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Calculation of the Wigner angle by means of vectors
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It is shown that each Lorentz transformation leaving invariant one spatial axis can be represented by a single complex vector. This fact is
employed in the calculation of the Wigner angle (which arises in the composition of two boosts in arbitrary directions) and of the aberration
of light.
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1. Introduction

Among the counterintuitive results of the special theory of
relativity is the fact that if two inertial reference frames, S
and S′, are moving in different directions with respect to a
third inertial frame, S0, with their Cartesian axes parallel to
those of S0 (see Fig. 1), then the axes of S′ are rotated with
respect to those of S through an angle known as the Wigner
angle (see,e.g., Ref. [1] and the references cited therein).
This curious behavior is a consequence of the algebraic prop-
erties of the Lorentz transformations, which give the relation
between the space-time coordinates determined by different
inertial reference frames.

The elementary formalism employed in the study of the
Lorentz transformations is that of the4×4 real matrices (see,
e.g., Refs. [2,3]) but, if one considers Lorentz transformations
involving only two spatial directions (as in the determination
of the Wigner angle), it suffices to employ3×3 real matrices
(see,e.g., Ref. [4]). In these two cases it is possible to rep-
resent the4 × 4 or 3 × 3 real matrices corresponding to the
Lorentz transformations by2× 2 matrices whose entries are
complex, real, or double numbers (see,e.g., Refs. [4–8]).

FIGURE 1. The inertial reference frames S and S′ move with re-
spect to the inertial reference frame S0 with their spatial axes paral-
lel to those of S0 in directions making anglesθ andθ′ with respect
to thex-axis of S0.

The Wigner angle, in particular, can be calculated making use
of any of these sets of matrices.

As shown in Ref. [4], each Lorentz transformations in-
volving only two spatial directions, can be represented by a
single two-component spinor. Given two such spinors we
can calculate two different scalar products which must cor-
respond to invariants related to the two Lorentz transforma-
tions represented by those spinors. The modulus of one of
these invariants gives the relative velocity between the frames
represented by the spinors, and its argument gives the angle
between their spatial axes.

Taking into account that the spinor formalism is not
widely employed, the aim of this paper is to present an el-
ementary derivation of the results of Ref. [4], making use
of the vector formalism. In Sec. 2 we show that a single
complex vector represents a Lorentz transformation in the re-
stricted case where only two spatial directions are considered
and in Sec. 3 we show that the products between these vec-
tors and their conjugates reproduce the invariants constructed
by means of two-component spinors in Ref. [4]. In Sec. 4 we
obtain the standard expressions for the relativistic Doppler ef-
fect and the aberration of light by combining the usual wave
four-vector corresponding to a plane wave with the complex
vector representing an inertial frame.

It is assumed that the reader is acquainted with the ba-
sic notions of special relativity and the standard four-vector
formalism.

2. Vector description of the Lorentz transfor-
mations

In the standard approach, the Lorentz transformations are
viewed as coordinate transformations. The basic example of
a Lorentz transformation considered in the elementary text-
books on special relativity is that corresponding to two iner-
tial frames whose Cartesian axes coincide att = 0 and the
primed axes move with respect to the unprimed ones with
velocityv along thex-axis (the so-called standard configura-
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tion, see,e.g., Ref. [3]). Then, the Cartesian coordinates of
any event with respect to these frames are related by

ct′ = γ
(
ct− v

c
x
)
,

x′ = γ
(
x− v

c
ct

)
, (1)

y′ = y,

together withz′ = z, where

γ =
1√

1− v2/c2
.

In what follows we shall restrict ourselves to transformations
such thatz′ = z, so that we can omit the coordinatesz and
z′.

Defining therapidity, w, by

tanh w =
v

c
, (2)

Eqs. (1) are equivalent to

ct′ = (cosh w)ct− (sinhw)x,

x′ = (cosh w)x− (sinh w)ct, (3)

y′ = y.

By analogy with the position vector of a point of the three-
dimensional Euclidean space,r = x e1 + y e2 + z e3, where
e1, e2, e3 are unit vectors along a set of Cartesian axes, we
shall consider the position vector of an event,ct e0 + x e1 +
y e2 making use of the space-time coordinates of the event
with respect to an inertial frame. According to Eqs. (3), this
position vector is also given by

ct′ e0′ + x′ e1′ + y′ e2′

= [(cosh w)ct− (sinh w)x] e0′

+ [(cosh w)x− (sinh w)ct] e1′ + y e2′

= ct [(cosh w) e0′ − (sinhw) e1′ ]

+ x [−(sinh w) e0′ + (cosh w) e1′ ] + y e2′

and, therefore (sincect, x andy are arbitrary),

e0 = (cosh w) e0′ − (sinh w) e1′ ,

e1 = −(sinh w) e0′ + (cosh w) e1′ , (4)

e2 = e2′

or, equivalently,

e0′ = (cosh w) e0 + (sinh w) e1,

e1′ = (sinhw) e0 + (cosh w) e1, (5)

e2′ = e2.

FIGURE 2. The Lorentz transformation (3) corresponds to the
change of basis given by Eqs. (5). The vectorse0, e1, e2 are shown
with solid lines and the vectorse0′ , e1′ , e2′ are shown with dashed
lines.

Thus, the Lorentz transformation (3) can also be viewed as
the change of basis (5) (see Fig. 2).

Similarly, an ordinary rotation in thexy-plane through an
angleφ:

ct′ = ct,

x′ = x cos φ + y sin φ,

y′ = −x sin φ + y cos φ,

corresponds to the change of basis

e0′ = e0,

e1′ = (cosφ) e1 + (sin φ) e2, (6)

e2′ = −(sinφ) e1 + (cos φ) e2.

The fact that Eqs. (5) and (6) indeed correspond to
Lorentz transformations can be verified directly making use
of the metric tensor,g, defined by

g(e0, e0) = −1, g(e1, e1) = 1, g(e2, e2) = 1,

andg(ei, ej) = 0 for i 6= j. That is,

g(ei, ej) = gij (7)

for i, j = 0, 1, 2, with

(gij) ≡


−1 0 0
0 1 0
0 0 1


 . (8)
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The change of basis{e0, e1, e2} 7→ {e0′ , e1′ , e2′} corre-
sponds to a Lorentz transformation if and only if

g(ei′ , ej′) = gij . (9)

For instance, considering the transformation given by
Eqs. (5), due to the bilinearity ofg, we have

g(e0′ , e0′)

=g
(
(coshw)e0 + (sinh w)e1, (coshw)e0 + (sinh w)e1

)

=− cosh2 w + sinh2 w = −1,

and

g(e0′ , e1′)

=g
(
(coshw)e0 + (sinh w)e1, (sinh w)e0 + (cosh w)e1

)

= − cosh w sinhw + sinh w cosh w = 0.

Any Lorentz transformation of the restricted class where
z′ = z can be specified giving three vectors,{e0′ , e1′ , e2′},
as linear combinations of{e0, e1, e2}, satisfying the condi-
tions (9). However, there is some redundancy in this; it is
enough to specify two of the vectorsei′ , the third one is, up
to sign, the cross product of the other two. (Since we are
dealing with a vector space with the metric tensor (8), the
components of the cross product of the vectorsai andbj are
given byci = gijεjkla

kbl, where, as usual,(gij) is the in-
verse of the matrix(gij), εijk is the Levi-Civita symbol, with
ε012 = 1, and there is sum over repeated indices.)

In order to establish a simple relation with the results of
Ref. [4], we shall make use of the (spacelike) vectorse1′ and
e2′ and we shall combine them in the complex vector

M′ ≡ e1′ − i e2′ (10)

(the minus sign accompanying the imaginary unit is not es-
sential, it is included in order to get agreement with the ex-
pressions employed in Ref. [4]). According to Eqs. (9), we
have

g(M′,M′) = 0 and g(M
′
,M′) = 2, (11)

with the bar denoting complex conjugation.
For instance, for the Lorentz transformation (5), M′ =

(sinh w) e0 + (cosh w) e1 − i e2, and for the Lorentz trans-
formation (6), M′ = eiφ(e1 − i e2).

In the case where the primed reference frame moves with
respect to the unprimed one with rapidityw in the direction
making an angleθ with respect to thex-axis, and with its
spatial axes rotated through an angleφ with respect to those
of the unprimed frame,

M′ = ei(φ−θ)
[
sinhw e0 + (cosh w cos θ + i sin θ)e1

+ (cosh w sin θ − i cos θ)e2

]
(12)

then, the only real, future-pointing vector,e0′ , satisfying the
conditions

g(M′, e0′) = 0, g(e0′ , e0′) = −1,

FIGURE 3. The basis vectorse0, e1, e2 are shown together with
the vectore0′ given by Eq. (13).

is

e0′ = cosh w e0 + sinh w cos θ e1 + sinh w sin θ e2 (13)

(see Fig. 3).
The unprimed frame is represented by the vector

M = e1 − i e2. (14)

The productg(M,M′) must be invariant under Lorentz
transformations and, therefore, it must represent some geo-
metric property of the pair of frames represented byM and
M′. Making use of (12) and (14) one finds that

g(M,M′) = ei(φ−θ)
[
(cosh w cos θ + i sin θ)

− i(cosh w sin θ − i cos θ)
]

= ei(φ−2θ)(coshw − 1). (15)

(It may be noticed that ei(φ−2θ)(coshw − 1) =
2(eiφ/2−θ sinhw/2)2. The expressioneiφ/2−θ sinhw/2 is
one of the invariants obtained through the spinor formalism
in Ref. [4].)

A second invariant associated with the pair of frames
repesented byM andM′ is given byg(M,M′) and using
again Eqs. (12) and (14) one finds that

g(M,M′) = ei(φ−θ)
[
(cosh w cos θ + i sin θ)

+ i(cosh w sin θ − i cos θ)
]

= eiφ(coshw + 1). (16)

(In this case, one can verify thateiφ(coshw + 1) =
2(eiφ/2 cosh w/2)2. eiφ/2 cosh w/2 is another invariant
found in Ref. [4] making use of the spinor formalism.) Thus,
the argument of the complex numberg(M,M′) is the angle
formed by the spatial axes of S′ with respect to those of S.
(Note the order of the vectors. The argument ofg(M

′
,M)

is the angle formed by the spatial axes of S with respect to
those of S′.)
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3. The Wigner angle

Now we shall make use of the results obtained above in the
calculation of the Wigner angle. The relevant facts are that
each frame is completely represented by a single complex
vector (10) and that the products (calculated with the aid of
the metric tensorg) between these vectors are invariant under
Lorentz transformations. According to the discussion pre-
sented at the Introduction, we shall consider three inertial
reference frames, S0, S and S′ sharing theirz-axes. S and
S′ move with respect to S0 with their spatial axes parallel to
those of S0 in possibly different directions, forming anglesθ
andθ′ with respect to thex-axis of S0 (see Fig. 1).

Since S and S′ have their spatial axes parallel to those of
S0, they are represented by the complex vectors [see Eq. (12)]

M = e−iθ
[
sinh w e0 + (cosh w cos θ + i sin θ)e1

+ (cosh w sin θ − i cos θ)e2

]
(17)

and

M′ = e−iθ′[ sinhw′ e0 + (cosh w′ cos θ′ + i sin θ′)e1

+ (cosh w′ sin θ′ − i cos θ′)e2

]
, (18)

respectively, wherew andw′ are the rapidities of S and S′

with respect to S0. Hence,

g(M,M′) = ei(θ−θ′)[(coshw cosh w′ + 1) cos(θ − θ′)

− sinhw sinhw′ − i(cosh w + cosh w′) sin(θ − θ′)
]
.

(19)

One can verify that the last expression can be abbreviated as

2
[
coshw/2 cosh w′/2− ei(θ−θ′) sinhw/2 sinh w′/2

]2
.

According to Eq. (16), the right-hand side of (19) must
be equal toeiφ̃(cosh w̃ + 1), whereφ̃ is the angle formed by
the spatial axes of S′ with respect to those of S (that is, the
Wigner angle) and̃w is the rapidity of S′ with respect to S,
which amounts to the abbreviated expression

eiφ̃/2 cosh w̃/2

= cosh w/2 cosh w′/2− ei(θ−θ′) sinhw/2 sinh w′/2.

In a similar manner, according to Eq. (15), g(M,M′) is equal
to ei(φ̃−2θ̃)(cosh w̃−1), whereθ̃ is the angle between the ve-
locity of S′ and thex-axis of S.

4. Doppler effect and aberration of light

As another application of the representation of inertial frames
by complex vectors we shall give a simple derivation of the
formulas for the relativistic Doppler effect and the aberration
of light.

The usual wave four-vector of an electromagnetic plane
wave with angular frequencyω, propagating in a direction in
thexy-plane making an angleα with thex-axis has compo-
nents

kµ =
ω

c
(1, cos α, sin α, 0),

or, forgetting thez-component,

k =
ω

c
(e0 + cos α e1 + sin α e2).

Hence, the Lorentz invariantg(M,k) is the complex number
[see Eq. (14)]

g(M,k) =
ω

c
e−iα

and if the frame S′ is in the standard configuration with S, that
is, S′ is represented byM′ = (sinhw) e0+(cosh w) e1−i e2

we have

g(M′,k) =
ω

c

(
e−iα/2 cosh w/2− eiα/2 sinhw/2

)2

=
ω

c

(
e−w/2 cosα/2− i ew/2 sin α/2

)2

,

which must be equal toω
′

c e−iα′ , whereω′ is the angular fre-
quency of the wave measured in S′ andα′ is the angle be-
tween thex′-axis and the direction of propagation of the wave
measured in S′. This leads to

tan
α′

2
= ew tan

α

2
=

√
1 + v/c

1− v/c
tan

α

2
.

5. Concluding remarks

Even though the product (defined by the metric tensorg) be-
tween any pair of space-time vectors is invariant under the
Lorentz transformations, not every product gives something
relevant. As we have shown, the fact that a single complex
space-time vector represents an inertial frame of the class
considered here (or, equivalently, a Lorentz transformations
that preserves thez-axis) allows us to obtain easily, among
other things, the Wigner angle.
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