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We present thepymcabc software, which is a Monte Carlo event generator for the ABC toy model. The ABC model consists of three
scalar particles of arbitrary masses. The only interaction among these particles occurs when all three of them are present together. The
pymcabc software can calculate all the leading-order cross-sections as well as decay widths within the ABC model and it can simulate all
the scattering processes within the ABC model. Moreover, it simulates the decays associated with the heavy-particle final state, leading to
a 2 → 3 or a2 → 4 type final states within the ABC model. We also apply toy detector effects to simulate the detector response of a toy
tracker for three-momentum measurements and a toy calorimeter for energy measurements. Using the results of thepymcabc software, we
also illustrate some well-known physics analyses techniques such as the analysis of the lineshape of a heavy propagator and the recoil mass
reconstruction technique.
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1. Introduction

Monte Carlo Simulation tools are essential for the physics
program at particle accelerators and detectors. These tools
are widely used by the current experimental collaborations
such as the ATLAS and the CMS experiments at the Large
Hadron Collider (LHC), at CERN, as well as by physi-
cists working in the planning of Future Collider experiments.
These tools play an important role in designing experiments
as well as in corroborating experimental results. However, it
is difficult for a novice to understand the working of these
tools. The complexity involved is two-fold: theoretically,
the full Lagrangian of the Standard Model of particle physics
consists of several interacting terms, which lead to compli-
cated calculations for particle physics observables, and, com-
putationally, the Monte Carlo software is complicated in a
way that benefits the software to accommodate many Stan-
dard Model processes as well as Beyond the Standard Model
processes. In collider experiments, for instance, at LHC,
CERN, a single collision would lead to many particles in the
final state, and moreover, the number of collisions per sec-
ond is high. In order to decipher the event of interest there
are various Monte Carlo simulations software available, for
example,MadGraph5 aMC@NLO[1], Pythia8 [2], etc.

The difficulties faced in teaching the method of comput-
ing quantum mechanical amplitudes (or matrix elements) for
a given physics process through the technique of Feynman
diagrams are eased by particle physics textbooks by intro-
ducing a pedagogical model viz. the ABC model. The ABC
model assumes that the world consists of three spin-zero par-
ticles and the only possible interaction of these particles is
when all three particles participate in a given process [3,4].
This model has also been used to introduce canonical quan-
tum field theory, dimensional regularization, as well as renor-
malization [4,5].

In this paper, the idea of using the ABC model is extended
as a means to introduce a Monte Carlo Event Generator as
well as to give a glimpse of toy-phenomenological analysis
of the ABC model. Thepymcabc softwarei introduced here
can be used as a tool to calculate both the total cross-sections
as well as generate simulations of ABC scattering processes.
Furthermore, it can be used as a tool to simulate detector ef-
fects on final-state particles and the subsequent decay of any
heavy particles in the final state. The decay simulation allows
the software to populate the final state with three or four par-
ticles and allows the user to explore toy detector effects in a
multi-particle final state. The use of the ABC model is moti-
vated since the three particles are real scalars with spin zero,
which simplifies the computation of the quantum mechanical
amplitude of a process.

Given that the three particles are the same (except for
their mass), it allows us to generalize thepymcabc software
to include all the possible ABC scattering processes as well
as the decay processes.

A typical workflow in High Energy Physics involves
starting from the Lagrangian of the theory and implement-
ing the model in specific file formats that are compatible
with computer software for simulating and calculating cross-
section of a process. One then passes these events through
detector simulation to take into account the effect of detector
material and, finally, performs analysis with the events gener-
ated by Monte Carlo Simulation. This typical workflow has
been presented in here for the ABC toy model. We have at-
tempted to decipher this workflow and made an attempt to
allow anyone with some basic knowledge of particle physics
to be able to understand the workflow.

The organization of this paper is as follows. In Sec. 2, we
present the salient features of the ABC model and discuss the
theory involved in the computation of observables. In Sec. 3,
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we introduce a Monte Carlo software calledpymcabc ii and
discuss the method used in preparing the software. The first
steps involved in installing and testing the software are pro-
vided in Sec. 3.1. We compare the performance of the soft-
ware with theory in Sec. 3.2 and present some benchmark cal-
culations with this software in Sec. 3.3. In Sec. 4, we discuss
some physics cases, such as the Event analysis in Sec. 4.1.1
for atu-channel process. Then, in Sec. 4.1.2, we consider the
event analysis of anst-channel process with decay products
in the final state. In Sec. 4.2, the analysis of the Lineshape of
a heavy propagator in ans-channel is given and in Sec. 4.3,
we present the recoil mass reconstruction technique that can
be explored using cross-section calculated by, and the events
generated with,pymcabc . Finally, in Sec. 5, we have sug-
gested some exercises to explore further the ABC model us-
ing thepymcabc software.

2. Theory of the ABC Model

The ABC model consists of three scalar spin-zero particles,
calledA, B, andC, which are distinguishable owing to dif-
ferences in their masses. The Lagrangian for the ABC model
is [3]:

L =
1
2
∂µφA∂µφA +

1
2
∂µφB∂µφB +

1
2
∂µφC∂µφC

− 1
2
m2

Aφ2
A −

1
2
m2

Bφ2
B −

1
2
m2

Cφ2
C − igφAφBφC , (1)

whereφA, φB , andφC represent real scalar fields of particles
A,B, andC, respectively. In this paper, we adopt the nat-
ural units viz. ~ = c = 1, so the dimension of space and
time are inverse energy and the dimension of the scalar fields
is energy. The coupling constant,g, of the model has the
dimension of energy. Note that each scalar particle, if free,
would follow the Klein-Gordon Equation.

The ABC Model’s Lagrangian as given in Eq. (1) sug-
gests the following Feynman rules [3,4]:

• The external lines, that is, the incoming and outgoing
scalar particles, are assigned a factor of unity.

• The vertex has a factor of−ig.

• The propagator (internal line with both ends con-
nected) contributes a factor of1/[q2

j −m2
j + iΓxmx],

whereΓx represent the ‘decay width’ of the propaga-
tor. The reason for the additional factor,iΓxmx, is to
avoid divergences in the computation of the total cross-
section. The propagator need not be on-shell, it is a
virtual state, not physically accessible.

We may note that external lines represent physical states for
incoming or outgoing particles whereas internal lines repre-
sent virtual states. Only connected diagrams represent phys-
ically possible processes. The particles interact only when
all three are participating in a given process. This is indi-
cated by the last term in the Lagrangian. This Lagrangian has

no self-interacting terms, which, by the way, do occur in the
Standard Model of particle physics. Higher-order derivatives
terms lead to non-local interactions and are thereby avoided
in quantum field theory.

The Feynman rules of the ABC model are used to eval-
uate the matrix elements (quantum mechanical amplitudes,
which give the dynamics) of a given ABC process. Com-
bining appropriately the squared matrix elements with the
phase space (which gives the kinematics) results in the cross-
section of a process or the decay width of a particle. The
Feynman diagrams, along with the Feynman rules, are a
mnemonic to write down the amplitude of a given process.

The scattering processes that one considers in particle
physics occur via the so-called different ‘channels’, mainly
the s-channel, t-channel, and u-channel. As an example, con-
sider a process1 2 → X → 3 4, where the numbers 1 to
4 represent the different particle states (external lines) and
X represents a propagator (internal line) of the process. In
such cases, the possible interaction process can proceed via
an s-channel, at-channel, or au-channel. The channel in
which the initial particles 1, 2 share a common vertex with
one end of the internal line of the propagator,X, and the fi-
nal state particles 3, 4 share the other end of the internal line,
another common vertex, with the particleX, is termed as an
s-channel process. In this channel, the four-momentum of
the propagator,qµ

X , is given byqµ
X = pµ

1 + pµ
2 , wherepµ

1 and
pµ
2 are the four-momentum of particles 1 and 2, respectively.

The channel in which particles 1, 3 share a vertex with the
propagatorX and, particles 2, 4 share the other vertex with
X, is termed as at-channel process. For thet-channel, the
propagator has four-momentum given asqµ

X = pµ
1 − pµ

3 . A
u-channel process is just like at-channel process but with
the particles3 and4 exchanged and, therefore, the propaga-
tor’s four-momentum is given asqµ

X = pµ
1 − pµ

4 . However,
note that theu-channel process is possible only when the fi-
nal state particles are identical. The variabless, t, andu are
also known as Mandelstaam variables, and they satisfy the
useful relations + t + u = m2

1 + m2
2 + m2

3 + m2
4, wheremi

is the mass of the ith particle.
The representative Feynman diagrams for thes-channel,

t-channel, andu-channel in the context of the ABC model are
given in Fig. 1. Considering all combinations of processes
in the ABC model and using the three possible channels, one

TABLE I. List of possible processes in the ABC model. A parti-
cle denoted with an asterisk refers to a virtual intermediate state
(propagator).

s- andt- channel processes t- andu- channel processes

A B → C∗ → A B A A → B∗ → C C

A C → B∗ → A C A A → C∗ → B B

B C → A∗ → B C B B → C∗ → A A

B B → A∗ → C C

C C → A∗ → B B

C C → B∗ → A A
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FIGURE 1. Representative Feynman diagrams for a)s-channel, b)t-channel for the processA B → C∗ → A B and c)t-channel, d)
u-channel for the processA A → B∗ → C C. The time axis goes from left to right. (Particles denoted with an asterisk refer to virtual
intermediate states).

finds that only nine unique processes are possible (at the so-
called tree-level), which are listed in Table I. A given pro-
cess in the ABC model can proceed via a combination of
either (i) s- and t- channels as shown in Fig. 1a)-b) or (ii)
t- andu-channels as shown in Fig. 1c)-d). Particles denoted
with an asterisk denote virtual intermediate state (propaga-
tor). Note that energy-momentum is conserved at each vertex
of the Feynman diagram.

For thes- andt-channels scattering processes, the differ-
ential cross-section in terms of the matrix elements [3] in the
center-of-momentum frame of reference isp1 = −p2:

dσ

dΩ
=

|pf |
64π2E2

cm|pi|
|Ms +Mt|2, (2)

where,Ecm is the center-of-momentum energy of the reac-
tion, |pi| is the magnitude of the three-momentum of the ini-
tial particle before scattering, and|pf | is the magnitude of the
three-momentum of the final particle after scattering.Ms

andMt represent the matrix elements (amplitudes) for the
s-channel and the t-channel, respectively. In the above equa-
tion, the term,

|Ms +Mt|2, (3)

represents the absolute square of the sum of the matrix ele-
ments for thes- andt- channel processes, and the term

|pf |
64π2E2

cm|pi|
, (4)

is the phase space for the process in which two initial particles
scatter into two final state particles,i.e., (2 → 2) process. As
we see in Table I, the scattering processes with thet- andu-
channel configuration consist of identical final state particles
and, therefore, the available phase space needs to be addi-
tionally divided by a factor of two to avoid double counting.
Thus, for thet- andu-channel processes:

dσ

dΩ
=

|pf |
128π2E2

cm|pi|
|Mt +Mu|2. (5)

Here, Mu is the matrix element corresponding to theu-
channel. The matrix elementsMs,Mt, andMu are ob-
tained using the Feynman rules listed above and are found
to be [4]:
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Ms =
g2

(p1 + p2)2 −m2
x + iΓxmx

=
g2

E2
cm −m2

x + iΓxmx
, (6)

Mt =
g2

(p1 − p3)2 −m2
x + iΓxmx

=
g2

m2
1 + m2

3 −m2
x − 2p1.p3 + iΓxmx

, (7)

Mu =
g2

(p1 − p4)2 −m2
x + iΓxmx

=
g2

m2
1 + m2

4 −m2
x − 2p1.p4 + iΓxmx

, (8)

wheremx is the mass of the propagator,p1, p2, p3, andp4

are the four-momentum of the initial particles 1 and 2, and
final particles 3 and 4, respectively (bold represents three-
momentum). Thes-channel matrix element,Ms, in Eq. (6),
is independent of the masses of particles scattered in the pro-
cess and depends only on the propagator’s mass. On the other
hand, the matrix elements for thet-channel,Mt, in Eq. (7),
andu-channel,Mu, in Eq. (8), relies on the initial and final
particle’s masses as well as the propagator’s mass.

The total cross-section of a process is then obtained by in-
tegrating the differential cross-sectiondσ/dΩ over the solid
angledΩ. The total cross-section obtained thus far is also
known as theLeading-Ordercross-section, as the matrix ele-
ment computation only used the so-called tree-level diagrams
(Fig. 1). A higher-order process leads to additional Feynman
diagrams containing particle loops and vertices for the given
process. The ‘order’ is determined by the powers of the cou-
pling constant (each vertex has a factor of g) in the amplitude
of the given process. In general, the total cross-section is
given as:

σtotal = σLO + σNLO + σNNLO + ..., (9)

whereσNiLO refers to the total cross-section at the(i + 1)-
th order. In this paper, higher-order processes are ignored as
they only complicate the ABC Model calculations and they
will necessitate the ideas of renormalization and add extra pa-
rameters. Moreover, the higher-order processes increase the
number of diagrams that needs to be evaluated. For instance,
at NLO (next-to-leading order) in the ABC model, one has to
deal with 16 diagrams for a giventu- process, whereas, on
the other hand, one deals with only two diagrams at the LO
(leading-order) for thetu process [3]. It must, however, be
noted that the higher-order processes are important in parti-
cle physics and considerable attention is given to automating
the higher-order calculations. In the ABC model, one could
reduce the contributions of higher-order processes by hav-
ing the coupling constantg < 1 asσNiLO ∼ g2i+2. The
coupling constant in this paper is, however, set to unity (to

simplify calculations). By the way, the ABC model is super-
renormalizable [4].

In the ABC model, decays are possible only if one of the
three particles has a mass greater than the sum of the masses
of the other two particles, since all three particles need to
participate in the interaction. Owing to this, only the heavi-
est particle can decay to the other two lighter particles. Thus,
processes like A→B B, etc., are forbidden. As an example,
consider the decay of particle A. This decay process is pos-
sible only if the mass of particle A is greater than the sum of
the masses of particles B and C.

Having gone through the theoretical aspects of the ABC
model, we would like to test this model presuming it were
experimentally viable. One would need to design the exper-
iment and test the various aspects of the theory. It would be
useful to simulate the possible scenarios before carrying out
the experiment. In fact, this is what is done in experiments
say, at LHC, CERN, which are designed to test the Standard
Model or search for physics Beyond the Standard Model.

The pymcabc -software introduced in this paper can be
taken as a warm-up exercise before tackling the software de-
signed for the LHC, for instance. This is similar to dealing
with the Feynman diagrams in the ABC model before dealing
with them in QED theory. In the next section, we illustrate
some benchmark calculations used to validate the software
and also provide a set of commands that are used to run the
software.

3. pymcabc : Software for the ABC model
simulation

Thepymcabc is a python software developed to understand
and simulate the physical processes that can occur in the
ABC model. Although it is academic, nevertheless, the ideas
presented here are also useful in introducing the workflow
carried out by experiments at facilities such as the LHC at
CERN. This software comprises dedicated modules used for
the identification of input processes, generation of Feynman
diagrams, calculations of matrix elements, decay widths of
the massive particle, differential and total cross-sections, gen-
erating Monte Carlo events, decaying of the heavy particle in
final states, applying detector effects, saving events in.root
or .csv format (onlyROOTandCSVformats are supported
for now), and for automatic plotting of basic kinematic vari-
ables.

The software requires the user to provide the process as a
string (text), the masses of particles asfloat (real num-
ber), and the initial three-momenta asfloat (real number).
The software identifies the channel in which the process can
proceed and can draw the relevant Feynman diagrams. It then
identifies the propagator of the process and assigns masses to
the incoming, outgoing, and propagator particles. For exam-
ple, when the outgoing particles are identical (A A or B B or
C C), the software assigns the process as atu-type process
and, otherwise, the process is assigned anst-type process.
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For the cases when a heavy particle exists in the final state,
the software subsequently also identifies the possible decay
channels.

Once the identification of the process is accomplished,
the software can be used to evaluate the total cross-section
of a process. The total cross-section computation is done by
first evaluating the differential cross-section based on Eq. (2)
for the s, t-channel and Eq. (5) for the t, u-channel. Note
that for consistency in computation, and to avoid division by
a zero in the denominator, we modify the matrix element by
adding a complex term in its denominator viz.iΓxmx, where
Γx is the decay width of the mediator, andmx is the mass of
the mediator.

To perform integration overdΩ, we first generate a set
of uniform random numbers (r) in the range [0,1], and us-
ing these numbers, we definecos θ as cos θ = 2r − 1.
Oncecos θ is defined, we use it to find the differential cross-
section at eachcos θ. Each result thus obtained is stored as
a “weight”. We also additionally store the maximum weight
Wmax, so thatWmax = max(0,Wi). The total cross-section
is defined as:

σ =
ΣWi

N
, (10)

whereN is the number of points used for the integration pro-
cess. The variance in the integration, assuming that the aver-
age value of the integrand in the problem tends to be a Gaus-
sian distribution, is then defined as:

σvariance =

√(
ΣW 2

i

N

)
−

(
ΣWi

N

)2

. (11)

The error inσ is defined as (just like the standard error on
the mean):

σerror =
σvariance√

N
. (12)

Note that the units forσ, and its error, is GeV−2 in the
Natural Unit. However, the units commonly used to repre-
sent the total cross-section is picobarns (pb), which has a di-
mension of area. [1 barn =1012 pb= 10−28 m2] To convert
the units (GeV−2) into the units of area, for instance, to (pb),
we revert to the S.I. units for~ = 1.054 × 10−34 J s and
c = 3×108 m/s, which were earlier set to unity in the system
of Natural Units. For instance:

σ[pb] = σ[GeV−2]× (~c[GeVfm])2

= σ[GeV−2]× 3.89× 108[GeV2pb].

In addition to computing the total cross-sections for the
st- and tu-channels, the software also allows the computa-
tion of the total cross-section for a specifics-, t-, or u- chan-
nel, even though the results are not guaranteed to be physi-
cal. The procedure to evaluate individual channels is as fol-
lows: if one wants to compute a specific total cross-section
due to thes-channel, say, then we start with the full ma-
trix elementσ ∝ |Ms + Mt|2, and expanding it, we find

σ ∝ |Ms|2+|Mt|2+2|MsMt|. We then remove the contri-
butions of|Mt|2 as well as the interference term2|MsMt|.

Having evaluated the total cross-section of a process, we
now consider the generation of events of a given process. An
event refers to a single scattering process that leads to final
state particles. Generation of events refers to the simulation
of a given event, which involves determining the kinemat-
ics of the final state particles of a given process that is con-
sistent with the available phase space of a process as well
as the governing dynamics. The generation of Monte Carlo
events is based on the acceptance-rejection method, which
is a Monte Carlo technique that proceeds as follows (for the
general method see, for example, [6]):

• First, we definecos θ as2r1 − 1 wherer1 is a uni-
form random number between [0, 1]. Using this value
of cos θ, we evaluate the differential cross-section and
call it Wi.

• We then generate another uniform random numberr2.

• Using theWmax obtained in cross-section computa-
tion, we check ifWi/Wmax is less than or greater then
r2.

• The anglecos θ is then used to generate an event if and
only if Wi/Wmax > r2.

• The anglecos θ and the another angleφ are used to
define the kinematics of the final state using equations
defined later in this section.φ is a uniform random
number in the range[0, 2π] other thanr1 andr2.

The Kinematics of the event is determined as follows.
Since the processes we consider are2 → 2 processes, the ab-
solute three-momentum of a given final state particle can be
defined completely in terms of the masses of particles and the
center-of-momentum energy of the collision. The generation
of events relies on defining the final state kinematics and then
randomly generating the anglesθ andφ as discussed above.
The kinematics for the outgoing particles are as follows:

|p| =
√(

E2
cm + m2

3 −m2
4

2Ecm

)2

−m2
3, (13)

here|p| is the magnitude of three-momentum of the outgoing
particle.

The energy is assigned to each particle based on the
energy-momentum relation:

E =
√
|p|2 + m2. (14)

The three-momentum of one of the particles is defined as
(px, py, pz) (using spherical coordinates):

px = |p| sin θ cosφ, (15)

py = |p| sin θ sin φ, (16)

pz = |p| cos θ, (17)

Rev. Mex. Fis. E22010207



6 A. DESAI

and the other particle’s four-momentum is defined using the
momentum-energy conservation laws.

The decay of a particle, in principle, relies on the decay
width of that particle, and this quantity is inversely propor-
tional to the particle’s lifetime. Therefore, unless a particle is
a “long-lived” particle (long lifetime), the particle will decay
before leaving the detector. The decay width of a particle is
found using the Feynman rules and is given as [3]:

Γ =
g2|px|
8πm2

x

, (18)

where|px| is the absolute three-momentum of the decayed
fragment andmx is the mass of that particle; in general, the
mass of the decaying particle has to be greater than the sum
of the masses of the decaying fragments.

The decay of a heavy particle produced in the final state
is handled as follows. Let us consider that particleA is the
heaviest of the three scalars, and its mass is greater than the
sum of the masses of particlesB andC. Then the decay pro-
cessA → B C is allowed by the conservation of energy-
momentum. The Feynman diagram of this decay process is
given in Fig. 2. The absolute three-momentum of the decay
fragments, that is, particlesB andC, in the rest frame of the
particleA is given by [3,7]:

|pB | = |pC | =
1

2mA

×
√

m4
A+m4

B+m4
C−2m2

Am2
B−2m2

Am2
C−2m2

Bm2
C .

(19)

The absolute three-momentum for particlesB andC is
the same owing to the conservation of momentum. Using the
energy-momentum relations, the energies of particlesB and
C are:

EB =
m2

A −m2
C + m2

B

2mA
, (20)

EC =
m2

A −m2
B + m2

C

2mA
. (21)

The above equations indicate the decay kinematics of par-
ticles, assuming the particles that is decaying is massive and

FIGURE 2. Representative Feynman diagram for the Decay process
A → B C.

has a mass more than the sum of the masses of the other two
particles. These equations are based on the assumption that
we are using the frame of reference in which the particleA
is at rest. In principle, the produced particleA is not at rest,
hence the above equations need to be modified, ‘boosted’,
using the final state three-momentum of the particleA pro-
duced in the main2 → 2 process. The following matrix equa-
tion is used to boost a particle (B or C) with four-momentum
[E, px, py, pz] [8]:




E′

p′x
p′y
p′z


=




γ γqx γqy γqz

γqx 1+ (γ−1)q2
x

q2
(γ−1)qxqy

q2
(γ−1)qxqz

q2

γqy
(γ−1)qyqx

q2 1+ (γ−1)q2
y

q2
(γ−1)qyqz

q2

γqz
(γ−1)qzqx

q2
(γ−1)qzqy

q2 1+ (γ−1)q2
z

q2




×




E
px

py

pz


 , (22)

where in the above equationq represents the four-vector mo-
mentum of the particle A produced in the2 → 2 process.
The algorithm which we have used here has been inspired
by the TGenPhaseSpace class ofCERN ROOT[8], which is
based on the Raubold and Lynch method [9] as well as the
MadSpin software [10]. Note that we do not apply weights
to the decaying particles.

Having generated the events and decayed the final state
particles, one would need to detect these particles using de-
tectors as in a real collider experiment. The study of detec-
tor effects on the toy ABC model could be used as a way to
introduce the so-called fast detector simulation, which is a
simulation of detectors based on some parameters. In princi-
ple, the detector simulation employed by thepymcabc soft-
ware is two-parameter based, since the detector used by
the pymcabc software has two components: a tracker-
like component for the three-momentum measurement and
a calorimeter-like component for the energy measurement.
In this paper, we have assumed that the error introduced in
measurement by the detectors is Gaussian-like. In reality, the
errors in detector measurement arise owing to several reasons
such as the misidentification of particles, and the number of
particles in a shower for energy measurements, among oth-
ers. Considering thepymcabc software, it allows assigning
different sensitivities to the two detector components, but by
default, the Gaussian width is set to unity for both compo-
nents. The detector effects are generated as follows: to begin
with, a component of the particle’s three-momentum is cho-
sen. The component’s value is then chosen as the mean of
the Gaussian, and the Gaussian’s width is chosen by the user;
moreover, an additional factor, that worsens or improves the
resolution of the calorimeter over the tracker, is also included
and may be defined by the user. The same procedure is also
applied for energy measurements, albeit, with different Gaus-
sian widths. By default, both the calorimeter and the tracker
are assumed to have the same sensitivity. In the next subsec-
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tion, we discuss the steps involved in the installation of the
pymcabc software.

3.1. Installation and the first run

Thepymcabc software is available for installation from the
Python Package Index (PyPI ) using the following command
in the terminal, assuming thatpip is available on the operat-
ing system:

or the following command from the jupyter note-
book/session:

To test the installation, the user may open either a jupyter
notebook/session or directly use the terminal and try to in-
voke:

If no errors are faced, then the installation has suc-
ceeded. We note thatpymcabc has additional dependencies
onNumpy[11] to handle arrays,Uproot [12] to handle root
related scripts withinpython , Matplotlib [13] for plots,
feynman iii for drawing Feynman Diagrams,Pandas [14]
packages.

A sample code is given here to explain the main com-
mands used in evaluating the total cross-section and generat-
ing events for theA B → C∗ → A B process:

where the expected output includes the total cross-section, set
of Feynman Diagrams, and generation of 10k events. Here
mA, mB, and mC are the masses of particles A, B, and C,
respectively, andpi is the magnitude of the initial three-
momentum of one of the incident particles. (Thepi here
should not be confused with theπ = 3.14, which is a con-
stant.)

The above script will evaluate the total cross-section of
theA B → C∗ → A B process. The magnitude of the three-
momentum for the initial particle in the collision of particles
A and B is set using the parameterpi , and, in this case, it is
set to10 GeV. The last statement in the above script generates
104 events that have undergone the decay processA → B C

as well as toy detector simulation. The name of the file pro-
duced at the end isname.root .

As far as this software is concerned, these four lines of
code are crucial for the total cross-section calculation and
event generation for any of the nine possible processes within
the ABC universe. We will discuss these steps in detail in this
paper. User interaction with other modules is required only
when a detailed analysis is sought for, for instance, to access
the individuals-channel ort-channel oru-channel contribu-
tions, or to change the width of the Gaussian used for toy
detector effects. The propagator of the process, in this case,
C∗, as well as the decay chain, in this case,A → B C for the
final state, are identified by the software internally. We have
now checked that the software is installed and in the next
subsection we go through the benchmarks of the software.
To begin with, we discuss the computation of the differential
cross-section with thepymcabc software and compare the
output with the results from the ABC theory to see if the ma-
trix elements used in the package are implemented correctly.

3.2. Calculation of the Differential Cross-Section for the
A A → C∗ →B B process

We now calculate the differential cross-section for a pro-
cess and see if the matrix elements computed using the
pymcabc software are consistent with the theory. To cal-
culate the differential cross-section, we will first need to cal-
culate the matrix element for the given process using the soft-
ware and ensure that it agrees with the theory.

Here, this test is carried out by evaluating the differential
cross-section for thetu-channel using thepymcabc soft-
ware and comparing the results with Griffiths [3]. We con-
sider theA A → C∗ → B B process that occurs via thet-
andu- channels. The theoretical differential cross-section for
this process for the case whenmA = mB andmC = 0 is
given by:

dσ

dΩ
=

g2

2× 256π2|p|4E2
cmsin4 θ

, (23)

where |p| is the magnitude of the initial particle’s three-
momentum. The following model parameters are chosen
for this example:mA = 10 GeV, mB = 10 GeV,mC =
0 GeV, and the magnitude of the initial three-momentum is
|p| = 10 GeV. Inserting these values in the equation, we ob-
tain:

dσ

dΩ
=

9.89× 10−11

sin4 θ
. (24)

To compute the differential cross-section for a given
theta, we use the following code:
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FIGURE 3. The differential cross-section vs.sin θ as computed
by the pymcabc and compared with the theoretical prediction
of the ABC model as calculated from the theory equation for the
A A → C∗ → B B process.

We have usedNumpypackage [11] to provide input in terms
of arrays. The plotting scripts make use ofMatplotlib
package [13].

The theoretical prediction given in Eq. (24) is com-
pared with thepymcabc software prediction for different an-
gles. In Fig. 3, we see that the software’s calculation agrees
with the theory prediction. We have shown this agreement
for a region ofsin θ away from zero since the differential
cross-section tends to infinity whensin θ is close to zero.
We now compare the total cross-section obtained using the
pymcabc software with theMadGraph5 aMC@NLO.

3.3. Comparison of the total cross-section results ob-
tained using the pymcabc software with Mad-
Graph5 aMC@NLO

We have checked the consistency of thepymcabc soft-
ware with the prediction from theory for the differential
cross-section. In this section, we test the prediction of
thepymcabc software withMadGraph5 aMC@NLO, which
is a Monte Carlo Event Generator used in the High En-
ergy Physics (HEP) to corroborate data as well as in other
HEP phenomenological studies.MadGraph5 aMC@NLOis
a fully automated HEP library that can simulate Standard
Model as well as Beyond the Standard Model processes. A
physics model can be added toMadGraph5 aMC@NLOby
first producing a Universal Feynman Rules Output (UFO)
[15] with either FeynRules [16] or LanHEP [17]. The
UFO model files of the ABC model, which is implemented
in LanHEP, can be downloaded from this link [18]. In
this section, we evaluate the total cross-section for all the
nine physics processes in the ABC model using both the
pymcabc software as well as theMadGraph5 aMC@NLO.
For computation, we have chosen the following four “bench-
mark” sets of parameters as given in Table II along with a
brief motivation on using these.

We compare thepymcabc software’s final results
with the MadGraph5 aMC@NLOresults. Note that the
MadGraph5 aMC@NLOsoftware takes as input the beam
energies for beam 1 and beam 2 while inpymcabc we
consider as input the initial three-momentum of one
of the initial particles. In order to extract the ac-
tual beam energies, we use theECM() function of
pymcabc software, which gives as output a tuple of
(beam1energy, beam2energy, TotalCMEnergy) .
Moreover, for using theMadGraph5 aMC@NLOcompari-
son, we have set the width of the propagator using Eq. (18).
The results of this exercise are shown in Fig. 4. The results
indicate that the predictions of thepymcabc package are
consistent with that of the advanced tools used by particle

TABLE I. Benchmark parameters used for comparison of thepymcabc with MadGraph5 aMC@NLO.

Label mA mB mC pi Motivation

Scenario 1 2 3 5 10 Decay width of particles is zero (no massive particle)

Scenario 2 2 3 5 5 Same as above with different initial three-momentum

Scenario 3 9 3 4 10 Massive particle

Scenario 4 3 6 8 15 Large masses of all particles, high three-momentum
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FIGURE 4. Comparison of results ofpymcabc software with the
Madgraph result where Madgraph is run using a UFO model devel-
oped here.

physicists in active LHC and other collider studies. There are
known divergences, especially when the mass of the propa-
gator is zero. In the last section, we discussed this case and
compared the differential cross-section with theory to show
that thepymcabc calculation is consistent with theory in a

given range of angles that avoidssin θ = 0.

The pymcabc software can also be used in the follow-
ing way to obtain the total cross-section and the integration
‘error’:

where’process’ refers toA A > B Bor B C > B C,
etc. as listed in Table I. The error arises as one uses the Monte
Carlo integration technique.

The error due to Monte Carlo integration can be con-
trolled by varying the number of integration steps/points
used. In principle, the error is inversely proportional to the
square of a number of points used for integration as shown in
Eq. (12). One can change the number of integration points in
the following way:

whereNintegrate refers to the number of points to be used for the Monte Carlo integration. Here the default value for any
given calculation is set to 10000 integration points. The same procedure is also used to evaluate the total cross-section for the
tu-channel process.

The Figs. 5a) and 5b) indicates that the error in the total cross-section divided by the total cross-section decreases with the
increase in the number of Monte Carlo integration points (σerror ∝ 1/N2). Although in an ideal situation having more Monte
Carlo integration points is beneficial as it tends to reduce the fluctuations, nevertheless, the time taken by thepymcabc for

FIGURE 5. The ratio of error in the total cross-section to the total cross-section is evaluated by thepymcabc software using different
numbers of phase space points that are considered for Monte Carlo integration for a)A A → C∗ → B B and b)A B → C∗ → A B.
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FIGURE 6. The number of space points versus the time taken by thepymcabc software in the evaluation of the total cross-section for a)
A A → C∗ → B B and b)A B → C∗ → A B.

calculation increases linearly with the number of Monte
Carlo integrations as shown in Figs. 6a), and 6b). Hence,
the number of points used in default calculations is set to
104, which can be modified by the user using theN parame-
ter in the functionCrossSection().calc_xsection
as explained in thePython program above. Here, the time
taken in the evaluation is calculated using thepython mod-
ule time .

3.4. Total cross-section’s dependence on the Center-of-
Mass Energy

The total cross-section depends on the center-of-mass energy,
σ ∝ 1/E2

cm, as can be seen from Eqs. (2), (5). We now put to

test this theoretical prediction with thepymcabc software.
We see that the calculation for the ABC model indeed shows
this dependence as seen from Fig. 7. This computation is per-
formed by varying the initial three-momentum (pi ) param-
eter ofDefineProcess , which, in turn, varies the center-
of-mass energy of the collision since,

Ecm =
√

p2
i + m2

1 +
√

p2
i + m2

2, (25)

where 1, and 2 indicate the two initial particles in the system.
The code to perform this computation is:
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FIGURE 7. The total cross-section for a)A A → C∗ → B B and b)A B → C∗ → A B as a function of energy.
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3.5. Event generation

When two initial particles scatter they lead to a final state
consisting of two or more particles. A physics event is then
defined as this interaction of particles. A single collision at
real colliders may lead to the production of many particles,
which makes the study of such an event very complex; more-
over, there are many collisions per second and this aggravates
the detection problem. This is among the reasons why event
generators play an important role in particle physics. Com-

putationally, the generation of physics events involves finding
the final state kinematics of particles provided we are aware
of the initial state. The equations involved in final state kine-
matics were given in Eqs. (13)-(17). In this section, we pro-
vide some guidance on how to use thepymcabc software to
generate events for thest-channel process by providing the
program used to generate the events and the options available
in generation. The steps involved in generating anst-channel
type process are:

Here, the produced particle undergoes decay if the vari-
able/flagboolDecay is set toTrue and undergoes detec-
tor effects if the variable/flagboolDetector is setTrue .
The optionsboolDecay andboolDetector can either
be True or False, and thus we have four combinations or ways
to produce events (True, True), (True, False), (False, True),
(False, False). These statements produce two files in root for-
mat: the first file contains truth information, which stores the
actual events without decay and detector effects, and this file
carriestruth_ as the prefix to the filename; the second file
contains the events after the decay of the heavy particle pro-
duced in scattering and after the detector effects are applied
on the particles. The name of theROOTTree where events are
stored is calledevents . The steps involved in generating a
tu-channel type process are the same, except that the name of

the process is changed. The basics of the event analysis are
provided in the next subsection.

3.6. Basic event analysis using events generated with the
pymcabc

In this section, we provide some illustrations of how the
events generated with thepymcabc software may be ana-
lyzed. Event analysis refers to analyzing the events gener-
ated in the previous subsection and it involves, among other
things, producing the plots (histograms) of the distribution of
observables such as kinematic variables. Thepymcabc soft-
ware comes with an inbuilt script to perform basic event anal-
ysis such as drawing the distributions of four-momenta of fi-
nal state particles. The script to perform this analysis is:

This script produces the four-momentum distribution, the user may be interested, for instance, to see the distribution of
transverse momentum, which is defined aspT =

√
p2

x + p2
y, or, some other variable constructed using the events. To handle

that, the user might either useUproot [12]iv or useCERN ROOTv or thePython extension ofROOT, which isPyROOTvi.
For now, we illustrate with a simple example that can be used to open a tree, read events, and plot a given variable withUproot
andPyROOT.
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To print the names of all the branches in a givenTTree , one can do as follows:

Another alternative procedure to analyze events is to use theUproot software. A simple program to read a tree using
‘Uproot’ is given here:

One more possibility is to analyze events using thepandas module [14]. The user may convert the.root file obtained
after simulation into a comma separated file (csv ) using the followingpymcabc inbuilt feature:

We may note that the analysis of “events” presented in
this paper is handled withPyROOT[19], which is the python
extension ofCERN ROOTsoftware [8]. Most plots were pro-
duced using either thePython moduleMatplotlib [13]
or PyROOT.

4. Physics cases
We have discussed the generation of events within the ABC
model as well as the analysis of events using various tools. In
real experiments, the generation of events undergoes many
stages such as the generation of the ‘hard’ process, decays
of heavy resonances, parton shower, and fast- or full- detec-
tor simulation. Then, at the end, physics analysis follows.
In the pymcabc software, we have automated some of the
steps and attempted to produce the final events as they would
be in the large experiments. To illustrate the use of the gen-
erated events, we present a few phenomenological cases. In
this section, we study a few physics cases such as the basic
event analysis, analyzing the lineshape of a massive propaga-
tor, and the recoil mass reconstruction technique. This sec-
tion is not meant to teach physics analysis but to showcase
the ways in which the generated events can be used and the
reader is encouraged to re-produce these studies.

4.1. Event analysis

4.1.1. Event analysis of atu-type process:A A → C∗ →
B B

Section 3.5 discussed about the commands used to gener-
ate events with thepymcabc software and Sec. 4.1 pre-
sented a brief introduction to event analysis withPyROOT,
andUproot . The analysis of the generated events is cru-
cial to understanding the phenomenology of the ABC model.
For the study presented in this section, we have considered
the following parameters:mA = 10 GeV, mB = 1 GeV,
mC = 2 GeV andpi = 10 GeV. The output of event gener-
ation gives the four-momentum of the final state particles B
(two B) as given in Fig. 8. To distinguish the particleB’s, we
have assigned the label_1_ and_2_ with the variables in
theROOT TTree. Since the final state (B B) does not con-
sist of the heaviest particle, that is, particle (A), the decay is
forbidden. For each variable presented in Fig. 8, the detector
effects are shown. It may be noted that in a real experiment,
particle B will not be differentiated in the way in which the
ABC software allows, which is primarily for understanding
purposes.

In addition to the particle’s four-momentum, we have also
shown the common variables such as the transverse momen-
tum and pseudorapidity distribution, where pseudorapidity of
a particle is defined as the rapidity in the limit of mass tending
to zero:

y =
1
2

log
(

E + pz

E − pz

)
, (26)

and η = ylim(m→0). The reader is encouraged to prepare
plots for more such variables as used at the Hadron and Lep-
ton colliders.
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FIGURE 8. The energy, three-momentumpx, py, pz distributions for particles B1 and B2 as obtained from thepymcabc software with and
without detector effects in theA A → C∗ → B B process. The parameters used for these distributions are:mA = 10 GeV,mB = 1 GeV,
mC = 2 GeV andpi = 10 GeV.

The distributions of the variables,px andpy, are Gaus-
sian, as random numbers were used in their generation. The
pz of variables for B1 and B2 have a mirror-like symme-
try. Since the particles are the same in the final state, and
the absolute three-momentum for each is the same owing to
the conservation of momentum, the energy of the particles is
equal. Lastly, the plots ofpT andη are shown, which have
characteristics (shapes) similar to the ones obtained in a HEP
analysis of a Standard Model or Beyond the Standard Model
scenario.

4.1.2. Event analysis: Combinatorics background in anst-
type process:A B → C∗ → A (→ B C) B

We have shown in Sec. 3.5 the steps to generate the events
with the decay process and detector effects for the process

A B → C∗ → A (→ B2 C)B1 that takes place in thest-
channel. The analysis of the kinematics of the final state par-
ticle is shown in Fig. 9. The interpretations remain the same
as in the previous sections. However, there are some changes
in thepT andη distributions owing to the presence of three
particles in the final state.

As a physics case study, we consider the combinatorics
background, that is, the background that is a result of wrong
combinations, which might result when one reconstructs the
particle A using the decay products,B andC. In this case,
there are two choices: use particlesB1 andC or particlesB2

andC to reconstructA; the right choice is to use particles
B2 andC. However, a priori, it may not be known which
is B1 andB2. The events resulting owing to the first choice
(B1 andC) are referred to as the ‘background’, whereas the
second choice (B2 andC) is termed as a ‘signal’.
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FIGURE 9. The energy and three-momentum,px, py, pz distributions for particles A andB1 as obtained from thepymcabc software with
and without detector effects for theA B → C∗ → A B1 process. The parameters used for these distributions are:mA = 10 GeV ,mB = 1
GeV,mC = 2 GeV andpi = 10 GeV.

The distributions of the combined four-momentum of the
two possible combinations of B and C are given in Fig. 10.
Figure 11 shows the invariant mass of the two combinations,
namely,B2 andC as signal andB2 andC as background,
along with the truth distribution of particle A’s mass after ap-

plying detector effects.
At the LHC experiments combinatorial background often

arises, for instance, when analyzing the decays of B meson
(B0

s → µ+µ−) [20] among others. Therefore, this exercise is
useful to introduce the concept of combinatorial background.

4.2. Lineshape of a heavy mass intermediate state in an
s-channel process

For a process that takes place in thes-channel, one can ob-
tain a lineshape distribution for the propagator. The lineshape
distribution of a particle refers to the plot with the y-axis con-
taining thes-channel process’s production total cross-section
versus the energy on the x-axis, and making sure to cover the
energies close to the mass of the propagator. Such studies for
determining the lineshapes for the Z boson were conducted at

the LEP1 and LEP2. Moreover, future lepton colliders also
aim to produce the lineshapes for the Z boson and Higgs bo-
son [21].

One can use thepymcabc software to produce lineshape
plots for the heavy propagator in the ABC model by using
the st-channel process and discarding the diagrams related
to thet-channel and the interference ofst-channel using the
scheme discussed earlier in the paper. As an example, for the
ABC model, we consider the followingst-channel process,
AC → AC, and consider the contribution of thes-channel
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FIGURE 10. For the process A B→ A (→ B2 C) B1, the comparison of the combined four-momenta of B2 and C (signal) with B1 and C to
illustrate the combinatorics background.

only. Let the masses of particlesmA = 1 GeV,mB = X GeV,mC = 1 GeV, where X is defined as 10 GeV (blue), 20 GeV
(orange), 30 GeV (green), 40 GeV (red), and 80 GeV (purple) in Fig. 12. The following code can be used to evaluate a specific
channel contribution:

FIGURE 11. For the process A B→ A (→ B2 C) B1 comparison
of the invariant mass distribution of the signal combination B2 and
C with background combination B1 and C. The truth distribution
of the expected invariant mass distribution after applying detector
effects is also shown.

FIGURE 12. Representative Feynman diagram for the
A C → A C process in the s-channel.

Here, the energy scan is performed around the mass of
particleB = 10 GeV. The result of this energy scan is given
in Fig. 13. The reason for the high peak in the total cross-
section near the mass of the resonance particle B is because
in the s-channel, the matrix element tends to infinity as the
center-of-mass energy approaches the mass of the propaga-
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FIGURE 13. Lineshape for particle B with mass 10 GeV. The en-
ergy scans were around the center of- mass energy ‘close’ to the
mass of particle B.

tor. Within the software, owing to the modified matrix ele-
ment, the matrix element or the total cross-section does not
tend to infinity but to∝ (1/m2Γ2). The width of the reso-
nance in the plot is owing to the factor ofΓ (particle decay
width). This plot can then be used to extract the mass of the
propagator as well as measure the decay width of the propa-
gator, thereby providing the two most fundamental parame-
ters relevant for a particle (other than its intrinsic spin, color,
etc., which are not relevant for the ABC model).

We note from the plots, that the total cross-section re-
duces with an increase in the mass of the mediator asσ ∝
1/m2

B . Moreover, we also notice that the decay width (and
therefore the width of the resonance structure on the plot)
reduces with an increase in the mass of the mediator; for in-
stance, formB = 10 GeV, the width of the curve is wider as
compared to whenmB = 80 GeV. This is due to the decay
width being inversely proportional to the mass of the particle
B, in this case.

4.3. Recoil mass reconstruction technique

Reconstruction of particles in the final state is crucial for
the collider experiment and to achieve this one needs accu-
rate information about the initial state. The Hadron colliders
lack the information on initial energies at which the quark or

FIGURE 14. Representative Feynman diagram for theAB → AB

process withA → B′C′.

gluon within the proton interacts. That is, although the pro-
tons collide at 13.6 TeV at the LHC, the actual energies with
which the gluons/quarks interact are different, and are less
than 13.6 TeV. This is because the distribution of quark and
gluon’s three-momentum is random and is based on the Par-
ton Distribution Function. On the other hand, lepton collider
experiments have access to the initial energies and in their
cases, this information can be used to determine the proper-
ties of one of the final states provided that the other particle
can be reconstructed relying on its decay properties. In sum-
mary, at lepton colliders, the information on initial energy can
be used as a constraint to extract the properties of a particle,
for example, to reconstruct the Higgs recoil mass using this
technique [21].

Consider the following process:A B → A B, which
occurs via thest-channel with the mass of particlesmA =
120 GeV, mB = 20 GeV, andmC = 40 GeV. The initial
three-momentum is chosen as 180 GeV (high enough to al-
low the process and give some additional boost to the decay
fragments).

Thedetector_sigma parameter of the detector is set
to 0.5. Let us consider that only thes-channel contribution
remains valid for this production. Owing to its large mass,
particle A undergoes the decay:A → B′ C ′ (Feynman
diagram of the full event is in Fig. 14). Our aim in this sec-
tion is to illustrate the recoil mass reconstruction technique
that can help in the reconstruction of the mass of particle B,
which was produced along with particle A. The program for
generating such events is as follows:
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FIGURE 15. Recoil mass reconstruction technique is illustrated for
the processAB → AB where the recoil mass of particle B is re-
constructed using the initial energies and information of the decay
products of particle A that undergoes the decayA → B′C′. Truth
measurement also includes detector effects.

The method of recoil mass reconstruction is as follows:
Let p1 = (EiA, 0, 0, piAz), p2 = (EiB , 0, 0,−piAz) be

the initial four-momenta of initial state particlesA, B and
let p3, p4 be the final four-momenta of the final state par-
ticles A, B, respectively. Then, according to the energy-
momentum conservation:

p1 + p2 = p3 + p4. (27)

The Left-Hand-Side of the above equation leads to the to-
tal energyp1 + p2 = (EiA + EiB , 0, 0, 0) = (Ecm, 0, 0, 0).
Let us further assume that the particle detector can measure
the decay information of particle A in the final state. There-
fore,p3 is completely known.

Then

p4 = Ecm − p3, (28)

which upon squaring and usingpµ
4p4µ = m2

4 leads to:

m2
4 = E2

cm − 2EcmE3 + m2
3. (29)

One can therefore determine the mass of the final state parti-
cle 4,B, completely using the knowledge of the initial state
and the knowledge of the state of particle 3. The recoil mass
reconstructed using this technique is compared against the
true mass of particle B (after detector response) and is given
in Fig. 15. We see from the figure that the reconstructed mass
of particleB (blue) shown by the Blue line overlaps the dis-
tribution representing the true mass of particleB (red) after
detector smearing.

5. Exercises and further project ideas

In this section, we outline some exercises that may be car-
ried out using thepymcabc software. Some of the exercises
range from being easy to hard and cover many areas within
particle physics such as physics analysis, particle physics the-
ory, experiment, and computation speed. These exercises

may help the novice to broaden their knowledge of the phe-
nomenology analysis that is undertaken at the collider experi-
ments as well as allow them to go through the complexity that
is involved in particle physics theory and experiments. Some
of the exercises require modifying the source code, which can
be obtained from:

wget https://github.com/amanmdesai/
pymcabc/archive/refs/heads/master.zip

and then unpack the zip folder.
Another option is to useGit as follows:
git clone https://github.com/

amanmdesai/pymcabc.git

5.1. Physics - analysis idea

• Verify the conservation of energy and momentum us-
ing the final state energies and momenta of particles.
(Note that, in this case, the detector mode must be
turned off for accurate results.)

• Analyze the kinematics of a four-particle final state.
The following steps are required: identify the process
and parameters that lead to a final state with four par-
ticles and, then develop analysis scripts to analyze the
final state.

5.2. Physics - theory related ideas

• In the paper, while evaluating the total cross-section for
ans-channel process, we removed diagrams related to
t-channel as well as interference between thes- and
t- channels. There are other schemes that can be used
for diagram removal. As an instance, consider the ma-
trix elementσ ∝ |Ms + Mt|2, expanding this we
found σ ∝ |Ms|2 + |Mt|2 + 2|MsMt|. We then
remove the contribution of|Mt|2 and take the sum of
|Ms|2 + 2|MsMt| as the total contribution froms-
channel.

• Next-to-leading Order (NLO) Processes: An interest-
ing extension of this software is to allow NLO com-
putation within ABC. This requires a major change in
the software. However, this will help to learn the dif-
ference between NLO and LO contributions. In par-
ticular, the student may be introduced to the so-called
Kfactors often mentioned in the HEP literature.

• ABCD model: Extend the ABC model to include one
more scalar particle, say, for example, D, with the same
characteristics. This will lead to more types of interac-
tions and vertices and, thus, the phenomenology of the
ABCD model . The Lagrangian for this model can be
written as follows:
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L =
1
2
∂µφA∂µφA +

1
2
∂µφB∂µφB +

1
2
∂µφC∂µφC

− 1
2
∂µφD∂µφD − 1

2
m2

Aφ2
A −

1
2
m2

Bφ2
B −

1
2
m2

Cφ2
C

− 1
2
m2

Dφ2
D − igABCφAφBφC − igABDφAφBφD

− igACDφAφCφD − igBCDφBφCφD

− igABCDφAφBφCφD

where thegABC and others represent the coupling con-
stants associated with particles as labeled. The last
term igABCDφAφBφCφD can be mimicked as a con-
tact interaction at a point. The corresponding UFO
model for use withMadGraph5 aMC@NLOmay be
obtained from this link [22].

5.3. Detector related ideas

• In the paper, we showed that the keywords
boolDecay, boolDetector may be used in four
possible combinations: (True, True), (False, True),
(True, False), and (False, False). The last combina-
tion is often referred to in particle physics as the truth
sample. The task for the student would be to compare
the distribution for anst-type process and atu-type
process.

• Exploring Detector Configuration: The student can
also modify the detector configuration. For instance,
an easy exercise would be to modify the Gaussian
width. A more difficult exercise would be to use a
statistical distribution different from the normal dis-
tribution for energy measurements and assume a nor-
mal distribution for three-momentum measurements.
Moreover, one could also re-implement the detector
sensitivities to vary with differentη andpT of parti-
cles.

• Invisible Particles: In real collider experiments, cer-
tain particles such as neutrinos in the Standard Model
and Dark Matter particles within the Beyond the Stan-
dard Model cannot be directly detected by the detector.
These particles lead to the so-called missingpT in the

detector. The idea is that the initialpT is zero and,
therefore, the finalpT should also be zero due to the
conservation of energy-momentum. To obtain invisi-
ble particles in ABC, the project would focus on modi-
fying the detector configuration such that its sensitivity
toward a given particle (identified using its true mass)
is set to zero. Then, one could reconstruct this particle
using the energy-momentum information of the final
state and another particle that is tagged.

5.4. Computation Speed Improvements

• We note thatpymcabc software can be improved con-
siderably in terms of speed. For instance, one could
use a GPU-based computation or parallel computa-
tion. Both approaches have the potential to improve
the speed of computation as well as the generation of
events.

6. Conclusion

In this paper, we have introduced a Monte Carlo based soft-
ware,pymcabc for the ABC model. This software is aimed
at a particle physics novice who wishes to learn at an early
stage the tools used by, say, the LHC collaborations. By
using the ABC model, one can calculate the differential
cross-section by pencil and paper and compare the same
with thepymcabc software prediction. We have also com-
pared the results of thepymcabc software against that of
theMadGraph5 aMC@NLOand found consistency in the re-
sults. Moreover, the ability to generate events allows one to
understand the kinematical information of events.

We have also shown how the ABC model can be used to
make the lineshape of a heavy mediator. This technique has
been used in real experiments with the Z bosons at LEP col-
liders. Moreover, this technique might also be used in the
Future Lepton Colliders for the Higgs lineshape. Further-
more, we illustrated an important analysis technique called
the Recoil Mass Reconstruction, which will also be deployed
in the Future experiments to extract, for example, the Higgs
boson properties. Thepymcabc software can be improved
and extended in several ways. As examples, we have pre-
sented ideas as exercises that can be used as starting points
for the reader.

i. The source code can be downloaded fromhttps://
github.com/amanmdesai/pymcabc .

ii. The version (1.1) used for the publication is archivedhttps:
//doi.org/10.5281/zenodo.7792881 .

iii. https://github.com/GkAntonius/feynman

iv. https://github.com/scikit-hep/uproot5

v. https://root.cern/

vi. https://root.cern/manual/python/
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