Comparison of cooperative learning types in physics teaching: a short literature review

A. Aprilia^{*a*} and W. S. Brams Dwandaru^{*b*}

 ^a Magister of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia.
^b Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia.

Received 2 December 2023; accepted 11 May 2024

A short literature review has been carried out on the comparison of cooperative learning types in physics learning. The purpose of this literature review is to discuss the type of cooperative learning that is effectively used in terms of the dependent variable measured. The method used in this study is literature review. Literature review is conducted by searching for keywords related to the theme raised. This keyword search is done through Google Scholar, Base, and Core search engines. A number of 27 articles have been retrieved that match the keywords and have been screened with limitation on the year of publication, namely the last 10 years. Through this literature review, it is obtained that the effective type of cooperative learning used depends on the measured (dependent) variables. The GI type of cooperative learning model is more effective for improving physics learning outcomes, scientific attitudes, and learning activities. The STAD type is better at increasing students' learning motivation and cognitive learning outcomes. The NHT type is better at improving students' affective, cognitive learning outcomes, and critical thinking skills. The Jigsaw type is effective in improving problem-solving abilities, performance, attitude, and retention in physics.

Keywords: Cooperative learning; cooperative learning types comparison; physics learning.

DOI: https://doi.org/10.31349/RevMexFisE.22.010216

1. Introduction

Physics is a subject that studies natural phenomena and is related to the application of various scientific concepts. Studying physics is important as a means to develop thinking skills and their applications that can be found in everyday life. The findings from the application of physics can be learned by students through the learning process in class. The physics learning process becomes more meaningful when the teacher is able to present the learning process in accordance with the demands of the curriculum [1]. These demands are to create learning activities by involving the active role of students so that they have adequate knowledge and skills [2]. This leads to a change in the learning paradigm, which is originally a teacher-centered to student-centered learning process [3].

The learning model applied in the classroom is one of the factors that influence the learning process [4,5]. The learning and management models used by the teacher greatly influences the quality of learning from the aspect of student activity. The quality of learning includes activeness, enthusiasm for learning, motivation to learn, self-confidence, and learning outcomes [6,7].

One of the learning models that can be applied in the learning process is the cooperative learning model [8]. In principle, cooperative learning is a method whereby students work together in (small) groups to achieve common and also individual learning goals. This method is recommended to be applied in physics learning as it embodies many advantages, including foster physics learning and critical thinking skills, develop communication skills, improve self-regulated learning, and promote academic motivation [9]. However, there are also challenges facing this method, *i.e.*: time-consuming, lack of cooperative skills, and solution dependence upon the group [9]. As there are many kinds of group activities and ways in manifesting the cooperative activities, hence it is natural that there are many types of cooperative learning model, such as student teams' achievement division (STAD), think pair share (TPS), jigsaw, numbered head together (NHT), teams' games tournament (TGT), group investigation (GI), two stay two strays (TSTS), make a match (MaM), example non example (ENE), and snowball throwing (ST).

There have been many studies that discuss the implementation of cooperative learning models. However, several findings were obtained in the form of comparisons between two and three types of cooperative learning models. Therefore, a literature study is carried out to compare ten types of cooperative learning that are applied in physics teaching. Thus, the purpose of this literature review is to discuss the type of cooperative learning that is effectively used in terms of the dependent variable measured.

2. Research method

The research design used was a literature review. A literature review study is a method used to collect data sources on a particular topic. Literature review is a systematic, explicit, and reproducible method. The use of the literature review method was to identify, evaluate, and synthesize research results and

Title	Methods	Findings	Year
Differences in student learning outcomes	The research method was quasi-	The findings showed that there	2017
using the TPS cooperative learning model	experimental. The physics topic	were significant differences in	
with the TSTS type in class XI IPA SMA	used was fluid dynamics.	learning outcomes using the TPS	
Negeri 4 Banjarmasin.		and TSTS cooperative learning types.	
		Based on the findings, learning using	
		the TPS had higher learning outcomes	
		than using the TSTS.	
Differences in the effect of STAD	The research method used was	Based on the findings, it was found	2015
type and jigsaw type cooperative	quasi-experimental. The dependent	that students who were taught	
learning model on physics learning	variables studied were student	using the STAD type produced higher	
outcomes in view of student	motivation and physics learning	who were taught using the jigsaw	
learning motivation.	outcomes compared to students	type. However, the interactions and	
	outcomes in the sound topic.	links between learning motivation	
		and learning models do not appear	
		in the learning outcomes	
		obtained by students.	
Comparison of physics learning	The research method used was	The findings showed that there were	2020
outcomes for class X students	comparative with experimental	significant differences in student	
using the GI and TPS learning	method. The physics topics used	learning outcomes between the GI	
models at Purwodadi High School.	were energy and electric power.	and TPS types in the topics of	
		energy and electrical power in	
		class X Public Senior High School	
		Purwodadi. The results of studying	
		physics using the GI type was	
		significantly higher than the TPS type.	

TABLE I. Examples of high relevant articles in a synthesis matrix

thoughts of previous researchers [10]. The review results in this study went through four stages, namely (1) selecting topics to be reviewed, (2) tracing and selecting relevant articles, (3) analyzing and synthesizing articles, and (4) organizing the review article. The collection of literature sources was obtained from various sources through studies of National and International journals by utilizing Google Scholar, Base, and Core search engines. The keywords entered included: cooperative learning model, types of cooperative learning, and comparisons of cooperative learning types. 27 articles were found that match the keywords and have been screened with a limitation on the year of publication, namely the last 10 years. The articles used were selected and synthesized with high relevance for review. The article synthesis technique used a synthesis matrix. The synthesis matrix was used to organize literature sources and interpret them with a unique integration of research findings. Examples of articles with high relevance were given in Table I.

3. Results and analysis

Here, we loosely compare ten types of cooperative learning model, *i.e.*, STAD, TPS, jigsaw, NHT, TGT, GI, TSTS, MaM,

ENE, and ST. Hence, a pie chart of the ten types of cooperative learning model is obtained based on Google Scholar, Base, and Core search engines. The pie chart of the number of search results for the ten types of cooperative learning model can be observed in Fig. 1.

Based on the literature review and Fig. 1, it can be shown that the types of cooperative model that are widely used in physics learning are the ENE and GI types. Both have the largest percentage of the ten types of cooperative learning

FIGURE 1. Number of search results for cooperative learning model types.

TABLE I	I. The synthe	sis results.	
No	Authors	Methods	Findings
1	[11]	The research method was quasi-	The findings showed that there were significant differences
		experimental. The physics topic	in learning outcomes using the TPS and TSTS types. Based
		was fluid dynamics.	on the findings, learning using the TPS type had higher learning
			outcomes than using the TSTS type.
2	[12]	The method used in this study was	The findings showed that the increase in student learning
		the experimental method. The	outcomes in physics at SMA PGRI 2 Palembang using the
		sample in this study was obtained	NHT type was higher than the STAD type.
		using the purposive sampling. The	
		physics topic used was	
		straight motion.	
3	[1]	The research method used was	It was found that students who were taught using the STAD type
		quasi-experimental. The dependent	produced higher learning outcomes compared to students who
		variables were student motivation	were taught using the jigsaw type. However, the interactions and
		and physics learning outcomes in	links between learning motivation and learning models did not
		the sound topic.	appear in the learning outcomes obtained by students.
4	[13]	The research method used was	The findings showed that there were significant differences in
		quantitative method using experiments.	physics learning outcomes between STAD and TGT types in
		This study used the pretest	class VIII Air Lesing Public Junior High School. In general, the
		-posttest control group design.	learning outcomes of students who were taught using the
		The physics topics used were	STAD type were better.
		vibrations and waves.	
5	[14]	This was an experimental study.	The findings showed that STAD and jigsaw types have different
		The research design used was the	effectiveness effects on students' problem-solving abilities. The
		nonequivalent pretest-posttest	jigsaw type had more influence on the effectiveness of the
		control group design.	learning process compared to the STAD type.
6	[15]	The research method used was	The findings showed that there was no difference in the effect
		the experimental method. Sampling	of using the jigsaw and TGT types on physics learning outcomes.
		was done by means of cluster random	In addition, there was no difference between the jigsaw and TGT
		sampling. The physics topic	types concerning higher order thinking skills (HOTS).
		used was light.	
7	[4]	This research method used was	The findings showed that there was a significant increase in
		quantitative approach with descriptive	students' critical thinking skills with the jigsaw and TSTS types.
		and comparative research type.	However, there was no significant difference in the critical thinking
		The physics topic used was	skills of students taught by the jigsaw and TSTS types.
		elasticity.	
8	[16]	This research method used was	The findings showed that there was a significant difference
		experimental with posttest-only	between the TPS and TGT types. The TGT had a higher score
		control research design. The	compared to TPS in improving physics learning achievement.
		physics topic used was	
		temperature and heat.	
9	[17]	The method used in this study was	The findings showed that there was no difference in the
	- 4	quantitative method. The	learning outcomes of students taught using the jigsaw
		- experimental approach was used. The	and STAD types.
		physics topic used was elasticity	

No	Authors	Methods	Findings
10	[18]	The method used was quasi-	The findings showed that the jigsaw type was more
		experimental with a research	influential on students' cognitive learning outcomes
		design of matched group (M-G)	compared to the MaM type.
		pattern experiment.	
11	[19]	The method used was the experimental	The results showed that the learning outcomes of
		method. The research design	cognitive physics with the STAD type were higher
		used was posttest only control	than the TSTS type.
		group design. The physics topic	
		used was straight motion.	
12	[5]	The research method used was the	The findings showed that the cognitive, affective, and
		quantitative approach with descriptive	psychomotor learning outcomes of students with the jigsaw
		and comparative research type.	and TSTS types had increased. However, there was no
		The research design used was the	significant difference between students who used the jigsaw
		static group pretest-posttest design.	and TSTS in cognitive, affective, and psychomotor learning
		The physics topic used was elasticity.	outcomes.
13	[20]	The research method used was	The findings showed that there was no significant difference in
		the pre-experimental method.	the ability to cooperate and think creatively by applying the TPS
			and TSTS types. Both were included in the high category,
			meaning that they were able to improve the abilities to
			cooperate and think creatively.
14	[21]	This study used the experimental	The findings showed that there were influences of the NHT,
		research method. The experimental	ENE, and ST types on the learning outcomes of students'
		design used was quasi-experimental	cognitive and affective aspects. Each class with each learning
		with pretest-posttest control group	model had seen an increase in cognitive and affective aspects.
		design. The learning model used	I he learning model that had the most influence on the achievement
		was the NH1, ENE, and S1 types.	of learning outcomes in the cognitive aspect was the NH1
			rollowed by the ENE, and influence on the schievement of
			affective aspect learning outcomes was the NHT
			followed by the ST and finally the ENF
15	[22]	This study used the quasi-	STAD jigsaw II and TGT were considered effective to improve
15	[22]	experimental method with	the achievement and understanding of physics concepts. The
		qualitative data correlation.	concept of systematic learning, theoretical explanation.
		1	discussion of questions, and evaluation also influenced the
			increase in understanding of the concept of physics.
16	[23]	This study used a quasi-	The GI and NHT types can improve learning outcomes.
		experimental method.	The GI had a higher score than the NHT model.
17	[24]	The research method used was a	The findings showed that there were significant differences
		comparative study with experimental	in student learning outcomes between the GI and TPS types
		research method. The physics	in the topics of energy and electrical power in class X of
		topics used were energy	Purwodadi Public Senior High School. The results of studying
		and electric power.	physics using the GI type was significantly higher than
			the TPS type.
18	[25]	The research method used in this	The findings showed that there were differences in physics
		research was the posttest only	learning outcomes in class X between those taught using
		control group. The physics topic	GI and TSTS. The average results of the GI class were greater
		being taught was optical	than those of the TSTS classes.
		instruments.	

No	Authors	Methods	Findings
19	[26]	This research method used a quasi-	The findings showed that there were differences in the learning
		experimental design with a counter	outcomes of students taught by GI and STAD. The results of
		balanced design.	studying physics using the GI type were higher than
			the STAD type.
20	[27]	This was quantitative research	The findings showed that there were differences in the effect
		using the experimental method.	of the GI and STAD on students' physics learning achievement
		The physics topic used was	on the topic of optical instruments. Learning by using GI
		optical instruments.	provided higher physics learning achievement results compared
			to STAD. However, there was no interaction between the
			cooperative learning model and scientific attitudes towards
			student achievement.
21	[28]	This research used the	The findings showed that the GI had a better influence
		experimental method. The physics	on students' physics cognitive abilities on the topic of
		topic used was motion.	motion than the STAD.
22	[29]	The research method used was the	The findings showed that there were significant differences
		randomized control group pretest-	in students' critical thinking skills between students who were
		posttest design. The physics	taught using the NHT and GI. The results showed that the
		topics used were elasticity	NHT produced higher scores than GI.
		and Hooke's law.	
23	[30]	The method used in this study	The findings showed that students taught with STAD
		was the pretest-posttest	and LTM both significantly and effectively improve academic
		experimental group design.	achievement, retention, and student learning motivation.
24	[31]	The method used was a quasi-	This study had delved into three types of computer-supported
		experimental study using a non-	cooperative learning strategies, i.e., STAD, jigsaw II, and TAI
		randomized and non-equivalent	as a way to overcome poor performance in physics at the senior
		pretest-posttest control	secondary school level in Nigeria. All three computer-supported
		group design.	cooperative learning strategies had a positive effect on student
			attitudes towards physics compared to individualized computer
			instruction (ICI). However, jigsaw II is the only computer
			supported cooperative learning strategy to have a positive
			effect on student performance compared to ICI. Furthermore,
			cooperative learning strategies did not
			increase retention compared to ICI.
25	[32]	The study was based on quantitative	The findings showed that for effective teaching, both
		approach and the pretest-posttest	cooperative learning types <i>i.e.</i> : STAD and jigsaw II proved to be
		control group design was used.	better than the traditional method of teaching. It was inferred
			that these techniques enhance learning. It provided more interaction,
			cooperation, and made students more active. It was seen that students
			taught through cooperative learning techniques showed better
			results in their overall academic performance as compared to the
			students of the control group. All students including high and
			low-achievers of treatment and comparison groups were found
			to be significantly different in the posttest.
26	[33]	The research design used was	The results appeared to show a better improvement in students'
		quasi-experimental with crossover-	achievement in the more structured individual responsibility
		repeated measurements design	(Jugsaw type) group compared to the least structured
		within two sessions.	individual responsibility (STAD type) group.

No	Authors	Methods	Findings
27	[34]	A quasi-experimental study of	Findings indicated that there was a significant difference in
		of a non-randomized and non-	the performance of the groups. In addition, students' gender had
		equivalent pretest-posttest control	no influence on their performances. Achievement levels had
		group design was employed in this	significant influence on students' performance in cooperative
		study. The physics topics used were	settings. STAD and jigsaw II computer-supported cooperative
		equilibrium of forces and simple	strategies were more effective in teaching the equilibrium of
		harmonic motion.	forces and simple harmonic motion concept of physics.

No	Authors	Comparison Results	Dependent Variables
1	[11]	TPS > TSTS	
2	[12]	NHT > STAD	-
3	[13]	STAD > TGT	-
4	[17]	jigsaw = STAD	-
5	[23]	GI > NHT	Physics learning outcomes
6	[24]	GI > TPS	-
7	[25]	GI > TSTS	-
8	[26]	GI > STAD	-
9	[5]	jigsaw = TSTS	-
10	[1]	STAD > jigsaw	Students learning motivation
11	[14]	jigsaw > STAD	Physics problem-solving skills
12	[15]	jigsaw = TGT	HOTS
13	[4]	jigsaw = TSTS	Critical thinking skills
14	[16]	TGT > TPS	Physics learning achievements
15	[18]	jigsaw > MaM	Cognitivo looming outcomos
16	[19]	STAD >TSTS	Cognitive learning outcomes
17	[20]	TPS = TSTS	Creative thinking and collaboration skills
18	[21]	NHT > ENE > ST	Affective and cognitive learning outcomes
19	[22]	STAD = jigsaw = TGT Achievement of students on scie	
20	[27]	GI > STAD	Scientific attitude
21	[28]	GI > STAD Learning activity	
22	[29]	NHT > GI	Critical thinking skills
23	[30]	STAD = LTM	Achievement and motivation in physics
24	[31]	jigsaw > STAD = TAI	Performance, attitude, and retention in physics
25	[32]	STAD = jigsaw	Performance in physics
26	[33]	jigsaw > STAD Achievement in learning science	
27	[34]	STAD = jigsaw Performance in physics	

Note: ">" means perform better than; and "=" means perform equally well with.

model, namely 46% for the ENE type and 36% for the GI type. The least percentage is the ST type learning model with a percentage of 0.1%. In this case, it can be implied that the ENE and GI types of cooperative learning model are more familiar and often used in schools, especially in physics learning. From Fig. 1, we then focus on a smaller number of 27 articles, which discuss the comparison of the aforementioned ten cooperative learning types added with two additional types, *i.e.*, team assisted individualization (TAI) and learning together model (LTM). These articles are then synthesized but not limited upon the percentage obtained for each type of cooperative learning in Fig. 1. The results of the synthesis can be observed in Table II. Hence, the "Findings" on the fourth column of Table II show the comparison results of various cooperative learning types depending upon the dependent variables studied.

Based on the details of the comparison results in Table II, several findings are obtained concerning some types of cooperative model that have been studied. The GI type is more effectively used to improve learning outcomes [23-26], scientific attitudes [27], and learning activities [28] compared to other types of cooperative models. In the GI type, the steps taken using this model are very good and detailed, including choosing a topic; cooperative planning; implementation; analysis; and presentation. In this case, learning becomes student-centered so that students play an active role during learning in solving problems, making decisions, researching, and presenting. Thus, it can improve learning outcomes, scientific attitudes, and student learning activities. The STAD type of cooperative learning model is better at increasing student learning motivation [1] and cognitive learning outcomes [19]. In the STAD type cooperative learning model, the teacher guides students to master the subject matter and then discussions are held with students who are good at explaining to the group members who do not understand so that this type of learning can increase students' motivation. In addition, the implementation of STAD makes students play an active role in expressing their ideas and opinions, so that students can improve their cognitive learning outcomes. Furthermore, the NHT type cooperative learning model is better at improving students' affective and cognitive learning outcomes [21] and critical thinking skills [29]. The NHT type learning model makes students to be serious in conducting discussions. This causes the value of cooperation, which is part of the affective aspect, to be higher because students share knowledge with each other to understand the material, which can improve students' cognitive outcomes. In addition, the NHT learning model is a model with simple stages so that it can be applied properly in learning, especially in improving students' critical thinking skills. Finally, the jigsaw cooperative learning model is effective in improving problem-solving abilities [14], performance, attitude, and retention in physics [31]. In this case, the jigsaw type requires students to be a good communicator to convey information to other students. Hence, performance and attitude of students in physics learning are improved. Therefore, the description above shows that the effectiveness of using each type of the cooperative learning model does not depend on the physics topic taught by the teacher, but it is influenced by the dependent variable to be measured.

Moreover, we summarize the findings obtained from the 27 articles that are appropriate and relevant to the topics discussed. Here, we directly compare two or more types of cooperative learning model based on the dependent variables. The comparison results can be observed in Table III. On the dependent variable of physics learning outcomes, it may be observed that the best used cooperative learning type is the GI. This is because the GI is one of the simplest types of cooperative learning to be conducted, which emphasizes heterogeneity, democracy, and the ability of the individual member in a group. Other dependent variables also show different results for different type of cooperative learning conducted. However, more comparisons of the types of cooperative learning are needed for these dependent variables so as to obtain the best type of cooperative learning used for each dependent variable.

4. Conclusion

A short literature review on the comparison of the types of cooperative learning model has been carried out. There are ten types of cooperative learning model that have been studied, namely STAD, TPS, jigsaw, NHT, TGT, GI, TSTS, MaM, ENE, and ST. The findings show that the performance of each cooperative learning type depends on the measured variables (dependent variables). The GI type of cooperative learning model is more effective for improving physics learning outcomes, scientific attitudes, and learning activities. The STAD type of cooperative learning model is better at increasing student learning motivation and cognitive learning outcomes. The NHT type cooperative learning model is better at improving students' affective, cognitive learning outcomes, and critical thinking skills. Furthermore, the jigsaw cooperative learning model is effective in improving problem-solving abilities, performance, attitude, and retention in physics. More comparisons of the cooperative learning types are needed to determine the best type of cooperative learning for each dependent variable. Finally, it is recommended for future studies to make ST as a new line of research as it is the least used type of the cooperative learning model.

Acknowledgements

The authors would like to thank the Faculty of Mathematics and Natural Sciences, UNY, for supporting this study.

- A. Doyan *et al.*, Perbedaan Pengaruh Model Pembelajaran Kooperatif Tipe Stad Dan Tipe Jigsaw Terhadap Hasil Belajar Fisika Ditinjau Dari Motivasi Belajar Siswa, *Jurnal Penelitian Pendidikan IPA* 1 (2015), https://doi.org/10.29303/ jppipa.vlil.l.
- 2. B. A. Sumantri, Pengembangan kurikulum di Indone-

sia menghadapi tuntutan kompetensi abad 21, At-Ta'lim: *Media Informasi Pendidikan Islam* **18** (2019) 27, https://ejournal.uinfasbengkulu.ac.id/ index.php/attalim/article/view/1614.

3. I. P. A. Sudana and I. G. A.Wesnawa, Penerapan model pembelajaran kooperatif tipe STAD untuk meningkatkan hasil belajar IPA, Jurnal Ilmiah Sekolah Dasar 1 (2017) 1, https: //doi.org/10.23887/jisd.v1i1.10128.

- 4. M. Anwar, H. Yuliani, and S. F. Fatmawati, Perbandingan Model Pembelajaran Kooperatif Tipe Jigsaw dan Tipe Two Stay Two Stray terhadap Kemampuan Berpikir Kritis Siswa pada Materi Elastisitas, Jurnal Riset Fisika Edukasi dan Sains 5 (2018) 47, https://doi.org/10.22202/ jrfes.2018.v5i2.2750.
- 5. M. Anwar, H. Yuliani, and S. F. Fatmawati, Perbandingan Model Pembelajaran Kooperatif Tipe Jigsaw dan Tipe Two stay Two Stray Terhadap Hasil Belajar Siswa Pada Materi Elastisitas, EduFisika: *Jurnal Pendidikan Fisika* 3 (2018) 13, https: //doi.org/10.22437/edufisika.v3i02.5334.
- Z. K. Prasetyo, D. Rosana, and I. Wilujeng, Berbagai bentuk metode resitasi pada peningkatan kualitas pembelajaran fisika di SMA, *Jurnal Pendidikan Matematika dan Sains* 1 (2013) 8, https://journal.uny.ac.id/index. php/jpms/article/view/12472.
- D. Telaumbanua, Analisis kualitas pembelajaran dan hasil belajar fisika, *Educativo: Jurnal Pendidikan* 1 (2022) 278, https: //doi.org/10.56248/educativo.vlil.38.
- D. A. Kurniawan *et al.*, Assessing Students' Attitudes towards Physics through the Application of Inquiry and Jig-saw Cooperative Learning Models in High Schools., *Int. J. Instr.* 14 (2021) 439, https://doi.org/10.29333/iji.2021.14426a.
- M. R. Keramati and R. M. Gillies, Advantages and Challenges of Cooperative Learning in Two Different Cultures, *Educ. Sci.* 12 (2022) 3, https://doi.org/10.3390/ educsci12010003.
- C. Okoli and K. Schabram, A Guide to Conducting a Systematic Literature Review of Information Systems Research., *Communications of the Association for Information Systems* 37 (2015) 879,
- N. Rozaiah, M. Wati, and M. Mastuang, Perbedaan Hasil Belajar Siswa Menggunakan Model Pembelajaran Kooperatif Tipe Think Pair Share (TPS) Dengan Tipe Two Stay Two Stray (TSTS) Pada Kelas XI IPA SMA Negeri 4 Banjarmasin, *Jurnal Ilmiah Pendidikan Fisika* 1 (2017) 24, https://doi. org/10.20527/jipf.vli1.926.
- 12. N. N. Wigati, S. Supardi, and A. Zulkarnain, Perbandingan Hasil Belajar Menggunakan Model Pembelajaran Kooperatif Tipe Numbered Head Together (NHT) Dengan Model Pembelajaran Kooperatif Tipe Student Teams Achievement Division (STAD) Pada Pelajaran Fisika Di SMA PGRI 2 Palembang, *In Seminar Nasional Pendidikan IPA Tahun 2021*, 1 (2017) 72.
- T. Ariani and D. Agustini, Model Pembelajaran Student Team Achievement Division (STAD) dan Model Pembelajaran Teams Games Tournament (TGT): Dampak terhadap Hasil Belajar Fisika, *Sci. Phys. Edu. J.* 1 (2018) 65, https://doi.org/ 10.31539/spej.vli2.271.
- A. S. Rahmawati and Y. E. Ika, Perbedaan keefektifan model pembelajaran kooperatif tipe stad (students teams achievement division) dan jigsaw terhadap kemampuan pemecahan masalah pada pembelajaran fisika, *Jurnal Pendidikan Fisika dan Teknologi* 6 (2020) 162, https://doi.org/10. 29303/jpft.v6i1.1661.

- 15. S. Sunardi, J. Handhika, and M. Sasono, Efektivitas pembelajaran kooperatif learning tipe jigsaw Dan TGT ditinjau dari kemampuan berpikir tingkat tinggi, *In Prosiding SNPF (Seminar Nasional Pendidikan Fisika*) (2017) 230, https://doi. org/10.2573/snpf.v0i0.1691.
- M. A. Sunni and A. V. Islami, Perbedaan Pembelajaran Kooperatif tipe TPS dan TGT terhadap Prestasi Belajar Fisika SMK Al Amin Kilang, *EDISI* 3 (2021) 169, https://doi.org/ 10.36088/edisi.v3i1.1235.
- N. Hanifah, Perbedaan hasil belajar materi elastisitas melalui model pembelajaran kooperatif tipe jigsaw dan student archievment division (STAD) siswa kelas X SMA Negeri 5 Banda Aceh, Jurnal Ilmiah Mahasiswa Pendidikan Fisika 1 (2016) 67.
- N. M. Uki and A. B. Liunokas, Pengaruh model pembelajaran kooperatif tipe Jigsaw dan Make A Match terhadap hasil belajar kognitif siswa, *Jurnal Basicedu* 5 (2021) 5542, https: //doi.org/10.31004/basicedu.v5i6.1363.
- 19. R. Siagian, I. M. Astra, and E. Budi, Perbandingan Hasil Belajar Fisika Menggunakan Model Pembelajaran Kooperatif Tipe Student Team Achievement Division (STAD) dengan Two Stay Two Stray (TSTS) pada Pokok Bahasan Gerak Lurus di Kelas VII SMP N 117 Jakarta, *In Prosiding Seminar Nasional Fisika*, 5 (2016) 51, https://doi.org/10. 21009/0305010309.
- 20. R. Riska, S. Safei, and A. Afiif, Perbandingan Kemampuan Kerjasama dan Berpikir Kreatif Peserta Didik Melalui Penerapan Model Kooperatif Tipe Think Pair Share dan Model Kooperatif Tipe Two Stay Two Stray, JPF (*Jurnal Pendidikan Fisika*) Universitas Islam Negeri Alauddin Makassar 3 (2015) 68, https://doi.org/10.24252/jpf.v3i1.4102.
- 21. N. F. Eryanti and Supahar, Pengaruh Model Pembelajaran Kooperatif Terhadap Hasil Belajar Fisika Aspek Kognitif dan Afektif Peserta Didik Kelas X SMA N 2 Bantul, *Jurnal Pendidikan Fisika* **6** (2017) 562.
- D. Jauhariyah *et al.*, Cooperative learning implementation to improve an achievements of students on science competition, *J. Adv. Sci. Math. Edu.* 1 (2021) 53, https://doi.org/10. 58524/jasme.vli2.39.
- 23. S. Hakim, E. Effendi, and W. Widayanti, Perbandingan Model Group Investigation dan Number Head Together: Analisis terhadap Hasil Belajar, U-Teach: *J. Educ. Young. Phys. Teach.* 1 (2020) 11, https://doi.org/10.30599/uteach. vli1.18.
- T. Ariani and N. Fitriyani, Perbandingan hasil belajar fisika siswa kelas X dengan menggunakan model pembelajaran Group Investigation dan Think Pair Share di SMA negeri purwodadi, *Pancaran Pendidikan* 5 (2017) 179,
- 25. A. Zahroni, M. Betty Zelda Siahaan, and C. Rustana, Perbandingan Hasil Belajar Fisika Siswa Kelas X Yang Diajarkan Model Group Investigation Dengan Model Two Stay Two Stray, *In Prosiding Seminar Nasional Fisika*, 4 (2015) 79,
- H. Aziz *et al.*, Perbandingan Hasil Belajar Fisika Antara Model Gi Dengan Stad Melalui Metode Eksperimen, Jurnal Pembelajaran *Fisika Universitas Lampung* 2 (2014) 119505.

- 27. N. Listantia, B. D. Hardianti, and T. A. Safitri, Pengaruh Model Pembelajaran Kooperatif Tipe GI (Group Investigation) Dan STAD (Student Team-Achievement) Pada Pembelajaran IPA (Fisika) ditinjau Dari Sikap Ilmiah, TIRAI EDUKASI: Jurnal Pendidikan 5 (2022) 149, https://doi.org/10.37824/ tirai.v5i2.2022.415.
- A. Y. R. Wulandari, Pengaruh Pembelajaran Kooperatif Tipe Student Team Achievement Division (STAD) dan Group Investigation (GI) Ditinjau Dari Aktivitas Belajar, *Jurnal Pena Sains* 1 (2014) 36, https://doi.org/10.21107/jps. vli2.1337.
- N. D. N. Bano, A. Supu, and V. Lantik, Penerapan Model pembelajaran Numbered Heads Together (NHT) dan Model Pembelajaran Group Investigation (GI) untuk Meningkatkan Kemampuan Berpikir Kritis Siswa Kelas XI IPA SMA N 5 Kupang, Edufisika: *Jurnal Pendidikan Fisika* 4 (2019) 56, https://doi.org/10.22437/edufisika.v4i02.7652.
- I. A. Gambrari, M. O. Yusuf, and D. A. Thomas, Effects of Computer-Assisted STAD, LTM and ICI Cooperative Learning Strategies on Nigerian Secondary School Students' Achievement, Gender and Motivation in Physics., *Malays. Online J. Educ. Sci.* 3 (2015) 11.

- A. I. Gambari and M. O. Yusuf, Relative effectiveness of computer-supported Jigsaw II, STAD and TAI cooperative learning strategies on performance, attitude, and retention of secondary school students in physics, *J. Peer Learn.* 10 (2017) 76.
- 32. S. Jabeen, T. Kalsoom, and A. Khanam, Cooperative Learning Instructional Method: Influence on Secondary School Students' Academic Performance in Physics, Int. J. Manag. 11 (2020) 1627, https: //iaeme.com/MasterAdmin/Journal_uploads/ IJM/VOLUME_11_ISSUE_8/IJM_11_08_145.pdf.
- F. Nugraha, P. Siahaan, and D. Chandra, The effect of structured individual responsibility on students' achievement increase in cooperative learning science class, *J. Phys. Conf. Ser.*, **1157** (IOP Publishing, 2019) p. 032066, https://doi.org/10.1088/1742-6596/1157/3/032066.
- I. A. Gambari and M. O. Yusuf, Effects of Three Cooperative Learning Strategies on the Performance of Secondary School Students in Physics, *Chemistry: Bulgaria J. Sci. Edu.* 23 (2014).