972911 0.790628 0.666612

0.473482 0.832978 0.946023 0.974984 0.972269 0.789082 0.667165

0.473736 0.833592 0.94638 0.973228 0.972172 0.791213 0.666558

0.473801 0.83354 0.947706 0.974169 0.970597 0.790452 0.667485

f̄s 0.473347 0.833185 0.945926 0.974234 0.972345 0.790304 0.667127
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TABLE VIII. The relation among the parametersS, M andf̄s, for the finite cylinder.

N = 106

S M f̄s S M f̄s

0.1 27.991 1.001 2.6 1.200 1.001

0.2 8.200 1.000 2.7 1.220 1.003

0.3 4.260 1.000 2.8 1.240 1.001

0.4 2.790 1.001 2.9 1.260 1.001

0.5 2.100 1.000 3.0 1.270 1.001

0.6 1.750 1.001 3.1 1.290 1.001

0.7 1.550 1.001 3.2 1.310 1.002

0.8 1.400 1.001 3.3 1.320 1.001

0.9 1.310 1.001 3.4 1.340 1.001

1.0 1.250 1.002 3.5 1.360 1.001

1.1 1.210 1.002 3.6 1.380 1.002

1.2 1.180 1.001 3.7 1.400 1.002

1.3 1.160 1.003 3.8 1.410 1.000

1.4 1.140 1.001 3.9 1.430 1.000

1.5 1.140 1.002 4.0 1.460 1.002

1.6 1.130 1.002 4.1 1.480 1.002

1.7 1.130 1.002 4.2 1.490 1.001

1.8 1.120 1.000 4.3 1.510 1.001

1.9 1.130 1.003 4.4 1.530 1.001

2.0 1.140 1.002 4.5 1.550 1.002

2.1 1.150 1.002 4.6 1.570 1.000

2.2 1.150 1.001 4.7 1.590 1.001

2.3 1.160 1.001 4.8 1.610 1.000

2.4 1.170 1.002 4.9 1.630 1.001

2.5 1.180 1.001 5.0 1.640 1.000

TABLE IX. The relation betweenN andfs, for the spherical reactor whereM = 1 (R = 0.62035).

1st set (M = 1 andR = 0.62035)

N 102 103 104 105 106 107

1.11 1.081 1.0765 1.08025 1.079055 1.0795062

1.05 1.094 1.0829 1.07873 1.078407 1.0795276

1.08 1.075 1.0975 1.08197 1.080221 1.0798335

0.98 1.072 1.0697 1.07738 1.079912 1.0796746

1.01 1.074 1.0773 1.07759 1.080022 1.0797197

fs 1.23 1.088 1.0906 1.07516 1.078738 1.0797584

1.02 1.098 1.0706 1.07756 1.079784 1.0798805

0.99 1.113 1.0888 1.08207 1.079915 1.0799033

1.12 1.097 1.0835 1.07789 1.079364 1.0797344

0.89 1.071 1.083 1.08052 1.079512 1.0799324

f̄s 1.048 1.0863 1.08204 1.078912 1.079493 1.07974706
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TABLE X. The relation betweenM andfs, for the spherical reactor.

2nd set (N = 106 andr proportional toM )

M 0.1 0.5 1.0 1.5 2 8 16

0.50245 0.85972 1.07906 1.22369 1.32693 1.71484 1.81662

0.50230 0.85856 1.07841 1.22491 1.32702 1.71549 1.81686

0.50137 0.85993 1.08022 1.22434 1.32843 1.7141 1.81761

0.50203 0.85905 1.07991 1.22486 1.32756 1.71526 1.81713

0.50247 0.85819 1.08002 1.22377 1.32732 1.71596 1.81684

fs 0.50295 0.85932 1.07874 1.22291 1.32857 1.71641 1.8178

0.50268 0.85888 1.07978 1.22511 1.32756 1.71544 1.81753

0.50112 0.85902 1.07992 1.22361 1.32772 1.71567 1.81654

0.50261 0.85883 1.07936 1.22317 1.32825 1.71583 1.81748

0.50232 0.86017 1.07953 1.22423 1.32706 1.71533 1.81679

fs 0.50223 0.85918 1.07949 1.22406 1.32764 1.71543 1.81712

TABLE XI. The relation among parametersS, M andf̄s, for the spherical reactor.

N = 106

S M f̄s S M f̄s

0.01 0.133650 0.232794 2.51 0.843066 1.40785

0.11 0.297235 0.518616 2.61 0.854117 1.42043

0.21 0.368731 0.641612 2.71 0.864888 1.43242

0.31 0.419846 0.731956 2.81 0.875399 1.44579

0.41 0.460855 0.802502 2.91 0.885662 1.4569

0.51 0.495633 0.865500 3.01 0.895693 1.46772

0.61 0.526114 0.917306 3.11 0.905504 1.47775

0.71 0.553422 0.963154 3.21 0.915107 1.48938

0.81 0.578272 1.00713 3.31 0.924513 1.49851

0.91 0.601152 1.046452 3.41 0.933731 1.50809

1.01 0.622411 1.082393 3.51 0.942771 1.5174

1.11 0.642310 1.115561 3.61 0.951640 1.52693

1.21 0.661047 1.146565 3.71 0.960347 1.53269

1.31 0.678777 1.176063 3.81 0.968899 1.54129

1.41 0.695627 1.200577 3.91 0.977303 1.54837

1.51 0.711698 1.226552 4.01 0.985564 1.55774

1.61 0.727074 1.249039 4.11 0.993692 1.56304

1.71 0.741826 1.27203 3 4.21 1.001685 1.57081

1.81 0.756014 1.292766 4.31 1.009554 1.57512

1.91 0.769688 1.309722 4.41 1.017302 1.58301

2.01 0.782893 1.330617 4.51 1.024934 1.58908

to-radius ratio is and to know what the exact critical dimen-
sions of cylinder are, we modify our code for cylinder system
and present our results in Table VIII for a range ofS from 0.1
to 5.0 with corresponding critical massM satisfying the con-
dition f ≥ 1.0. It is seen in Table VIII that the minimum
critical mass is obtained whenS = h/r = 1.8.

As we show for parallelepiped, the volume of the cylin-
der shape isV = π r2 × h and the height to radius ratio is
S = h/r. Substitutingh = S × r in B2

g of cylinder shape,
and then definingr =

√
V/πH and considering the case

dB2/dS = 0 one findsS = 1.82 that satisfies the mini-
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mum critical mass. The modified MCM program developed
in MathematicaTM for the case of the bare cylinder is pre-
sented in Appendix as an example of the work carried out
for the interested readers.

Critical size for a bare spherical reactor

In the determination of the critical size of a spherical reactor,
there is a direct connection between the mass and the radius
of sphere. Therefore, the change in the mass changes the ra-
dius (or vice versa) until it satisfiesf ≥ 1.0. Following the
same procedures in the previous sections, we present our re-
sults in Tables IX and X. As seen in Table IX,N has no direct
effect on values off . Since we setM = 1, the results show
that the system is almost critic. Therefore we can search for
which mass (or radius) value is the most appropriate one. The
system will become critical via changing the massM (or ra-
dius). We setN = 106 and show our results in Table X. The
effect of increase in the mass can be observed clearly on the
value of f̄s: It is seen that the minimum critical mass is be-
tweenM = 0.5 andM = 1. In summary, the increase in the
volume of core will subsequently leads to the increase in the
value of survival fraction because of decrease in number of
leakage neutrons. To find out the minimum critical mass for
the spherical system, we run our code for different values of
S from 0.01 to 4.51 through the survival fractions whenf to
be equal or greater than one. We present results in Table XI.

Conclusion

In this paper, we show a simple application of MCM to cal-
culate the minimum critical size condition satisfied for a hy-
pothetical fissile material in three different geometries: For
the bare rectangular-parallelepiped shape, we find that the
minimum critical size condition exists whenS = a/b =
1.0 which is in the shape of a cube. For the bare finite-
cylinder, the minimum critical mass requires the condition
S = H/R ' 1.8. For the bare spherical system, the mini-
mum critical size is obtained when the radius of the sphere
is equal to0.57. These results are in agreement with those
of neutron diffusion equation for Zero Boundary Flux in the
determination of the minimum critical mass calculations for
dB2/dS = 0.

One can also conclude throughout these results that the
most optimum shape for the minimum critical size condition
is the spherical one.

As a future study, one can repeat these calculations for
the Extrapolated Boundary Flux in other geometries. Our ap-
proach can also be modified by considering the energy of
neutrons, corresponding cross-section values of target ele-
ment and other parameters such as mean-free path etc. The
calculation of the critical mass in such simple reactor geome-
tries with reflectors can also be studied for future studies.
Thus, it would be very good opportunity to compare the re-
sults of systems without/with reflectors, which are good ma-
terials at reducing the amount of fuel element required for

the core to become critical. Finally, there is also possibility
to modify our approach to determine the critical mass in other
particular geometries and to compare results among them.

Appendix

A. Example program for bare-cylinder reactor
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