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Gravity train of variable mass
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The gravity train is a hypothetical vehicle that travels in a tunnel across Earth, and its motion due to only gravity is a simple harmonic
oscillator. It can travel at a constant velocity by appropriately exhausting fuel. In this case, the train obeys the equation of motion for
a variable mass system. We discuss the mass and energy reduction of the gravity train during travel and find the optimal conditions for
economical travel. This study is suitable for university students in physics classes.
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1. Introduction

If there is a tunnel across the Earth of constant density and
a train moves through the tunnel due to gravity, it moves as
a harmonic oscillator because the gravitational force is pro-
portional to the distance from the center of Earth. This train
(the gravity train) travels between any two points on the sur-
face of Earth in about 42 minutes [1]. Many authors have
studied this classical problem so far. The brachistochrone for
the gravity train is a hypocycloid [2], and a non-uniform as-
sumption of Earth reduces the travel time [3]. The rotation
of Earth [4], the relativistic effects [5], and the drag and con-
tact friction effects [6] were also discussed. Reference [7] is
a worthy note on the history of the gravity tunnel.

Let us consider the motion of the gravity train with a con-
stant velocity. Appropriately exhausting fuel can control to
keep the velocity of the gravity train. However, it causes the
mass reduction of the gravity train. If an object of massm
moves like a rocket with exhausting fuel of the relative ve-
locity ~u, the following equation of motion for a variable mass
system can describe its motion:

m
d~v

dt
= ~F + ~u

dm

dt
, (1)

where ~F is the external force exerted on the system. This
problem has been discussed in the context of physics educa-
tion by many authors [8–11].

In this manuscript, we consider the motion of the gravity
train with a constant velocity. The force~F in Eq. (1) is the
gravitational force exerted on the train, which obeys Hooke’s
law. The condition ofd~v/dt = 0 is satisfied by appropri-
ately exhausting fuel forward or backward during its motion.
Thus, university students can readily solve Eq. (1) and find
the mass (fuel) reduction rate of the travel. They can find the
most economical way by solving the extreme value problem.
This study will be suitable for university students in physics
courses.

2. Theoretical studies

Consider a train traveling from point A to point B through the
center of Earth, point C, due to gravity as shown in Fig. 1. We
assume that Earth is a sphere of radiusR = 6.37 × 106 m
with uniform density. The gravitational force acting on the
train of massm is F = −mω2x, whereω =

√
g/R and

g = 9.81 m/s2 is the gravitational acceleration. The train
moves at a constant velocityv0 by exhausting fuel like rocket
propulsion. The train reduces massdme = −dm by exhaust-
ing forward (in the positive direction ofx) or backward (in
the negative direction ofx) at a constant relative speedu to
maintain its velocity. From Eq. (1), the equation of motion
for the train is

0 = −mω2x + εu
dm

dt
, (2)

whereε = ±1 is a sign parameter to specify the fuel exhaust
direction, anddm/dt < 0. From Eq. (2), one finds

x < 0 → ε = +1 (forward jet),

x > 0 → ε = −1 (backward jet). (3)

FIGURE 1. Schematic diagram of the gravity train at a constant
velocityv0 with the exhaust velocityu relative to the train.
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The train starts from point A atx = −R andt = 0, and
reaches point B atx = R andt = T = 2R/v0. The position
of the train,x(t), is thus given by

x(t) = v0t−R. (4)

Hereafter, we parametrize the velocitiesv0 andu as

v0 = α
√

gR, u = β
√

gR, (5)

and use the dimensionless position parameter

x̃ =
x

R
= αωt− 1, −1 ≤ x̃ ≤ 1. (6)

If one wants to travel inT = π
√

R/g = 42 minutes like
Cooper’s estimation [1],α = 2/π, and thus

v0 =
2
π

√
gR = 5.0× 103 m/s, (7)

is required. As forβ, it would be helpful to see the specific
values of each rocket, such asβ < 0.316 for a solid-fuel
rocket andβ = 1.90− 26.56 for an electrostatic ion thruster
[12]. As examples, we will perform numerical calculations
for β = 0.316(u = 2.5 km/s) and12.6(u = 100 km/s).

By usingdm/dt = αωdm/dx̃, we rewrite Eq. (2) as

dm

dx̃
=

εm

αβ
x̃, (8)

and its general solution of Eq. (8) is

m(x̃) = Ce
ε

2αβ x̃2
, (9)

whereC is an integration constant. From the boundary con-
dition at point A,mA = m(−1), we findC = mAe−(1/2αβ).
Thus, the position dependence of the mass is

m(x̃) = mA exp
[

1
2αβ

(
εx̃2 − 1

)]
. (10)

The final mass at point B,mB = m(1), is

FIGURE 2. The position dependence of the mass ratiom/mA for
β = 0.316 (black solid curve) and12.6 (red dashed curve).

FIGURE 3. The position dependence of the energies relative to their
initial values forβ = 0.316.

mB = mAe−
1

αβ , (11)

and the train reduces its mass by∆m = mB − mA as the
fuel jets.

Figure 2 shows the position dependence ofm(x̃)/mA

from Eqs. (10) for β = 0.316 (black solid curve) and12.6
(red dashed curve) with Eq. (7) for v0. The mass reduction
during the travel is less for large values ofβ because the mo-
mentum of the exhausted fuel relative to the train is propor-
tional toβme: large values ofβ require less amount ofme.

Figures 3 and 4 show the position dependence of the en-
ergies relative to their initial values at point A forβ = 0.316
and12.6, respectively. The kinetic energyK = (1/2)mv2

0

behaves in the same way asm shown in Fig. 2. The potential
energyU = (1/2)mω2x2 is different from a quadratic func-
tion of x because of the position dependence ofm. In fact,
one can see the behavior from its derivative

d

dx̃

(
U

UA

)
=

x̃

αβ

(
2αβ + εx̃2

) m(x̃)
mA

, (12)

whereUA = (1/2)mAgR. For x̃ < 0, the sign of Eq. (12) is
always negative, and it is a decreasing function in this region.
For x̃ > 0, the sign of Eq. (12) changes at the point

FIGURE 4. The position dependence of the energies relative to their
initial values forβ = 12.6.
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x̃ =
√

2αβ =
{

0.634 (β = 0.316),
4.00 (β = 12.6). (13)

The blue dotted curve representingU/UA has the maximum
at x̃ = 0.634 in Fig. 3, while it is an increasing function in
Fig. 4 because the maximum given in Eq. (13) is outside the
range ofx̃.

The black solid curves represent the ratio of the total me-
chanical energyE/EA, whereE = K + U , in Figs. 3 and 4.
Its derivative is

d

dx̃

(
E

EA

)
=

x̃

αβ(α2 + 1)

× [
2αβ + ε(α2 + x̃2)

] m(x̃)
mA

, (14)

which is negative forx̃ < 0 and E/EA is a decreasing
function in this region. For̃x > 0, E/EA has the maxi-
mum at the point̃x =

√
α(2β − α). If the maximum ex-

ists in the region0 < x̃ < 1, the parameterβ must satisfy
1/π < β < 1/π + π/4 for α = 2/π. However, it is out-
side the region in our present case because0.316 < 1/π and
12.6 > 1/π + π/4. Thus, forx̃ > 0, E/EA is a decreasing
function in Fig. 3 and an increasing function in Fig. 4.

The next problem is to find the most economical way to
travel by solving the extreme value problem ofE with respect
to v0. The energy loss,∆E, during the travel is

∆E = EB − EA = −
(

1− mB

mA

)
EA

= −UA

(
1− e−

1
αβ

) (
α2 + 1

)
. (15)

Figure 5 shows theα dependence of the dimensionless
value |∆E|/UA. The red dashed curve has the minimum
value nearα = 1, while the black solid curve is a mono-
tonically increasing function ofα. Thus, one can find the
most economical traveling velocity for large values ofβ.

FIGURE 5. The dimensionless value of the absolute value of∆E,
|∆E|/UA. The red dashed curve (β = 12.6) has the minimum,
unlike the black solid curve(β = 0.316).

FIGURE 6. Contour plot ford∆E/dα = 0 (black solid) and its ap-
proximation curve Eq. (20) (red dashed). Color plot of|∆E|/UA

is also depicted. The yellow point at(α, β) = (0.96, 12.6) corre-
sponds to the minimum of the red dashed curve in Fig. 5.

To do this, we solve the extreme value problem of∆E.
From the differentiation of∆E by α,

d∆E

dα
=

mBgR

2β

[
1 +

1
α2

+ 2αβ
(
1− e

1
αβ

)]
, (16)

the extreme conditiond∆E/dα = 0 gives

1 +
1
α2

+ 2αβ
(
1− e

1
αβ

)
= 0. (17)

Figure 6 shows the color plot for|∆E|/UA in theα − β
plane. The dark blue regions have small values of|∆E|/UA

and more economical ways of travel. For large values of
β, one can reduce the energy loss during the travel. The
black solid curve represents the extreme condition Eq. (17),
and there is the lower boundβ & 1 for the existence of the
minimum. To solve Eq. (17) approximately, we assume that
α ' 1 and|1/β| ¿ 1, corresponding to the red dashed curve
in Fig. 5. In this parameter region, the expansion

1− e
1

αβ ' − 1
αβ

(
1 +

1
2αβ

)
, (18)

simplifies the extreme condition Eq. (17) as

α2 +
1
β

α− 1 = 0. (19)

Its appropriate solution is

α =
√

1 +
1

4β2
− 1

2β
' 1− 1

2β
, (20)

which is depicted by the red dashed curve in Fig. 6. For
β = 12.6, Eq. (20) givesα = 0.9603, which is consistent
with the numerical solution of Eq. (17) by Mathematica ,
α = 0.9600. The yellow point at(α, β) = (0.96, 12.6), cor-
responding to the minimum of the red dashed curve in Fig. 5,
is on the contour plots of both the numerical and approxi-
mate solutions. One can easily find some properties of the
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FIGURE 7. Schematic diagram for a variable mass system.

extreme from Eq. (20) instead of Eq. (17). There is no ex-
treme value ofα for β = 0.316, because it gives a negative
value ofα. On the contrary,β →∞ whenα → 1, and there
are no positive solutions ofβ for α > 1.

3. Conclusions

We have studied the motion of a gravity train moving at a
constant velocity. The train exhausts fuel forward and back-
ward, reducing its mass to maintain its velocity. A variable
mass system describes the motion of the train. Students can
readily solve the equation of motion of the train and solve
the minimum energy condition in an approximate form. One
finds that the optimal velocity of the train isv0 '

√
gR and

that a large exhaust velocityu is preferred.

Appendix A

We give a brief derivation of the equation of motion Eq. (1)
for a variable mass system [8–11].

Consider a train of total massm + dme moving at a ve-
locity ~v as shown in Fig. 7 (before). The train changes its

velocity to~v + d~v by exhausting the fuel of massdme with a
velocity~v + ~u measured from the rest frame as in Fig. 7 (af-
ter). Notice that~u is the relative velocity of the exhausted
fuel as defined in the main text. The change of the total mo-
mentumd~p is

d~p = m (~v + d~v) + dme (~v + ~u)− (m + dme)~v

= md~v − ~udm, (A.1)

where the relationdme = −dm has been used in the last ex-
pression. The equation of motion of the system isd~p/dt =
~F , where ~F is a force exerting on the whole system. Thus,
Eq. (A.1) becomes Eq. (1),

m
d~v

dt
= ~F + ~u

dm

dt
. (A.2)
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